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Boundary value problem

Partial differential equation

Lu = f in Ω

Bu = 0 on ∂Ω

Weak formulation
Find u ∈ V such that

a(u, v) = `(v) ∀ v ∈ V (1)
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Theorem (Lax-Milgram)

Let V be a Hilbert space with norm ‖·‖V
• a : V × V → R be a bilinear form

• (continuity) ∃ γ > 0 such that

|a(u, v)| ≤ γ ‖u‖V ‖v‖V ∀ u, v ∈ V

• (coercivity) ∃ α > 0 such that

a(u, u) ≥ α ‖u‖2V ∀ u ∈ V

• ` : V → R is a linear continuous functional, i.e., ` ∈ V ′

Then there exists a unique u ∈ V that solves (1) and

‖u‖V ≤
1

α
‖`‖V ′
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Symmetric case

If in addition, the bilinear form is symmetric, i.e.,

a(u, v) = a(v, u) ∀ u, v ∈ V

then a(·, ·) is an inner product on V , and the Riesz representation theorem
suffices to infer existence and uniqueness for the solution of (1). Moreover,
this solution is also the solution to the following minimization problem

find u ∈ V such that J(u) ≤ J(v) ∀ v ∈ V

where

J(u) =
1

2
a(u, u)− `(u)

This is known as Dirichlet principle.
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Galerkin method

We want to approximate V by a finite dimensional subspace Vh ⊂ V where
h > 0 is a small parameter that will go to zero

h→ 0 =⇒ dim(Vh)→∞

In the finite element method, h denotes the mesh spacing. Let

{Vh : h > 0}

denote a family of finite dimensional subspaces of V . We assume that

∀ v ∈ V, inf
vh∈Vh

‖v − vh‖V → 0 as h→ 0 (2)

Galerkin approximation

Given ` ∈ V ′, find uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh (3)
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Theorem (Galerkin method)

Under the assumptions of Lax-Milgram theorem, there exists a unique
solution uh to (3) which is stable since

‖uh‖V ≤
1

α
‖`‖V ′

Moreover, if u is the solution to (1), it follows that

‖u− uh‖V ≤
γ

α
inf

vh∈Vh

‖u− vh‖V (4)

hence uh converges to u due to (2).

Proof: The existence and uniqueness of uh follows from Lax-Milgram theorem.
Stability is obtained from coercivity of a and continuity of `

α ‖uh‖2V ≤ a(uh, uh) = `(uh) ≤ ‖`‖V ′ ‖uh‖V =⇒ ‖uh‖V ≤
1

α
‖`‖V ′
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Now u and uh satisfy

a(u, vh) = `(vh), a(uh, vh) = `(vh), ∀ vh ∈ Vh

which implies that
a(u− uh, vh) = 0, ∀ vh ∈ Vh

Then

α ‖u− uh‖2V ≤ a(u− uh, u− uh) = a(u− uh, u)− a(u− uh, uh)

= a(u− uh, u)− 0

= a(u− uh, u)− a(u− uh, vh) ∀ vh ∈ Vh
= a(u− uh, u− vh)

≤ γ ‖u− uh‖V ‖u− vh‖V

which implies that

‖u− uh‖V ≤
γ

α
‖u− vh‖V ∀ vh ∈ Vh

This shows property (4) which is known as Cea’s lemma. Convergence of uh
to u is obtained, i.e., ‖u− uh‖V → 0 as h→ 0 due to the approximation
property (2) of the spaces Vh.
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Symmetric case: Ritz method

When a(·, ·) is symmetric, Galerkin method is also known as Ritz method. In
this case existence and uniqueness still follows from Riesz representation
theorem. As a(·, ·) is a inner product, we have the Galerkin orthogonality
property

a(u− uh, vh) = 0 ∀ vh ∈ Vh
the error u− uh of the Galerkin solution is orthogonal to the space Vh. Then
we say that uh is the Ritz projecton of u onto Vh.
Defining the energy norm

‖u‖a =
√
a(u, u)

the error in energy norm is

‖u− uh‖2a = a(u− uh, u− uh) = a(u− uh, u)− a(u− uh, uh)

= a(u− uh)− a(u− uh, vh), ∀ vh ∈ Vh
= a(u− uh, u− vh) ≤ ‖u− uh‖a ‖u− vh‖a

Hence
‖u− uh‖a ≤ ‖u− vh‖a ∀ vh ∈ Vh
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Symmetric case: Ritz method

which implies that
‖u− uh‖a = min

vh∈Vh

‖u− vh‖a

Thus uh is the best approximation to u in the energy norm.
Moreover, uh also solves the following minimization problem

J(uh) = min
vh∈Vh

J(vh), J(u) =
1

2
a(u, u)− `(u)

In the symmetric case, we can also improve the Cea’s lemma.

