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Abstract We present an efficient and novel numerical algorithm for inver-
sion of transforms arising in imaging modalities such as ultrasound imaging,
thermoacoustic and photoacoustic tomography, intravascular imaging, non-
destructive testing, and radar imaging with circular acquisition geometry. Our
algorithm is based on recently discovered explicit inversion formulas for cir-
cular and elliptical Radon transforms with radially partial data derived by
Ambartsoumian, Gouia-Zarrad, Lewis and by Ambartsoumian and Krishnan.
These inversion formulas hold when the support of the function lies on the
inside (relevant in ultrasound imaging, thermoacoustic and photoacoustic to-
mography, non-destructive testing), outside (relevant in intravascular imag-
ing), both inside and outside (relevant in radar imaging) of the acquisition
circle. Given the importance of such inversion formulas in several new and
emerging imaging modalities, an efficient numerical inversion algorithm is of
tremendous topical interest. The novelty of our non-iterative numerical in-
version approach is that the entire scheme can be pre-processed and used
repeatedly in image reconstruction, leading to a very fast algorithm. Several
numerical simulations are presented showing the robustness of our algorithm.
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1 Introduction

In several imaging modalities such as ultrasound reflectivity imaging, thermoa-
coustic and photo-acoustic tomography, intravascular imaging, non-destructive
testing and radar imaging, circular or elliptical Radon transforms arise natu-
rally. These are transforms that associate to a function, its integrals along a
family of circles or ellipses.

In ultrasound imaging, ultrasonic pulses emitted from a transducer moving
along a curve (typically a circle), propagate inside the medium and reflect off
inhomogeneities which are measured by the same or a different moving trans-
ducer. Assuming that the speed of sound propagation within the medium is
constant and that the medium is weakly reflecting, the pulses registered at the
receiver transducer is the superposition of all the pulses reflected from those
inhomogeneities such that the total distance traveled by the reflected pulse
is a constant. This leads to the consideration of an integral transform of a
function on a plane (which models the image to be reconstructed), given its
integrals along a family of circles (for the case of identical emitter/receiver)
or ellipses (for spatially separated emitter/receiver). The goal is to recover an
image of the medium given these integrals. In other words, one is interested
in the inversion of a circular or elliptical Radon transform. For a detailed dis-
cussion of the mathematical model of ultrasound imaging, we refer the reader
to [25–27]. Similarly, the mathematical formulation of problems in thermoa-
coustic and photoacoustic tomography, non-desctructive testing, intravascular
imaging, radar and sonar imaging all lead to inversion of circular or elliptical
Radon transforms. For details, we refer the reader to the following references
[23,8,4].

The inversion of circular Radon transforms has been extensively studied
by several authors [1,2,7,31,32,13,9,12,15,14,16,37,29,10,30], and to a lesser
extent, that of elliptical Radon transforms [24,36,39,3,28,17]. All these papers
deal with full data in the radial direction. In some imaging problems, full data
in the radial direction is not available, as is the case of imaging the surround-
ing region of a bone. To this end, Ambartsoumian, Gouia-Zarrad and Lewis in
[5] found an explicit inversion formulas for the circular Radon transform with
circular acquisition geometry (one of the most widely used ways of collecting
data) when half of the data in the radial variable is available. These results
were recently generalized by Ambartsoumian and Krishnan for a class of el-
liptical and circular Radon transforms in [6]. The inversion formulas in these
papers are given for three cases: support of the function is inside, outside and
on both sides of the acquisition circle. The case when the support is inside
the circle of acquisition is of importance in ultrasound reflectivity imaging,
thermoacoustic and photoacoustic tomography, and non-destructive testing.
When the support is outside and on both sides of the acquisition circle, the
inversion formulas are applicable in intravascular and radar imaging, respec-
tively. Given the importance of these inversion formulas in several imaging
modalities, efficient numerical inversion is of great interest. The main contri-
bution of this paper is a novel implementation of the inversion formulas for
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a class of circular and elliptical Radon transforms with radially partial data
obtained in these papers.

