# Galerkin Finite Element Method 

Praveen. C<br>praveen@math.tifrbng.res.in

## Tify <br> BANGALORE

Tata Institute of Fundamental Research
Center for Applicable Mathematics
Bangalore 560065
http://math.tifrbng.res.in

March 21, 2013

## Boundary value problem

Partial differential equation

$$
\begin{array}{ll}
L u=f & \text { in } \quad \Omega \\
B u=0 & \text { on } \quad \partial \Omega
\end{array}
$$

Weak formulation
Find $u \in V$ such that

$$
\begin{equation*}
a(u, v)=\ell(v) \quad \forall v \in V \tag{1}
\end{equation*}
$$

## Theorem (Lax-Milgram)

Let $V$ be a Hilbert space with norm $\|\cdot\|_{V}$

- $a: V \times V \rightarrow \mathbb{R}$ be a bilinear form
- (continuity) $\exists \gamma>0$ such that

$$
|a(u, v)| \leq \gamma\|u\|_{V}\|v\|_{V} \quad \forall u, v \in V
$$

- (coercivity) $\exists \alpha>0$ such that

$$
a(u, u) \geq \alpha\|u\|_{V}^{2} \quad \forall u \in V
$$

- $\ell: V \rightarrow \mathbb{R}$ is a linear continuous functional, i.e., $\ell \in V^{\prime}$ Then there exists a unique $u \in V$ that solves (1) and

$$
\|u\|_{V} \leq \frac{1}{\alpha}\|\ell\|_{V^{\prime}}
$$

## Symmetric case

If in addition, the bilinear form is symmetric, i.e.,

$$
a(u, v)=a(v, u) \quad \forall u, v \in V
$$

then $a(\cdot, \cdot)$ is an inner product on $V$, and the Riesz representation theorem suffices to infer existence and uniqueness for the solution of (1). Moreover, this solution is also the solution to the following minimization problem

$$
\text { find } u \in V \text { such that } J(u) \leq J(v) \quad \forall v \in V
$$

where

$$
J(u)=\frac{1}{2} a(u, u)-\ell(u)
$$

This is known as Dirichlet principle.

## Galerkin method

We want to approximate $V$ by a finite dimensional subspace $V_{h} \subset V$ where $h>0$ is a small parameter that will go to zero

$$
h \rightarrow 0 \quad \Longrightarrow \quad \operatorname{dim}\left(V_{h}\right) \rightarrow \infty
$$

In the finite element method, $h$ denotes the mesh spacing. Let

$$
\left\{V_{h}: h>0\right\}
$$

denote a family of finite dimensional subspaces of $V$. We assume that

$$
\begin{equation*}
\forall v \in V, \quad \inf _{v_{h} \in V_{h}}\left\|v-v_{h}\right\|_{V} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 \tag{2}
\end{equation*}
$$

## Galerkin approximation

Given $\ell \in V^{\prime}$, find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{3}
\end{equation*}
$$

## Theorem (Galerkin method)

Under the assumptions of Lax-Milgram theorem, there exists a unique solution $u_{h}$ to (3) which is stable since

$$
\left\|u_{h}\right\|_{V} \leq \frac{1}{\alpha}\|\ell\|_{V^{\prime}}
$$

Moreover, if $u$ is the solution to (1), it follows that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} \tag{4}
\end{equation*}
$$

hence $u_{h}$ converges to $u$ due to (2).
Proof: The existence and uniqueness of $u_{h}$ follows from Lax-Milgram theorem. Stability is obtained from coercivity of $a$ and continuity of $\ell$

$$
\alpha\left\|u_{h}\right\|_{V}^{2} \leq a\left(u_{h}, u_{h}\right)=\ell\left(u_{h}\right) \leq\|\ell\|_{V^{\prime}}\left\|u_{h}\right\|_{V} \quad \Longrightarrow \quad\left\|u_{h}\right\|_{V} \leq \frac{1}{\alpha}\|\ell\|_{V^{\prime}}
$$

