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The 2-D Navier-Stokes equations
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Here,
ρ → density p → pressure u = (u1, u2)> → velocity
E → total energy τ =

[
ταβ

]
→ shear stress Q = (Q1, Q2) → heat flux

Ignoring the viscous fluxes on the right gives us the Euler equations.

Entropy conditions

Entropy conditions are essential to single out a physically relevant solution. A
conservation law equipped with a convex entropy function η(U) and entropy fluxes
q1(U), q2(U), satisfies the entropy inequality

dη
dt

+ ∂q1(U)
∂x

+ ∂q2(U)
∂y

≤ 0 (2)

with the entropy variables V = η′(U). For the Euler equations, we choose

η(U) = − ρs
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The viscous fluxes of the Navier-Stokes system are written in terms of V
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]
≥ 0 (4)

This leads to a global entropy estimate
d
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Objectives

• Design high-order semi-discrete finite volume schemes for the Euler equations
satisfying a discrete version of (2) on unstructured meshes.

• Discretise the viscous fluxes appropriately to obtain a discrete global estimate
analogous to (5).

Past work

Tadmor [1] proposed the idea of constructing entropy conservative schemes for
conservation laws, to which numerical dissipation is added to obtain entropy stability.
Higher order dissipation operators [3] have been obtained on structured meshes, by
suitable reconstructions satisfying the sign property. First order entropy stable
schemes have been designed on unstructured meshes [2].
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Methodology
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Figure 1: Unstructured meshes (a) Primary (b) Median dual (c) Voronoi dual

Consider the vertex-centered, semi-discrete finite volume scheme on dual meshes
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Figure 2: Triangle T and Te with outward normals

Ci → dual cell
Ui → cell average
Fij,Fie → inviscid flux
GT ,Ge → viscous flux

Step 1: Construct a kinetic energy [4] and entropy conservative scheme for the
Euler equations using ideas in [2], to satisfy a discrete entropy equality.
Step 2: Add entropy variable based dissipation to obtain a first-order entropy
stable scheme (KEPES), satisfying a discrete entropy inequality

|Ci|
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dt
+
∑
j∈i
qij ≤ 0, qij = q(Ui,Uj,nij)

Step 3: Reconstruct (linear) the scaled entropy variables in the dissipation
operator while satisfying the sign property, to obtain a second-order entropy stable
scheme (KEPES-TeCNO).
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sign(Vji − Vij) = sign(Vj − Vi)

Figure 3: Sign property

Step 4: Approximate the viscous fluxes on the primary cells, taking advantage of
the fact that K ≥ 0 in (4). This leads to the satisfaction of a discrete analogue of
(5). Step 5: Integrate the semi-discrete scheme in time using a suitable method.

Modified shock tube problem
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Figure 4: Density plot using Roe and
KEPES schemes
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Figure 5: Comparison of KEPES and
KEPES-TeCNO

Forward step in wind tunnel at Mach 3

Figure 6: Density contours with KEPES-TeCNO at t=4

Viscous flow past a cylinder, Re=150

Figure 7: Velocity magnitude plot with entropy conservative scheme and viscous fluxes

Conclusion

A formally second-order entropy stable semi-discrete scheme has been successfully
constructed for the Euler equations. The viscous fluxes have been suitably discretised
to obtain a scheme that satisfies a discrete global entropy estimate. A few numerical
results have been presented to demonstrate the robustness of the schemes. The
positive findings pave the way to extend these methods to the three-dimensional
setup.
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