The inversion formulas given in [5,6] were based on an inversion strategy
due to Cormack [11] that involved Fourier series techniques. As shown in these
papers, the nth Fourier coefficient of the circular (elliptical) Radon transform
data is related to the nth Fourier coefficient of the unknown function by a
Volterra-type integral equation of the first kind with a weakly singular kernel.
This can be transformed to a Volterra-type integral equation of the second kind
in which the singularity is removed [38]. It is well known that such an integral
equation has a unique solution and this can be obtained by the Picard’s process
of successive approximations, leading to an exact inversion formula given by
a infinite series of iterated kernels; see [38].

In this paper, we numerically invert Volterra-type integral equation of the
first kind adopting a numerical method given in [41] (see also [33]) and combine
it with a truncated singular value decomposition to recover the Fourier coeffi-
cients of the unknown function from the circular or elliptical Radon transform
data. The same method can also be implemented for numerical inversion of
Volterra-type integral equation of the second kind proved in the papers [5,
6], but the numerical inversion is less accurate (see Remark 1). The numer-
ical implementation of the exact inversion formula for the Volterra integral
equation of the second kind involving an infinite series of iterated kernels is
very unstable and implementing them is still an open problem. To the best
of our knowledge, ours is the first successful numerical inversion of circular
and elliptical Radon transforms for the circular geometry of acquisition with
radially partial data, the theoretical results of which, as already mentioned,
were presented in [5] and [6].

This paper is organized as follows. §2 gives the relevant theoretical back-
ground recalling the inversion formulas for the circular and elliptical Radon
transforms based on which the numerical simulations in this paper are per-
formed. §3 gives the numerical algorithm for inverting a Volterra-type integral
equation of first kind and second kind. In §4, we present the numerical simu-
lations, and §5 summarizes the results obtained.

2 Theoretical background

As mentioned in the introduction, we consider two generalized Radon trans-
forms in the plane: (a) Circular Radon transform and (b) Elliptical Radon
transform.

Circular Radon transform

Let ∂B(0, R) denote the circle of radius R centered at (0, 0) and parametrized
by

γ(φ) = (R cosφ,R sinφ) : φ ∈ [0, 2π].
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Let ρ > 0 and define the circle of radius ρ centered at γ(φ):

C(ρ, φ) = {x ∈ R
2 : |x− γ(φ)| = ρ}

Let (r, θ) denote the standard polar coordinates on the plane and let f(r, θ)
be a compactly supported function in R

2. The circular Radon transform of f
over the circle C(ρ, φ) is defined as

gC(ρ, φ) = RCf(ρ, φ) =

∫

C(ρ,φ)

f(r, θ)ds.

Here ds is the arc-length parametrization on the circle C(ρ, φ). See Figure 1a.

Elliptical Radon transform

We consider ∂B(0, R) as before and let α ∈ (0, π/2) be a fixed angle. The
ellipses of interest to us are the ones with their foci on ∂B(0, R) separated
by the polar angle 2α. Define a = R sinα and b = R cosα. Given (ρ, φ), we
consider the foci locations to be γf1(φ) = (R cos(φ − α), R sin(φ − α)) and
γf2(φ) = (R cos(φ+ α), R sin(φ+ α)). Now consider the ellipse

E(ρ, φ) = {x ∈ R
2 : |x− γf1(φ)|+ |x− γf2(φ)| = 2

√
ρ2 + a2}.

The elliptical Radon transform of f over E(ρ, φ) is defined as

gE(ρ, φ) = REf(ρ, φ) =

∫

E(ρ,φ)

f(r, θ)ds,

where ds is the arc-length parametrization on E(ρ, φ). See Figure 1b.
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Fig. 1: Circular and elliptical Radon transform set-up
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The transforms RC and RE with radially partial data were considered in
[5,6] and explicit inversion formulas were given there. The inversion of these
transforms leads to the inversion of a Volterra-type integral equation of the
first kind with a weakly singular kernel. This in turn is transformed to an
integral equation of the second kind with the singularity removed and the
inversion of such an integral equation is given as an infinite series involving
iterated kernels. Since we perform numerical inversion of Volterra-type integral
equations of the first kind here, in each of the set up below, we only recall the
corresponding integral equations of the first kind derived in [5,6] instead of
the explicit inversion formulas given as an infinite series.