Now $u$ and $u_{h}$ satisfy

$$
a\left(u, v_{h}\right)=\ell\left(v_{h}\right), \quad a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right), \quad \forall v_{h} \in V_{h}
$$

which implies that

$$
a\left(u-u_{h}, v_{h}\right)=0, \quad \forall v_{h} \in V_{h}
$$

Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{V}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u\right)-a\left(u-u_{h}, u_{h}\right) \\
& =a\left(u-u_{h}, u\right)-0 \\
& =a\left(u-u_{h}, u\right)-a\left(u-u_{h}, v_{h}\right) \quad \forall v_{h} \in V_{h} \\
& =a\left(u-u_{h}, u-v_{h}\right) \\
& \leq \gamma\left\|u-u_{h}\right\|_{V}\left\|u-v_{h}\right\|_{V}
\end{aligned}
$$

which implies that

$$
\left\|u-u_{h}\right\|_{V} \leq \frac{\gamma}{\alpha}\left\|u-v_{h}\right\|_{V} \quad \forall v_{h} \in V_{h}
$$

This shows property (4) which is known as Cea's lemma. Convergence of $u_{h}$ to $u$ is obtained, i.e., $\left\|u-u_{h}\right\|_{V} \rightarrow 0$ as $h \rightarrow 0$ due to the approximation property (2) of the spaces $V_{h}$.

## Symmetric case: Ritz method

When $a(\cdot, \cdot)$ is symmetric, Galerkin method is also known as Ritz method. In this case existence and uniqueness still follows from Riesz representation theorem. As $a(\cdot, \cdot)$ is a inner product, we have the Galerkin orthogonality property

$$
a\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

the error $u-u_{h}$ of the Galerkin solution is orthogonal to the space $V_{h}$. Then we say that $u_{h}$ is the Ritz projecton of $u$ onto $V_{h}$.
Defining the energy norm

$$
\|u\|_{a}=\sqrt{a(u, u)}
$$

the error in energy norm is

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{a}^{2} & =a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u\right)-a\left(u-u_{h}, u_{h}\right) \\
& =a\left(u-u_{h}\right)-a\left(u-u_{h}, v_{h}\right), \quad \forall v_{h} \in V_{h} \\
& =a\left(u-u_{h}, u-v_{h}\right) \leq\left\|u-u_{h}\right\|_{a}\left\|u-v_{h}\right\|_{a}
\end{aligned}
$$

Hence

$$
\left\|u-u_{h}\right\|_{a} \leq\left\|u-v_{h}\right\|_{a} \quad \forall v_{h} \in V_{h}
$$

## Symmetric case: Ritz method

which implies that

$$
\left\|u-u_{h}\right\|_{a}=\min _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{a}
$$

Thus $u_{h}$ is the best approximation to $u$ in the energy norm. Moreover, $u_{h}$ also solves the following minimization problem

$$
J\left(u_{h}\right)=\min _{v_{h} \in V_{h}} J\left(v_{h}\right), \quad J(u)=\frac{1}{2} a(u, u)-\ell(u)
$$

In the symmetric case, we can also improve the Cea's lemma.

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{V}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \\
& \leq\left\|u-u_{h}\right\|_{a}^{2} \leq\left\|u-v_{h}\right\|_{a}^{2} \quad \forall v_{h} \in V_{h} \\
& =a\left(u-v_{h}, u-v_{h}\right) \leq \gamma\left\|u-v_{h}\right\|_{V}^{2}
\end{aligned}
$$

which implies

$$
\left\|u-u_{h}\right\|_{V} \leq\left(\frac{\gamma}{\alpha}\right)^{\frac{1}{2}}\left\|u-v_{h}\right\|_{V} \quad \forall v_{h} \in V_{h}
$$

## Symmetric case: Ritz method

Since

$$
\alpha\|u\|_{V}^{2} \leq a(u, u) \leq \gamma\|u\|_{V}^{2}
$$

we get $\alpha<\gamma$ and hence $(\gamma / \alpha)^{\frac{1}{2}}<\gamma / \alpha$.
Remark: The problem of estimating the error in the Galerkin solution is reduced to estimating the approximation error

$$
\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}
$$

Remark: If $\alpha \ll \gamma$ then the Galerkin solution will have large error. This usually happens in convection-dominated situation. A very fine mesh $h \ll 0$ will be required to reduce the error to acceptable levels.