α ‖u− uh‖2V ≤ a(u− uh, u− uh)

≤ ‖u− uh‖2a ≤ ‖u− vh‖
2
a ∀ vh ∈ Vh

= a(u− vh, u− vh) ≤ γ ‖u− vh‖2V

which implies

‖u− uh‖V ≤
(γ
α

) 1
2 ‖u− vh‖V ∀ vh ∈ Vh

9 / 29



Symmetric case: Ritz method

Since

α ‖u‖2V ≤ a(u, u) ≤ γ ‖u‖2V

we get α < γ and hence (γ/α)
1
2 < γ/α.

Remark: The problem of estimating the error in the Galerkin solution is
reduced to estimating the approximation error

inf
vh∈Vh

‖u− vh‖V

Remark: If α� γ then the Galerkin solution will have large error. This
usually happens in convection-dominated situation. A very fine mesh h� 0
will be required to reduce the error to acceptable levels.
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Galerkin method summary
• Write the weak formulation of the problem: find u ∈ V such that
a(u, v) = `(v) for all v ∈ V . Existence, uniqueness and stability follow
from Lax-Milgram theorem.

• Choose a family of finite dimensional spaces Vh ⊂ V such that for

∀ v ∈ V, inf
vh∈Vh

‖v − vh‖V → 0 as h→ 0

• Find the Galerkin approximation: uh ∈ Vh such that a(uh, vh) = `(vh) for
all vh ∈ Vh. Again use Lax-Milgram theorem.

• Convergence follows from Cea’s lemma

‖u− uh‖V ≤
γ

α
inf

vh∈Vh

‖u− vh‖V → 0 as h→ 0

• Let Ih : V → Vh be the interpolation operator and show an error estimate

∀ u ∈ V, ‖u− Ihu‖V ≤ C(u)hp for some p > 0

Then

‖u− uh‖V ≤
γ

α
‖u− Ihu‖V ≤

γ

α
C(u)hp → 0 as h→ 0
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Laplace equation: Homogeneous BC

Let Ω ⊂ Rd for d = 2 or 3 and given f ∈ L2(Ω), consider

−∆u = f in Ω

u = 0 on ∂Ω

The weak formulation of this problem is:

find u ∈ H1
0 (Ω) such that a(u, v) = `(v) ∀ v ∈ H1

0 (Ω)

where

a(u, v) =

∫
Ω

∇u · ∇vdx, `(v) =

∫
Ω

fvdx

By Poincare inequality, we have

‖u‖0 ≤ c(Ω)|u|1 ∀ u ∈ H1
0 (Ω)
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Laplace equation: Homogeneous BC

so that ‖·‖1 and | · |1 are equivalent norms. We verify the conditions of
Lax-Milgram theorem in the norm | · |1. Continuity follows from
Cauchy-Schwarz inequality

|a(u, v)| ≤ |u|1|v|1

while coercivity is trivial

a(u, u) =

∫
Ω

|∇u|2dx = |u|21

Also
|`(v)| ≤ ‖f‖0 ‖v‖0 ≤ c(Ω) ‖f‖0 |v|1

Thus existence and uniqueness of solution follows from Lax-Milgram theorem.