We expand f(r, θ), gC(ρ, φ) and gE(ρ, φ) into a Fourier series:

f(r, θ) =

∞∑

n=−∞

fn(r)e
inθ, gC(ρ, φ) =

∞∑

n=−∞

gCn (ρ)e
inφ, gE(ρ, φ) =

∞∑

n=−∞

gEn (ρ)e
inφ

In the following results, fn is related to gCn or gEn through a Volterra-type
integral equation of the first kind. We will use the superscripts Int, Ext or Both
to denote the cases when the support of the function is an annular region in
the interior, exterior or on both sides of the circle ∂B(0, R), respectively.

Theorem 1 (Functions supported in an annulus interior to ∂B(0, R))
[5,6]

1. [5, Thm. 1](Circular transform) Let 0 < ε < R and f(r, θ) in polar coor-
dinates be an unknown continuous function supported inside the annular
region A(ǫ, R) = {(r, θ) : r ∈ (ǫ, R), θ ∈ [0, 2π]}. If RCf(ρ, φ) is known for
φ ∈ [0, 2π] and ρ ∈ [0, R − ǫ], then f(r, θ) can be uniquely recovered in
A(ǫ, R).

2. [6, Thm. 3.1](Elliptical transform) Let f(r, θ) be a continuous function
supported inside the annulus A(ε, b). Suppose REf(ρ, φ) is known for all
φ ∈ [0, 2π] and ρ ∈ (0, b− ε), then f(r, θ) can be uniquely recovered.

The proof of the above theorem is based on the inversion of Volterra-type
integral equations of the first kind (1) and (3). Here gC,Int

n and gE,Int
n are the

nth Fourier coefficients of the circular and elliptical Radon transform data
RCf(ρ, φ) and REf(ρ, φ), respectively.

1. Circular case, see [5]

gC,Int
n (ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du, (1)

where

Fn(u) = fn(R− u), Tn(x) = cos(n arccos(x))

Kn(ρ, u) =
4ρ(R− u)Tn

[
(R−u)2+R2−ρ2

2R(R−u)

]

√
(u+ ρ)(2R+ ρ− u)(2R− ρ− u)

. (2)
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2. Elliptical case, see [6]

gE,Int
n (ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du, (3)

where

Fn(u) = fn(b− u)

Kn(ρ, u) =
K̃n(ρ, b− u)

√
ρ− u√

a2 + bρ−
√
R2ρ2 + a2(R2 − (b− u)2)

(4)

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)

√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

×

√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)

√
R2ρ2 + a2(R2 − r2)

. (5)

Theorem 2 (Functions supported in an annulus exterior to ∂B(0, R))
[5, Thm. 6 ]
(Circular transform) Let f(r, θ) be a continuous function supported inside
the annulus centered at 0: A(R, 3R) = {(r, θ) : r ∈ (R, 3R), θ ∈ [0, 2π]}. If
RCf(ρ, φ) is known for φ ∈ [0, 2π] and ρ ∈ [0, R1], where 0 < R1 < 2R
then f(r, θ) can be uniquely recovered in A(R,R1).

The above theorem is proved by inverting the following relation between
the nth Fourier coefficient of the circular Radon transform, gC,Ext

n , and the nth

Fourier coefficient of the function f derived in [5]

gC,Ext
n (ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du, (6)

where

Fn(u) = fn(R+ u)

Kn(ρ, u) =
4ρ(R+ u)Tn

[
(R+u)2+R2−ρ2

2R(R+u)

]

√
(u+ ρ)(2R+ ρ+ u)(2R+ u− ρ)

. (7)

Theorem 3 (Functions with support on both sides of ∂B(0, R)) [6]

1. [6, Thm. 3.3](Circular transform) Let f(r, θ) be a continuous function sup-
ported inside the disc D(0, R2) with R2 > 2R. Suppose RC(ρ, φ) is known
for all φ ∈ [0, 2π] and ρ ∈ [R2 − R,R2 + R], then f(r, θ) can be uniquely
recovered in the annulus A(R1, R2) where R1 = R2 − 2R.
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2. [6, Thm. 3.4 ](Elliptical Radon transform) Let f(r, θ) be a continuous func-
tion supported inside the disc D(0, R2) with R2 > 2b. Suppose RE(ρ, φ) is
known for all φ ∈ [0, 2π] and ρ ∈ [R2 − b, R2 + b], then f(r, θ) can be
uniquely recovered in A(R1, R2) where R1 = R2 − 2b.