## Galerkin method summary

- Write the weak formulation of the problem: find $u \in V$ such that $a(u, v)=\ell(v)$ for all $v \in V$. Existence, uniqueness and stability follow from Lax-Milgram theorem.
- Choose a family of finite dimensional spaces $V_{h} \subset V$ such that for

$$
\forall v \in V, \quad \inf _{v_{h} \in V_{h}}\left\|v-v_{h}\right\|_{V} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

- Find the Galerkin approximation: $u_{h} \in V_{h}$ such that $a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right)$ for all $v_{h} \in V_{h}$. Again use Lax-Milgram theorem.
- Convergence follows from Cea's lemma

$$
\left\|u-u_{h}\right\|_{V} \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

- Let $I_{h}: V \rightarrow V_{h}$ be the interpolation operator and show an error estimate

$$
\forall u \in V, \quad\left\|u-I_{h} u\right\|_{V} \leq C(u) h^{p} \quad \text { for some } p>0
$$

Then

$$
\left\|u-u_{h}\right\|_{V} \leq \frac{\gamma}{\alpha}\left\|u-I_{h} u\right\|_{V} \leq \frac{\gamma}{\alpha} C(u) h^{p} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

## Laplace equation: Homogeneous BC

Let $\Omega \subset \mathbb{R}^{d}$ for $d=2$ or 3 and given $f \in L^{2}(\Omega)$, consider

$$
\begin{array}{rlll}
-\Delta u & =f & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{array}
$$

The weak formulation of this problem is:

$$
\text { find } \quad u \in H_{0}^{1}(\Omega) \quad \text { such that } \quad a(u, v)=\ell(v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

where

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x, \quad \ell(v)=\int_{\Omega} f v \mathrm{~d} x
$$

By Poincare inequality, we have

$$
\|u\|_{0} \leq c(\Omega)|u|_{1} \quad \forall u \in H_{0}^{1}(\Omega)
$$

## Laplace equation: Homogeneous BC

so that $\|\cdot\|_{1}$ and $|\cdot|_{1}$ are equivalent norms. We verify the conditions of Lax-Milgram theorem in the norm $|\cdot|_{1}$. Continuity follows from Cauchy-Schwarz inequality

$$
|a(u, v)| \leq|u|_{1}|v|_{1}
$$

while coercivity is trivial

$$
a(u, u)=\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x=|u|_{1}^{2}
$$

Also

$$
|\ell(v)| \leq\|f\|_{0}\|v\|_{0} \leq c(\Omega)\|f\|_{0}|v|_{1}
$$

Thus existence and uniqueness of solution follows from Lax-Milgram theorem.

## Galerkin method:

For $k \geq 1$, the approximating space is taken to be

$$
V_{h}=X_{h}^{k}:=\left\{v_{h} \in C^{0}(\bar{\Omega}):\left.v_{h}\right|_{K} \in \mathbb{P}_{k},\left.v_{h}\right|_{\partial \Omega}=0\right\} \subset H_{0}^{1}(\Omega)
$$

## Laplace equation: Homogeneous BC

From Cea's lemma, we get the error estimate for the Galerkin solution $u_{h}$

$$
\left|u-u_{h}\right|_{1} \leq \inf _{v_{h} \in V_{h}}\left|u-v_{h}\right|_{1} \leq\left|u-I_{h}^{k} u\right|_{1}
$$

The interpolation error estimate tells us that

$$
u \in H^{s}(\Omega), s \geq 2 \quad \Longrightarrow \quad\left|u-I_{h}^{k} u\right|_{1} \leq C h^{l}|u|_{l+1}, \quad 1 \leq l \leq \min (k, s-1)
$$

which implies convergence of the Galerkin method

$$
\left|u-u_{h}\right|_{1} \leq\left|u-I_{h}^{k} u\right|_{1} \leq C h^{l}|u|_{l+1} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

## Regularity theorem

Let $a$ be an $H_{0}^{1}(\Omega)$ elliptic bilinear form with sufficiently smooth coefficient functions.
(1) If $\Omega$ is convex, then the Dirichlet problem is $H^{2}$-regular.
(2) If $\Omega$ has a $C^{s}$ boundary with $s \geq 2$, then the Dirichlet problem is $H^{s}$-regular.