Galerkin method:
For k ≥ 1, the approximating space is taken to be

Vh = Xk
h := {vh ∈ C0(Ω̄) : vh|K ∈ Pk, vh|∂Ω = 0} ⊂ H1

0 (Ω)
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Laplace equation: Homogeneous BC
From Cea’s lemma, we get the error estimate for the Galerkin solution uh

|u− uh|1 ≤ inf
vh∈Vh

|u− vh|1 ≤ |u− Ikhu|1

The interpolation error estimate tells us that

u ∈ Hs(Ω), s ≥ 2 =⇒ |u− Ikhu|1 ≤ Chl|u|l+1, 1 ≤ l ≤ min(k, s− 1)

which implies convergence of the Galerkin method

|u− uh|1 ≤ |u− Ikhu|1 ≤ Chl|u|l+1 → 0 as h→ 0

Regularity theorem

Let a be an H1
0 (Ω) elliptic bilinear form with sufficiently smooth coefficient

functions.

1 If Ω is convex, then the Dirichlet problem is H2-regular.

2 If Ω has a Cs boundary with s ≥ 2, then the Dirichlet problem is
Hs-regular.
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Laplace equation: Homogeneous BC
Theorem (Error in H1-norm)

Suppose Th is a regular family of triangulations of Ω which is a convex
polygonal domain, then the finite element approximation uh ∈ Xk

h (k ≥ 1)
satisfies

‖u− uh‖1 ≤ Ch ‖u‖2 ≤ Ch ‖f‖0

Proof: Since Ω is convex, we have u ∈ H2(Ω) and ‖u‖2 ≤ C ‖f‖0. Since the
semi-norm | · |1 is an equivalent norm on H1

0 (Ω) we have

‖u− uh‖1 ≤ C|u− uh|1 ≤ C|u− I
k
hu|1 ≤ Ch|u|2 ≤ Ch ‖u‖2 ≤ Ch ‖f‖0

Remark: We would also like to obtain error estimates in L2-norm
corresponding to interpolation error estimate

∥∥u− Ikhu∥∥0
≤ Ch2|u|2. Consider

the weak formulation

find u ∈ V such that a(u, v) = `(v) ∀ v ∈ V

and its Galerkin approximation

find uh ∈ Vh such that a(uh, v) = `(vh) ∀ vh ∈ Vh
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Aubin-Nitsche lemma

Let H be a Hilbert space with norm ‖·‖H and inner product (·, ·)H . Let V be
a subspace which is also a Hilbert space with norm ‖·‖V . In addition let
V ↪→ H be continuous. Then the finite element solution uh ∈ Vh satisfies

‖u− uh‖H ≤ γ ‖u− uh‖V sup
g∈H

{
1

‖g‖H
inf

vh∈Vh

‖ϕg − vh‖V

}
(5)

where for every g ∈ H, ϕg ∈ V denotes the corresponding unique weak
solution of the dual problem

a(w,ϕg) = (g, w)H ∀ w ∈ V (6)

Proof: Due to continuity of V ↪→ H, we have for any g, w ∈ H

|(g, w)H | ≤ ‖g‖H ‖w‖H ≤ C ‖g‖V ‖w‖V

By Lax-Milgram lemma, problem (6) has a unique solution. The Galerkin
solution satisfies

a(u− uh, vh) = 0 ∀ vh ∈ Vh
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Take w = u− uh in (6)

(g, u− uh) = a(u− uh, ϕg) = a(u− uh, ϕg − vh) ≤ γ ‖u− uh‖V ‖ϕg − vh‖V

Since this is true for any vh ∈ Vh we obtain

(g, u− uh) = a(u− uh, ϕg) ≤ γ ‖u− uh‖V inf
vh∈Vh

‖ϕg − vh‖V

Now the error in H is given by

‖u− uh‖H = sup
g∈H

(g, u− uh)

‖g‖H

≤ γ ‖u− uh‖V sup
g∈H

{
1

‖g‖H
inf

vh∈Vh

‖ϕg − vh‖V

}
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Laplace equation: Homogeneous BC

L2 error for Dirichlet problem

Under the conditions of previous theorem, we have

‖u− uh‖0 ≤ Ch
2 ‖f‖0

Proof: Take V = H1
0 (Ω) and H = L2(Ω). Then H1

0 (Ω) ↪→ L2(Ω) is continuous
since ‖·‖0 ≤ ‖·‖1. Let ϕg,h ∈ Vh be the Galerkin solution of problem (6). Then