As with the earlier two results, this theorem is also proved by inverting the
following integral transforms relating the nth Fourier coefficient of the function
f and the nth Fourier coefficient of the circular Radon transform gC,Both

n and
the elliptical Radon transform gE,Both

n .

1. Circular case, see [6]

gC,Both
n (R2 +R− ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8)

where

Fn(u) = fn(R2 − u)

Kn(ρ, u) =
4(R2 +R − ρ)(R2 − u)Tn

(
(R2−u)2+R2−(R2+R−ρ)2

2(R2−u)R

)

√
(ρ− u)(2R2 − ρ− u)(2R+ u− ρ)(2R+ 2R2 − ρ− u)

. (9)

2. Elliptical case, see [6]

gE,Both
n (R2 + b− ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du, (10)

where

Fn(u) = fn(R2 − u)

Kn(ρ, u) =
K̃n(R2 + b− ρ,R2 − u)

√
ρ− u√

a2 + b(R2 + b− ρ)−
√
R2(R2 + b− ρ)2 + a2(R2 − (R2 − u)2)

(11)

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)

√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

×

√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)

√
R2ρ2 + a2(R2 − r2)

. (12)

3 Numerical Algorithm

In this section, we describe the numerical scheme used to invert the integral
equations listed in the previous section.
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3.1 Fourier coefficients of the circular and elliptical Radon data in the
angular variable

Since the functions are real, for reasons of computational efficiency, we com-
pute the modified discrete fast Fourier transform (FFT) of gC(ρ, φ) in φ for a
fixed ρ ∈ [ε, 1− ε] as follows [34]. The procedure for gE is very similar.

1. Let N be even and {φ1, φ2, · · · , φN} be a discretization of φ. We break
the array gC(ρ, φk) for 1 ≤ k ≤ N into two equal length arrays, A for the
odd numbered k and B for the even numbered k. In other words, we let
A = {gC(ρ, φ2j−1)} and B = {gC(ρ, φ2j)} for j = 1, 2, · · · , N/2.

2. We then create a complex array hc
ρ(j) = A(j)+ iB(j), j = 1, 2, · · · , N/2.

3. Next we perform a discrete FFT on hc
ρ to get ĥc

ρ(n), n = 1, 2, · · · , N/2.

4. The Fourier series of gC in the φ variable is then given by

gCn (ρ) =





1
2

{(
ĥc
ρ(n) + ĥc

ρ(
N
2 − n+ 2)

)

−i
(
ĥc
ρ(n)− ĥc

ρ(
N
2 − n+ 2)

)
· e 2πi(n−1)

N

}
, for n = 1, · · · , N2 + 1

ĥc
ρ(N − n+ 2), n = N

2 + 2, · · · , N.

3.2 Trapezoidal product integration method [41]

The next step is to solve the integral equation of the form

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (13)

Under some assumptions on the kernel Kn and the function gn, it is known
that the integral equation (13) has a unique continuous solution Fn.

Theorem 4 (Existence and uniqueness of solution) [40] The integral
equation (13) has a unique continuous solution Fn(u) for u ∈ [0, R] under the
following assumptions:

1. The functions

Kn(ρ, u) and
∂

∂ρ
Kn(ρ, u)

are continuous 0 ≤ u ≤ ρ ≤ R,
2. Kn(ρ, ρ) 6= 0 for all ρ ∈ [0, R],
3. The function

Gn(ρ) =
∂

∂ρ

∫ ρ

0

gn(s)

(ρ− s)1/2
ds

is continuous for ρ ∈ [0, R].
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Under the assumptions of the theorem and using the method of kernel
transformation [40, §50], one can transform Volterra equation of the first kind
to Volterra equation of the second kind which has a unique solution (see [40,
§3]). This derivation was used in the results of [5,6] to provide analytical in-
version formulas for a class of circular and elliptical Radon transforms with
radially partial data. Such an exact inversion formula, as it turns out, is nu-
merically unstable. Therefore, we approach the numerical inversion problem
by solving (13) directly. We use the so-called trapezoidal product integration
method proposed in [41]; see also [33]. For the sake of completeness, we briefly
sketch this method below.