## Laplace equation: Homogeneous BC

## Theorem (Error in $H^{1}$-norm)

Suppose $\mathcal{T}_{h}$ is a regular family of triangulations of $\Omega$ which is a convex polygonal domain, then the finite element approximation $u_{h} \in X_{h}^{k}(k \geq 1)$ satisfies

$$
\left\|u-u_{h}\right\|_{1} \leq C h\|u\|_{2} \leq C h\|f\|_{0}
$$

Proof: Since $\Omega$ is convex, we have $u \in H^{2}(\Omega)$ and $\|u\|_{2} \leq C\|f\|_{0}$. Since the semi-norm $|\cdot|_{1}$ is an equivalent norm on $H_{0}^{1}(\Omega)$ we have

$$
\left\|u-u_{h}\right\|_{1} \leq C\left|u-u_{h}\right|_{1} \leq C\left|u-I_{h}^{k} u\right|_{1} \leq C h|u|_{2} \leq C h\|u\|_{2} \leq C h\|f\|_{0}
$$

Remark: We would also like to obtain error estimates in $L^{2}$-norm corresponding to interpolation error estimate $\left\|u-I_{h}^{k} u\right\|_{0} \leq C h^{2}|u|_{2}$. Consider the weak formulation

$$
\text { find } \quad u \in V \quad \text { such that } a(u, v)=\ell(v) \quad \forall v \in V
$$ and its Galerkin approximation

$$
\text { find } \quad u_{h} \in V_{h} \text { such that } a\left(u_{h}, v\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

## Aubin-Nitsche lemma

Let $H$ be a Hilbert space with norm $\|\cdot\|_{H}$ and inner product $(\cdot, \cdot)_{H}$. Let $V$ be a subspace which is also a Hilbert space with norm $\|\cdot\|_{V}$. In addition let $V \hookrightarrow H$ be continuous. Then the finite element solution $u_{h} \in V_{h}$ satisfies

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H} \leq \gamma\left\|u-u_{h}\right\|_{V} \sup _{g \in H}\left\{\frac{1}{\|g\|_{H}} \inf _{v_{h} \in V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{V}\right\} \tag{5}
\end{equation*}
$$

where for every $g \in H, \varphi_{g} \in V$ denotes the corresponding unique weak solution of the dual problem

$$
\begin{equation*}
a\left(w, \varphi_{g}\right)=(g, w)_{H} \quad \forall w \in V \tag{6}
\end{equation*}
$$

Proof: Due to continuity of $V \hookrightarrow H$, we have for any $g, w \in H$

$$
\left|(g, w)_{H}\right| \leq\|g\|_{H}\|w\|_{H} \leq C\|g\|_{V}\|w\|_{V}
$$

By Lax-Milgram lemma, problem (6) has a unique solution. The Galerkin solution satisfies

$$
a\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

Take $w=u-u_{h}$ in (6)

$$
\left(g, u-u_{h}\right)=a\left(u-u_{h}, \varphi_{g}\right)=a\left(u-u_{h}, \varphi_{g}-v_{h}\right) \leq \gamma\left\|u-u_{h}\right\|_{V}\left\|\varphi_{g}-v_{h}\right\|_{V}
$$

Since this is true for any $v_{h} \in V_{h}$ we obtain

$$
\left(g, u-u_{h}\right)=a\left(u-u_{h}, \varphi_{g}\right) \leq \gamma\left\|u-u_{h}\right\|_{V} \inf _{v_{h} \in V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{V}
$$

Now the error in $H$ is given by

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{H} & =\sup _{g \in H} \frac{\left(g, u-u_{h}\right)}{\|g\|_{H}} \\
& \leq \gamma\left\|u-u_{h}\right\|_{V} \sup _{g \in H}\left\{\frac{1}{\|g\|_{H}} \inf _{v_{h} \in V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{V}\right\}
\end{aligned}
$$