‖ϕg − ϕg,h‖1 ≤ Ch ‖g‖0

and
inf

vh∈Vh

‖ϕg − vh‖1 ≤ ‖ϕg − ϕg,h‖1 ≤ Ch ‖g‖0

and the Aubin-Nitsche lemma yields

‖u− uh‖0 ≤ Ch ‖u− uh‖1 ≤ Ch
2 ‖f‖0
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Laplace equation: Homogeneous BC

Numerical implementation:
Arrange the dofs so that all interior dofs are in the range i = 1, 2, . . . ,Mh

while the boundary dofs are i = Mh + 1, . . . , Nh. Note that

ϕi(x) = 0, x ∈ ∂Ω, i = 1, 2, . . . ,Mh

and
Vh = span{ϕ1, . . . , ϕMh

}

Then the Galerkin solution uh ∈ Vh can be written as

uh =

Mh∑
j=1

ujϕj

The Galerkin formulation is

a(uh, ϕi) = `(ϕi) i = 1, 2, . . . ,Mh
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Trace theorem

The space C∞(Ω̄) is dense in H1(Ω) for domains with Lipschitz continuous
boundary.

Consequently we have the trace operator

γ : H1(Ω)→ L2(∂Ω)
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Trace theorem

Let Ω be a bounded open set of Rd with Lipschitz continuous boundary ∂Ω
and let s > 1

2 .

1 There exists a unique linear continuous map γ0 : Hs(Ω)→ Hs− 1
2 (∂Ω)

such that γ0v = v|∂Ω for each v ∈ Hs(Ω) ∩ C0(Ω̄).

2 There exists a linear continuous map R0 : Hs− 1
2 (∂Ω)→ Hs(Ω) such that

γ0R0ϕ = ϕ for each ϕ ∈ Hs− 1
2 (∂Ω).

Analogous results also hold true if we consider the trace γΣ over a Lipschitz
continuous subset Σ of the boundary ∂Ω.

Remark: Any ϕ ∈ Hs− 1
2 (Σ) is the trace on Σ of a function in Hs(Ω).

Remark: The above theorem also yields the existence of a constant C such
that ∫

∂Ω

(γ0v)2 ≤ C
∫

Ω

(v2 + |∇v|2), ∀ v ∈ H1(Ω)

Remark: The map R0 is said to provide a lifting of the boundary values.
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Variant of Lax-Milgram Lemma (Necas)

Let V and W be Hilbert spaces with norms ‖·‖V and ‖·‖W respectively.

• a : V ×W → R be a bilinear form

• ∃ γ > 0 such that

|a(v, w)| ≤ γ ‖v‖V ‖w‖W ∀ v ∈ V, w ∈W

• ∃ α > 0 such that

sup
w∈W,w 6=0

a(v, w)

‖w‖W
≥ α ‖v‖V ∀ v ∈ V

• supv∈V a(v, w) > 0, ∀ w ∈W , w 6= 0

• ` : W → R is a linear continuous functional, i.e., ` ∈W ′

Then there exists a unique u ∈ V that solves:

find u ∈ V such that a(u,w) = `(w) ∀ w ∈W

and

‖u‖V ≤
1

α
‖`‖W ′
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Laplace equation: Non-homogeneous BC
Let Ω ⊂ Rd for d = 2 or 3 and given f ∈ L2(Ω) and g ∈ H 1

2 (∂Ω), consider

−∆u = f in Ω

u = g on ∂Ω

Define the spaces

V = {v ∈ H1(Ω) : γ0v = g}, W = {v ∈ H1(Ω) : γ0v = 0} = H1
0 (Ω)

Then the weak formulation

find u ∈ V such that a(u, v) = `(v) ∀ v ∈W

has a unique solution due to Lax-Milgram lemma.

Another formulation:
Due to trace theorem, there exists a lifting ug ∈ H1(Ω) of g such that
γ0ug = g. Define

a(ũ, v) =

∫
Ω

∇ũ · ∇v, `(v) =

∫
Ω

fv −
∫

Ω

∇ug · ∇v
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Laplace equation: Non-homogeneous BC
Find ũ ∈ H1

0 (Ω) such that

a(ũ, v) = `(v), ∀ v ∈ H1
0 (Ω)

Then
u = ũ+ ug

solves our problem.