Rewrite (13) as

g̃n(ρ) =

∫ ρ

0

kn(ρ, u)√
ρ− u

Fn(u)du (14)

where

kn(ρ, u) =
Kn(ρ, u)

Kn(ρ, ρ)
, g̃n(ρ) =

gn(ρ)

Kn(ρ, ρ)
.

Let M be a positive even integer and ρl = lh, l = 0, · · · ,M and h = R−ǫ
M be a

discretization of [0, R− ǫ]. From (14) we have

g̃n(ρi) =
i∑

k=1

∫ ρk

ρk−1

kn(ρi, u)√
ρi − u

Fn(u)du

In the sub-interval [ρk−1, ρk], we approximate Fn(u)kn(ρi, u) by a linear func-
tion taking the values Fn(ρk−1)kn(ρi, ρk−1) and Fn(ρk)kn(ρi, ρk) at the end-
points ρk−1 and ρk, respectively. This is given by

Fn(u) kn(ρi, u) ≈ Fn
k−1( kn(ρi, ρk−1)

ρk − u

h
+ Fn

k kn(ρi, ρk)
u− ρk−1

h
.

Hence

g̃n(ρi) ≈
i∑

k=1

∫ ρk

ρk−1

1√
ρi − u

{Fn
k−1kn(ρi, ρk−1)

ρk − u

h
+ Fn

k kn(ρi, ρk)
u− ρk−1

h
}du.

A straightforward computation gives

∫ ρk

ρk−1

ρk − u√
ρi − u

du = −4

3
h3/2

{
(i− k + 1)

3/2 − (i− k)
3/2

+ 2(i− k + 1)
1/2

}
.

In a similar way

∫ ρk

ρk−1

u− ρk−1√
ρi − u

du =
4

3
h3/2

{
(i − k + 1)

3/2 − (i− k)
3/2 − 2(i− k)

1/2
}
.



10 Roy, Krishnan, Chandrasekhar and Vasudeva Murthy

Hence

g̃n(ρi) =
√
h

i∑

k=1

(
−4

3
{(i− k + 1)

3/2 − (i− k)
3/2}+ 2(i− k + 1)

1/2

)

× Fn(ρk−1)kn(ρi, ρk−1)+(
4

3
{(i− k + 1)3/2 − (i − k)3/2} − 2(i− k)1/2

)

× Fn(ρk)kn(ρi, ρk).

(15)

Recall that Fn(R− t) = fn(t) and because of the assumptions on the support
of f , we have that Fn(0) = 0 for all n. Then (15) reduces to

√
h
{ i∑

k=1

ai−k kn(ρi, ρk) Fn(ρk)
}
= g̃n(ρi), i = 1, · · · ,M (16)

where

a0 =
4

3
, ai =

4

3
{(i+ 1)3/2 − 2i3/2 + (i− 1)3/2}, i = 1, · · · ,M.

The following theorem states the error estimate for the solution of the
integral equation.

Theorem 5 (Error Estimates) [41, Thm. 4.1] Let F exact
n be the C3 solution

of (14) in [0, R− ε] and Fn be the solution to (16). Then

max
0≤i≤M

‖F exact
n (ρi)− Fn(ρi)‖ = O(h2). (17)

Equation (16) can be written in matrix form as

AnFn = g̃n, (18)

where

Fn =




Fn(ρ1)
...

Fn(ρM )


 , g̃n =




g̃n(ρ1)
...

g̃n(ρM )


 (19)

and

An(i, k) =

{
ai−k

√
h kn(ρi, ρk) 1 ≤ k ≤ i

0 k > i.
(20)

Equation (18) has a unique solution because the eigenvalues of the matrix An

are 4
3

√
h > 0. Figure 2 shows the condition number of An for different values

of n. Since An is ill-conditioned for several values of n we use the Truncated
Singular Value Decompostion (TSVD) [21] to solve (18).
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Fig. 2: Plot of condition number of An for n ∈ [1, 200]

3.3 Truncated singular value decomposition (TSVD)

In order to solve (18), we begin with the SVD of An. This is given by An =
UDV T , where U and V are orthogonal matrices whose columns are the eigen-
vectors of AnA

T
n and AT

nA respectively and D is a diagonal matrix consisting
of the singular values of A, that is, the square root of the eigenvalues of AT

nAn

in descending order represented by σi, i = 1, · · · ,M . Now we set

An,r = UDrV
T and A−1

n,r = V D−1
r UT

where Dr and D−1
r are diagonal matrices with diagonal entries

(Dr)ii =

{
Dii if i ≤ r

0 otherwise.