## Laplace equation: Homogeneous BC

## $L^{2}$ error for Dirichlet problem

Under the conditions of previous theorem, we have

$$
\left\|u-u_{h}\right\|_{0} \leq C h^{2}\|f\|_{0}
$$

Proof: Take $V=H_{0}^{1}(\Omega)$ and $H=L^{2}(\Omega)$. Then $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is continuous since $\|\cdot\|_{0} \leq\|\cdot\|_{1}$. Let $\varphi_{g, h} \in V_{h}$ be the Galerkin solution of problem (6). Then

$$
\left\|\varphi_{g}-\varphi_{g, h}\right\|_{1} \leq C h\|g\|_{0}
$$

and

$$
\inf _{v_{h} \in V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{1} \leq\left\|\varphi_{g}-\varphi_{g, h}\right\|_{1} \leq C h\|g\|_{0}
$$

and the Aubin-Nitsche lemma yields

$$
\left\|u-u_{h}\right\|_{0} \leq C h\left\|u-u_{h}\right\|_{1} \leq C h^{2}\|f\|_{0}
$$

## Laplace equation: Homogeneous BC

## Numerical implementation:

Arrange the dofs so that all interior dofs are in the range $i=1,2, \ldots, M_{h}$ while the boundary dofs are $i=M_{h}+1, \ldots, N_{h}$. Note that

$$
\varphi_{i}(x)=0, \quad x \in \partial \Omega, \quad i=1,2, \ldots, M_{h}
$$

and

$$
V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{M_{h}}\right\}
$$

Then the Galerkin solution $u_{h} \in V_{h}$ can be written as

$$
u_{h}=\sum_{j=1}^{M_{h}} u_{j} \varphi_{j}
$$

The Galerkin formulation is

$$
a\left(u_{h}, \varphi_{i}\right)=\ell\left(\varphi_{i}\right) \quad i=1,2, \ldots, M_{h}
$$

## Trace theorem

The space $C^{\infty}(\bar{\Omega})$ is dense in $H^{1}(\Omega)$ for domains with Lipschitz continuous boundary.

Consequently we have the trace operator

$$
\gamma: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)
$$

## Trace theorem

Let $\Omega$ be a bounded open set of $\mathbb{R}^{d}$ with Lipschitz continuous boundary $\partial \Omega$ and let $s>\frac{1}{2}$.
(1) There exists a unique linear continuous map $\gamma_{0}: H^{s}(\Omega) \rightarrow H^{s-\frac{1}{2}}(\partial \Omega)$ such that $\gamma_{0} v=\left.v\right|_{\partial \Omega}$ for each $v \in H^{s}(\Omega) \cap C^{0}(\bar{\Omega})$.
(2) There exists a linear continuous map $\mathcal{R}_{0}: H^{s-\frac{1}{2}}(\partial \Omega) \rightarrow H^{s}(\Omega)$ such that $\gamma_{0} \mathcal{R}_{0} \varphi=\varphi$ for each $\varphi \in H^{s-\frac{1}{2}}(\partial \Omega)$.
Analogous results also hold true if we consider the trace $\gamma_{\Sigma}$ over a Lipschitz continuous subset $\Sigma$ of the boundary $\partial \Omega$.

Remark: Any $\varphi \in H^{s-\frac{1}{2}}(\Sigma)$ is the trace on $\Sigma$ of a function in $H^{s}(\Omega)$.
Remark: The above theorem also yields the existence of a constant $C$ such that

$$
\int_{\partial \Omega}\left(\gamma_{0} v\right)^{2} \leq C \int_{\Omega}\left(v^{2}+|\nabla v|^{2}\right), \quad \forall v \in H^{1}(\Omega)
$$

Remark: The map $\mathcal{R}_{0}$ is said to provide a lifting of the boundary values.

## Variant of Lax-Milgram Lemma (Necas)

Let $V$ and $W$ be Hilbert spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}$ respectively.