Galerkin formulation:
Write uh = ũh + ug,h where the lifting can be taken as

ug,h =

Nh∑
j=Mh+1

gjϕj and ũh =

Mh∑
j=1

ujϕj ∈ H1
0 (Ω)

and the Galerkin formulation is

a(ũh, ϕi) = `h(ϕi) i = 1, 2, . . . ,Mh

where

`h(v) =

∫
Ω

fv −
∫

Ω

∇ug,h · ∇v
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Poincare-Friedrich’s type inequality

Let Ω ⊂ Rd be a bounded, Lipschitz domain. Then there exists a constant
C = C(Ω) such that

‖v‖0 ≤ C(|v̄|+ |v|1) ∀ v ∈ H1(Ω)

where

v̄ =
1

|Ω|

∫
Ω

v(x)dx

Proof: Suppose that the result is not true. Then we can find a sequence vn
such that

‖vn‖0 = 1, |v̄n|+ |vn|1 <
1

n

Since the imbedding H1(Ω) ↪→ L2(Ω) is compact, we can find a subsequence,
still denoted vn, which converges in L2(Ω). This is a Cauchy sequence in
L2(Ω). By triangle inequality

|vn − vm|1 ≤ |vn|1 + |vm|1 <
1

n
+

1

m
→ 0, as n,m→∞
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Hence vn is also a Cauchy sequence in H1(Ω) and hence converges to some
v ∈ H1(Ω) such that

‖v‖0 = lim
n
‖vn‖0 = 1 and v̄ = 0, |v|1 = 0 =⇒ v = 0

which leads to a contradiction.

Remark: For any v ∈ V where

V = {v ∈ H1(Ω) : v̄ = 0}

we have the Poincare-Friedrich’s inequality

‖v‖0 ≤ C|v|1
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Laplace equation: Neumann BC

Let Ω ⊂ Rd for d = 2 or 3 and given f ∈ L2(Ω) and g ∈ L2(∂Ω), consider

−∆u = f in Ω

∂u

∂n
= g on ∂Ω

Multiply by v ∈ H1(Ω) and integrate by parts to get∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
∂Ω

gv

If we take v ≡ 1 then we get the compatibility condition for the data∫
Ω

f +

∫
∂Ω

g = 0

Define

a(u, v) =

∫
Ω

∇u · ∇v, `(v) =

∫
Ω

fv +

∫
∂Ω

gv
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Laplace equation: Neumann BC
But a(·, ·) is not coercive on H1(Ω); moreover if u is a solution, then u+ c is
also a solution for any c ∈ R. Hence we can look for solutions in

V = {v ∈ H1(Ω) :

∫
Ω

v = 0}

Now a(·, ·) is coercive on V since we have Poincare inequality for any v ∈ V .
The problem

find u ∈ V such that a(u, v) = `(v) ∀ v ∈ V

has a unique solution. Because of the compatibility condition, the above
equation is satisfied for v = constant also, and hence for all v ∈ H1(Ω).

Remark: The above formulation is not used in the Galerkin method since it
is not possible to construct a finite dimensional space Vh ⊂ V . Instead we fix
the value of the Galerkin solution at any point in Ω to some arbitray value,
say zero. Suppose we fix the value of the last dof to zero; then

uh =

Nh−1∑
j=1

ujϕj and a(uh, ϕi) = `(ϕi), i = 1, 2, . . . , Nh − 1
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Another example

Let Ω ⊂ Rd for d = 2 or 3 and given f ∈ L2(Ω) and g ∈ L2(∂Ω), consider

−∆u+ u = f in Ω

∂u

∂n
= g on ∂Ω

The weak formulation is:

find u ∈ H1(Ω) such that a(u, v) = `(v) ∀ v ∈ H1(Ω)

where

a(u, v) =

∫
Ω

(uv +∇u · ∇v), `(v) =

∫
Ω

fv +

∫
∂Ω

gv

Remark: Dirichlet boundary conditions are built into the approximation
spaces; hence they are called essential boundary condition. Neumann
boundary condition is implemented through the weak formulation and are
called natural boundary condition.
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Another example

Galerkin formulation: There is no Dirichlet boundary condition and hence
all dofs have to be determined from the Galerkin method. Find

uh =

Nh∑
j=1

ujϕj

such that

a(uh, ϕi) = `(ϕi), i = 1, 2, . . . , Nh
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