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Balance laws with noise

A nonlinear balance law is of the form

du(t, x)
ot

+ diviF(u(t, x)) = q(t, x, u(t,x)); t >0, x e R?. (1)
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Balance laws with noise

A nonlinear balance law is of the form

du(t, x)
ot

+ diviF(u(t, x)) = q(t, x, u(t,x)); t >0, x e R?. (1)
# Our interest: q(t, x, u(t,x)) represents a Lévy white noise.

Example: q(t,x, u) = o(t, x, u)%.Then (1) is better understood
as the SPDE

du(t, x) + div F(u(t, x)) dt = o(x, u(t,x)) dB; t >0, x € RY. (2)
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Balance laws with Poisson noise

Our specific interest is the initial value problem

du(t, ) + dive F(u(t, x)) dt = / (o0 2) Ki(dz, dt)  (3)

|z|>0

for t>0, x € RY; 7I‘I(dz7 dt) compensated Poisson random
measure with intensity m(dz); and
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Balance laws with Poisson noise

Our specific interest is the initial value problem
du(t, ) + dive F(u(t, x)) dt = / (o0 2) Ki(dz, dt)  (3)
|z|>0

for t>0, x € RY; 7I‘I(dz7 dt) compensated Poisson random
measure with intensity m(dz); and

u(0, x) = up(x), x € RY.

# We want to find a LP(R9)-valued process u(t,-) which satisfies
(3) /solves (3). What do we exactly mean by solution here?
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e May not have smooth solutions in general.

e May have too many weak solutions.
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Notable features

e Eq. (3) is defined on a filtered probability space (Q, P, F, {th}tZO)-
e Solutions need to predictable processes.

e May not have smooth solutions in general.

e May have too many weak solutions.

e Requires an entropy solution framework.

e Solution process with have discontinuous paths.

# Usual deterministic calculus needs to be replaced by It6-Lévy
calculus.

# The entropy inequalities will have non-localities.
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Viscous problem

Consider the viscous perturbation

du(t,x) + diveF(u(t, x)) dt = / n(x, u; z) N(dz, dt) + eAu dt.
|z|>0
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Consider the viscous perturbation

du(t,x) + diveF(u(t, x)) dt = / n(x, u; z) N(dz, dt) + eAu dt.
|z|>0

Assume that above eqn. has smooth solution. For a given convex
entropy pair (5, (), and nonnegative test function v (t, x), by
[t6-Lévy formula
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Viscous problem

Consider the viscous perturbation

du(t,x) + diveF(u(t, x)) dt = / n(x, u; z) N(dz, dt) + eAu dt.

|z|>0

Assume that above eqn. has smooth solution. For a given convex

entropy pair (5, (), and nonnegative test function v (t, x), by
[t6-Lévy formula

d[B(uc(t, x))¥] = 0 B(uc) dt — Ydivy((ue) dt
b [ 0Bt i 2) — 5(u)) Wz, de)
|z|>0
+ /| - P (B(ue + n(x, ue; 2)) — Bue) = 1(x; ue; 2)3'(ue)) m(dz) dt
5(8) (cBaB(ue) — (80| Vi) . (& tifr



Entropy inequalities

Definition (entropy solution)

A L2(R9)-valued {F; : t > O}-predictable process u(t,x) is an
entropy solution of (3) if

(1) For each T >0, p=2,3,4,..., supg<;<T E{Hu(t)H,’i] < 0.
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Entropy inequalities

Definition (entropy solution)

A [2(RY)-valued {F; : t > 0}-predictable process u(t, x) is an
entropy solution of (3) if

(1) Foreach T >0, p=2,3,4,..., suppci<T E{Hu(t)H,’;] <

(2) For 0 < v € C&2([0, 00) x R?) and convex entropy pair (3, ¢)

T T

(6(0), B(u(0))) + / 0<6tw( ), B(u(t)) dt + / (). Vo)
/ / u(r); 2)) — B(u(r, ), ¥(r, ))N(dz, dr)
r=0J|z|>0

o[ /Z>O o(r) 0+ )) — () — () (), () m(dz)
=0 P ( tifr



Assumptions

e F(s) € C2(R : RY) with polynomially growing derivatives.

e There exist K > 0 and \* € [0,1) s.t for
all x,yERd; u,veR; zeR,

n(x, u;2) =0y, viz)| < (Au = v+ Klx = y[)(|z| A 1)
e The Lévy measure m(dz) satisfies fRZ(]z|2 A1) m(dz) < 0.

e There is g € L°(RY) N L?(RY) s.t.
n(x, u;2)| < g(x)(L + |ul)(|z[ A D).
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The viscous perturbation
due + diviFo(ue) dt = / ne(x, ue; z) N(dz, dt) + eAsue dt, (4)

|z|>0

with sup..qSupo<s<T E[||u€(0, )||g} < oo for p=2,4,... Then

(& tifr



Compactness

We establish compactness as Young measures with an additional
parameter.
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Compactness

We establish compactness as Young measures with an additional
parameter.

Theorem (B, Karlsen & Majee; 2014)

IfNp=12. LP(R9)-valued Fo-measurable random variable ug
satisfies

E[HUOHg—i—HuoHS} < 00, forp=1,2,... . (5)

Then there exists a entropy process solution of (3).
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Uniqueness and existence

We now apply doubling to establish L!-contraction, which gives
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Uniqueness and existence

We now apply doubling to establish L!-contraction, which gives

Theorem (B, Karlsen & Majee; 2014)

The Np—12.. LP(RY)-valued Fo-measurable random variable ug
satisfies (5). Then the entropy process solution of (3) is unique.
Moreover, it is the unique stochastic entropy solution.

Thank You
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