(
D−1

r

)
ii
=

{
1

Dii
if i ≤ r

0 otherwise.

The matrix An,r approximates An, where 1 ≤ r ≤ M is the rank of the matrix
An,r, as follows.

Let us define the 2-norm of a matrix A by

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

. (21)
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Fig. 3: Relation between condition number of An,r and the error in 2-norm
from the original matrix An, respectively for n = 10, 80, 120, 180. The dots on
the figures correspond to the half-rank approximation.

It is well known that ‖A‖2 is the largest singular value of A [22]. We have that
the condition number κ(An,r) of An,r is given by κ(An,r) =

σ1

σr

[21].

Furthermore ‖An −An,r‖2 = σr+1. Therefore An,r for r large, would be a
good approximation to An, but with high condition number, whereas if r is
small, the condition number would be small but the error in the approximation
‖A−An,r‖2 would be large.

Figure 3 shows the relation between the condition number of the truncated
matrix An,r and the error ‖An−An,r‖2, where the norm is defined by (21), for
the Fourier coefficients n = 10, 80, 120 and 180. For simplicity we considered
the matrix arising out of the integral equation (1). The other cases are similar.

Due to the competing considerations mentioned above, in all our recon-
structions, we chose half-rank approximations (r = M/2, where recall that M
is the number of discretizations in ρ) to An for all n. The condition number of
the approximating matrix An,M/2 in all the cases was found to be less than 10.
Note that our choice of approximation was independent of the Radon data.
Half-rank approximations gave good reconstructions for both the circular and
elliptical Radon transforms considered here; see §4. We also tested the scheme
with rank approximations r ≫ M

2 and r ≪ M
2 and found the results to be

worse compared to the half-rank approximation case. See Figures 6a and 6b
in §4.
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3.4 Numerical solution of Volterra-type integral equation of second kind

The method of the previous section can also be applied to Volterra-type inte-
gral equations of the second kind. It again leads to a non-singular matrix An

with high condition number.

Given a Volterra integral equation of the first kind,

gn(ρ) =

ρ∫

0

Kn(ρ, u)Fn(u)√
ρ− u

du,

one can transform this into a Volterra-type integral equation of the second
kind [40] which is given by

Gn(ρ) = Fn(ρ) +

∫ ρ

0

Ln(ρ, u)Fn(u)du (22)

where

Gn(ρ) =
1

πKn(t, t)

d

dρ

ρ∫

0

gn(u)√
ρ− u

du

and

Ln(ρ, u) =
1

πKn(ρ, ρ)

d

dρ

ρ∫

u

Kn(t, u)√
t− u

√
ρ− t

dt.

We can apply the trapezoidal product integration method to (22) with the
discretization ρl = lh, l = 0, · · · ,M and h = R−ǫ

M of [0, R− ǫ] and we arrive
at the following matrix equation:

(I +An)Fn = Gn (23)

where Fn and Gn are similar to (19) and

An(i, k) =

{
akLn(ρi, ρk) 1 ≤ k ≤ i
0 j > i

(24)

with ak = h, for k = 1 · · · i− 1 and ai = h/2.

Remark 1 One could apply the numerical algorithm given in this paper to
the matrix equation (24). However, the evaluation of Gn and Ln involves
calculating derivative of an integral which leads to numerical instabilities and
hence a high percentage of error. Furthermore, numerical computation of Gn

and Ln is time consuming.
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4 Numerical Results