- $a: V \times W \rightarrow \mathbb{R}$ be a bilinear form
- $\exists \gamma>0$ such that

$$
|a(v, w)| \leq \gamma\|v\|_{V}\|w\|_{W} \quad \forall v \in V, w \in W
$$

- $\exists \alpha>0$ such that

$$
\sup _{w \in W, w \neq 0} \frac{a(v, w)}{\|w\|_{W}} \geq \alpha\|v\|_{V} \quad \forall v \in V
$$

- $\sup _{v \in V} a(v, w)>0, \forall w \in W, w \neq 0$
- $\ell: W \rightarrow \mathbb{R}$ is a linear continuous functional, i.e., $\ell \in W^{\prime}$

Then there exists a unique $u \in V$ that solves:
find $\quad u \in V$ such that $a(u, w)=\ell(w) \quad \forall w \in W$
and

$$
\|u\|_{V} \leq \frac{1}{\alpha}\|\ell\|_{W^{\prime}}
$$

## Laplace equation: Non-homogeneous BC

Let $\Omega \subset \mathbb{R}^{d}$ for $d=2$ or 3 and given $f \in L^{2}(\Omega)$ and $g \in H^{\frac{1}{2}}(\partial \Omega)$, consider

$$
\begin{array}{rlll}
-\Delta u & =f & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{array}
$$

Define the spaces

$$
V=\left\{v \in H^{1}(\Omega): \gamma_{0} v=g\right\}, \quad W=\left\{v \in H^{1}(\Omega): \gamma_{0} v=0\right\}=H_{0}^{1}(\Omega)
$$

Then the weak formulation

$$
\text { find } \quad u \in V \quad \text { such that } \quad a(u, v)=\ell(v) \quad \forall v \in W
$$

has a unique solution due to Lax-Milgram lemma.

## Another formulation:

Due to trace theorem, there exists a lifting $u_{g} \in H^{1}(\Omega)$ of $g$ such that $\gamma_{0} u_{g}=g$. Define

$$
a(\tilde{u}, v)=\int_{\Omega} \nabla \tilde{u} \cdot \nabla v, \quad \ell(v)=\int_{\Omega} f v-\int_{\Omega} \nabla u_{g} \cdot \nabla v
$$

## Laplace equation: Non-homogeneous BC

Find $\tilde{u} \in H_{0}^{1}(\Omega)$ such that

$$
a(\tilde{u}, v)=\ell(v), \quad \forall v \in H_{0}^{1}(\Omega)
$$

Then

$$
u=\tilde{u}+u_{g}
$$

solves our problem.

## Galerkin formulation:

Write $u_{h}=\tilde{u}_{h}+u_{g, h}$ where the lifting can be taken as

$$
u_{g, h}=\sum_{j=M_{h}+1}^{N_{h}} g_{j} \varphi_{j} \quad \text { and } \quad \tilde{u}_{h}=\sum_{j=1}^{M_{h}} u_{j} \varphi_{j} \in H_{0}^{1}(\Omega)
$$

and the Galerkin formulation is

$$
a\left(\tilde{u}_{h}, \varphi_{i}\right)=\ell_{h}\left(\varphi_{i}\right) \quad i=1,2, \ldots, M_{h}
$$

where

$$
\ell_{h}(v)=\int_{\Omega} f v-\int_{\Omega} \nabla u_{g, h} \cdot \nabla v
$$

## Poincare-Friedrich's type inequality

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, Lipschitz domain. Then there exists a constant $C=C(\Omega)$ such that

$$
\|v\|_{0} \leq C\left(|\bar{v}|+|v|_{1}\right) \quad \forall v \in H^{1}(\Omega)
$$

where

$$
\bar{v}=\frac{1}{|\Omega|} \int_{\Omega} v(x) \mathrm{d} x
$$

Proof: Suppose that the result is not true. Then we can find a sequence $v_{n}$ such that

$$
\left\|v_{n}\right\|_{0}=1, \quad\left|\bar{v}_{n}\right|+\left|v_{n}\right|_{1}<\frac{1}{n}
$$

Since the imbedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact, we can find a subsequence, still denoted $v_{n}$, which converges in $L^{2}(\Omega)$. This is a Cauchy sequence in $L^{2}(\Omega)$. By triangle inequality

$$
\left|v_{n}-v_{m}\right|_{1} \leq\left|v_{n}\right|_{1}+\left|v_{m}\right|_{1}<\frac{1}{n}+\frac{1}{m} \rightarrow 0, \quad \text { as } \quad n, m \rightarrow \infty
$$