We now show the results of the numerical computations performed for the
circular and elliptical Radon transforms considered in Theorems 1, 2 and 3.
The trapezoidal integration method requires the function to be recovered to
be C3 for O(h2) convergence of the approximate solution to the actual one
(see Theorem 5). Nevertheless, we tested our algorithm on functions with
jump singularities and it gave good reconstructions. We discretized φ ∈ [0, 2π]
into 400 equally spaced grid points and ρ ∈ [0, R − ε] (we chose ε = 0.0024)
into 400 equally spaced grid points for all the computations. Additionally, we
tested the numerical algorithm on 1000 equally spaced grid points in the ρ
space for the computations in §4.1.1 and §4.1.2. In all cases we take R = 1
unless mentioned otherwise. Besides analyzing the physical properties of the
reconstructed image, we also evaluate the relative L2 error percentage between
the actual and the reconstructed images, which is defined as

Relative L2 error percentage =
‖frec − fex‖

‖fex‖
∗ 100%

where fex = fex(xi, yj) and frec = frec(xi, yj), i, j = 1 · · ·M represents
the discretized matrix for the exact function and the reconstructed function

respectively, ‖f‖ = 1
M

√∑M
i=1

∑M
j=1 f

2
ij and f = f(xi, yj).

4.1 Functions supported in an interior annulus

This corresponds to the case when the object we are interested in reconstruct-
ing is supported in an annulus centered at 0 of the circle ∂B(0, R) and the
circular and elliptical Radon transforms are along circles (ellipses) with center
(foci) on ∂B(0, R), see Theorem 1. For the circular Radon transform case, the
matrix An consists of entries coming from the kernel equation (2), whereas for
the elliptical Radon transform case, the matrix entries come from (4).

In both the circular and elliptic transform cases discussed below, we notice
a good recovery of the image near the origin which is a point of singularity.
There is reduction in the number of artifacts as we increase the number of
discretization points and hence the relative L2 error decreases with increasing
refinement.

4.1.1 Circular Radon transform data

Figure 4a shows the Shepp-Logan phantom which is recovered by numerical
inversion in Figures 4b, 4c and 4d using 400 (without and with 10 % Gaussian
noise) and 1000 equally spaced discretizations in ρ, respectively. The rela-
tive L2 errors between Figures 4a and 4b, Figures 4a and 4c, and Figures 4a
and 4d are 18.6%, 24.2% and 10.1%, respectively. A smooth version of the
Shepp-Logan phantom is shown in Figure 5 which is also recovered well by the
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(a) (b)

(c) (d)

Fig. 4: Results for circular Radon transform data for a function supported
in an interior annulus of ∂B(0, R). Figure 4a shows the actual Shepp-Logan
phantom and Figures 4b, 4c and 4d show the reconstructed images with 400,
400 with 10% added Gaussian noise, and 1000 equally spaced discretizations
in ρ, respectively.

inversion formula. The relative L2 error between these images is 5.7%, showing
that the algorithm performs better with smooth initial data.

To justify the rationale behind half-rank approximations, we tested the
algorithm with rank approximations r = M/8 and r = M/1.5. The results
are shown in Figures 6a and 6b respectively. The relative L2 error for the
first case was 65.8% and for the second case was 280.1%. This suggests rank
approximations too far away from half-rank approximations can either lead to
loss of data or lead to blow-offs which results in improper reconstruction.
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(a) (b)

Fig. 5: Results for circular Radon transform data for a function supported
in an interior annulus of ∂B(0, R). Figure 5a shows a smooth version of the
Shepp-Logan phantom and Figure 5b shows the reconstructed image.

(a) (b)

Fig. 6: Results for circular Radon transform data for a function supported in
an interior annulus of ∂B(0, R). Figure 6a shows the reconstruction of smooth
version of the Shepp-Logan phantom with r = M/8 and Figure 6b shows the
reconstruction with r = M/1.5. Figure 6a reveals incomplete reconstruction
due to loss of data whereas Figure 6b reveals blow-off in the solution.

4.1.2 Elliptical Radon transform data

Figure 7 shows the actual and reconstructed images with 400 and 1000 equally
spaced discretizations in ρ from elliptical Radon transform data using the
numerical algorithm of Section 3 based on the result of Part 2 of Theorem 1.

For the computations we assumed that an object is placed inside the an-
nulus A(ǫ, b) where b = R cosα with α = 30° is the length of the semi-minor
axis. The resulting integral equation to be solved is given by (3) with the ker-
nel Kn(ρ, u) given by (4). We see that all the objects in the image have been
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(a)

(b) (c)

Fig. 7: Results of elliptical Radon transform data for a function supported
in an interior annulus of ∂B(0, R). Figure 7a shows the actual Shepp-Logan
phantom and Figures 7b and 7c show the reconstructed images with 400 and
1000 equally spaced discretizations in ρ, respectively.

reconstructed even with the coarser discretization of 400 points. The relative
L2 errors between the Figures 7a and 7b, and between the Figures 7a and 7c
are 14.2% and 10.6%, respectively.
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(a) (b)

Fig. 8: Results for circular Radon transform data for a function supported in
an annular region of C(R, 3R). The circular Radon transform data is taken
over circles centered on the inner circle. Figure 8b shows the reconstructed
image.

4.2 Functions supported inside A(R, 3R)

In this test case, we use circular Radon transform data for functions supported
inside A(R, 3R). The integral equation to be considered in this case is (6) with
the kernel Kn(ρ, u) as defined in (7). The actual and reconstructed images
are shown in Figure 8. Microlocal analysis arguments show that the entire
circumference of the two circles cannot be constructed stably with the given
circular Radon transform data [19,20,18,35]. We see the presence of an in-
creased number of artifacts in constrast to the interior case (see §4.1.1). The
image reconstructed is consistent with this analysis. The relative L2 error be-
tween these images is 35.5%. While the error is large, the number and location
of the objects in the image are recovered.

4.3 Functions supported on both sides of ∂B(0, R)

4.3.1 Circular Radon transform data for functions supported on both sides of
∂B(0, R)

We considered a function supported inside the annulus A(R1, R2) where R2 >
2R and R1 = R2 − 2R (See Figure 9a). In the computations we chose R =
1.47, R2 = 3. Therefore R1 = 0.06. The resulting integral equation is given
by (8) with the kernel Kn(ρ, u) defined by (9). The actual and reconstructed
images are shown in Figure 9. As in Figure 8, microlocal analysis of the given
circular Radon transform data shows that certain parts of boundary of the
disc outside the dotted circle cannot be stably reconstructed. Note that the
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boundary of inner disc is reconstructed well. The relative L2 error between
these images is 32.1%.

(a) (b)

Fig. 9: Simulation with circular Radon transform data (Part 1 of Thm 3) for
a function supported on both sides of the circle ∂B(0, R) shown by the dotted
circle in Figure 9a. Figure 9a shows the actual image and Figure 9b shows the
reconstructed image.

4.3.2 Elliptical Radon transform data for functions supported on both sides of
∂B(0, R)

Finally, we tested our algorithm for Part 2 of Theorem 3. We considered a
function placed inside the annulusA(R1, R2) where we chose the angle α = 20°,
R = 1.47 and R2 = 3. Then R1 = R2 − 2b = R2 − 2R cos 20° ≈ 0.237. We
tested the numerical algorithm on the integral equation (10) with the kernel
Kn(ρ, u) given by (11) and the results are shown in Figure 10. Same microlocal
analysis reasons [3] as in Figure 9 applies for this case as well. The relative
L2 error between these images is 31.8% without noise and with 10% Gaussian
noise, the relative L2 error is 52.2%.

5 Summary

We have developed a numerical technique to solve the inversion formulas for
circular and elliptical Radon transforms arising in some imaging applications.
The inversion formulae and the proposed numerical scheme have been demon-
strated to give good reconstructions on some standard test problems involv-
ing both discontinuous and smooth images. While the absolute errors in the
reconstructed image are large, especially for discontinuous images, what is
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(a) (b)

(c)

Fig. 10: Simulation with elliptical Radon transform data (Part 2 of Theorem
3) for a function supported on both sides of the circle ∂B(0, R) shown by the
dotted circle in Figure 10a. Figure 10a shows the actual image, Figure 10b
and Figure 10c show the reconstructed image without and with 10% Gaussian
noise, respectively.

more important is that the objects in the image are property distinguished
by the current method. The numerical algorithm requires the solution of ill-
conditioned matrix problems which is accomplished using a truncated SVD
method. The matrices and the SVD can be constructed in a pre-processing
step and re-used repeatedly for the subsequent computations leading to an
efficient and fast algorithm.
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