Hence $v_{n}$ is also a Cauchy sequence in $H^{1}(\Omega)$ and hence converges to some $v \in H^{1}(\Omega)$ such that

$$
\|v\|_{0}=\lim _{n}\left\|v_{n}\right\|_{0}=1 \quad \text { and } \quad \bar{v}=0, \quad|v|_{1}=0 \quad \Longrightarrow \quad v=0
$$

which leads to a contradiction.
Remark: For any $v \in V$ where

$$
V=\left\{v \in H^{1}(\Omega): \bar{v}=0\right\}
$$

we have the Poincare-Friedrich's inequality

$$
\|v\|_{0} \leq C|v|_{1}
$$

## Laplace equation: Neumann BC

Let $\Omega \subset \mathbb{R}^{d}$ for $d=2$ or 3 and given $f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$, consider

$$
\begin{array}{rlrl}
-\Delta u & =f & \text { in } \Omega \\
\frac{\partial u}{\partial n} & =g & & \text { on } \quad \partial \Omega
\end{array}
$$

Multiply by $v \in H^{1}(\Omega)$ and integrate by parts to get

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v+\int_{\partial \Omega} g v
$$

If we take $v \equiv 1$ then we get the compatibility condition for the data

$$
\int_{\Omega} f+\int_{\partial \Omega} g=0
$$

Define

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v, \quad \ell(v)=\int_{\Omega} f v+\int_{\partial \Omega} g v
$$

## Laplace equation: Neumann BC

But $a(\cdot, \cdot)$ is not coercive on $H^{1}(\Omega)$; moreover if $u$ is a solution, then $u+c$ is also a solution for any $c \in \mathbb{R}$. Hence we can look for solutions in

$$
V=\left\{v \in H^{1}(\Omega): \int_{\Omega} v=0\right\}
$$

Now $a(\cdot, \cdot)$ is coercive on $V$ since we have Poincare inequality for any $v \in V$. The problem

$$
\text { find } \quad u \in V \quad \text { such that } a(u, v)=\ell(v) \quad \forall v \in V
$$

has a unique solution. Because of the compatibility condition, the above equation is satisfied for $v=$ constant also, and hence for all $v \in H^{1}(\Omega)$.

Remark: The above formulation is not used in the Galerkin method since it is not possible to construct a finite dimensional space $V_{h} \subset V$. Instead we fix the value of the Galerkin solution at any point in $\Omega$ to some arbitray value, say zero. Suppose we fix the value of the last dof to zero; then

$$
u_{h}=\sum_{j=1}^{N_{h}-1} u_{j} \varphi_{j} \quad \text { and } \quad a\left(u_{h}, \varphi_{i}\right)=\ell\left(\varphi_{i}\right), \quad i=1,2, \ldots, N_{h}-1
$$

## Another example

Let $\Omega \subset \mathbb{R}^{d}$ for $d=2$ or 3 and given $f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$, consider

$$
\begin{aligned}
-\Delta u+u & =f \quad \text { in } \quad \Omega \\
\frac{\partial u}{\partial n} & =g \quad \text { on } \quad \partial \Omega
\end{aligned}
$$

The weak formulation is:

$$
\text { find } \quad u \in H^{1}(\Omega) \quad \text { such that } \quad a(u, v)=\ell(v) \quad \forall v \in H^{1}(\Omega)
$$

where

$$
a(u, v)=\int_{\Omega}(u v+\nabla u \cdot \nabla v), \quad \ell(v)=\int_{\Omega} f v+\int_{\partial \Omega} g v
$$

Remark: Dirichlet boundary conditions are built into the approximation spaces; hence they are called essential boundary condition. Neumann boundary condition is implemented through the weak formulation and are called natural boundary condition.

## Another example

Galerkin formulation: There is no Dirichlet boundary condition and hence all dofs have to be determined from the Galerkin method. Find

$$
u_{h}=\sum_{j=1}^{N_{h}} u_{j} \varphi_{j}
$$

such that

$$
a\left(u_{h}, \varphi_{i}\right)=\ell\left(\varphi_{i}\right), \quad i=1,2, \ldots, N_{h}
$$

