CONSERVATION LAWS DRIVEN BY LÉVY WHITE NOISE.

Imran H. Biswas

Centre for Applicable Mathematics
Tata Institute of Fundamental Research
Bangalore

$$
\text { July 28, } 2014
$$

This work was supported by EADS chair funds and performed within the EADS chair for "mathematics of complex systems".

Introduction
Conservation laws with stochastic forcing Conservation laws with Lévy noise

Entropy Solutions
Entropy condition
References

Our results
Apriori estimates
Uniqueness and existence

Balance laws with noise

A nonlinear balance law is of the form

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+\operatorname{div}_{x} F(u(t, x))=q(t, x, u(t, x)) ; t>0, x \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

Balance laws with noise

A nonlinear balance law is of the form

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+\operatorname{div}_{x} F(u(t, x))=q(t, x, u(t, x)) ; t>0, x \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

\# Our interest:

Balance laws with noise

A nonlinear balance law is of the form

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+\operatorname{div}_{x} F(u(t, x))=q(t, x, u(t, x)) ; t>0, x \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

\# Our interest: $q(t, x, u(t, x))$ represents a Lévy white noise.

Balance laws with noise

A nonlinear balance law is of the form

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+\operatorname{div}_{x} F(u(t, x))=q(t, x, u(t, x)) ; t>0, x \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

\# Our interest: $q(t, x, u(t, x))$ represents a Lévy white noise.
Example: $q(t, x, u)=\sigma(t, x, u) \frac{d B_{t}}{d t}$.

Balance laws with noise

A nonlinear balance law is of the form

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+\operatorname{div}_{x} F(u(t, x))=q(t, x, u(t, x)) ; t>0, x \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

\# Our interest: $q(t, x, u(t, x))$ represents a Lévy white noise.
Example: $q(t, x, u)=\sigma(t, x, u) \frac{d B_{t}}{d t}$. Then (1) is better understood as the SPDE

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\sigma(x, u(t, x)) d B_{t} ; t>0, x \in \mathbb{R}^{d} \tag{2}
\end{equation*}
$$

Balance laws with Poisson noise

Our specific interest is the initial value problem

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t) \tag{3}
\end{equation*}
$$

for $t>0, x \in \mathbb{R}^{d} ;, \tilde{N}(d z, d t)$ compensated Poisson random measure with intensity $m(d z)$; and

Balance laws with Poisson noise

Our specific interest is the initial value problem

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t) \tag{3}
\end{equation*}
$$

for $t>0, x \in \mathbb{R}^{d} ;, \tilde{N}(d z, d t)$ compensated Poisson random measure with intensity $m(d z)$; and

$$
u(0, x)=u_{0}(x), \quad x \in \mathbb{R}^{d} .
$$

Balance laws with Poisson noise

Our specific interest is the initial value problem

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t) \tag{3}
\end{equation*}
$$

for $t>0, x \in \mathbb{R}^{d} ;, \tilde{N}(d z, d t)$ compensated Poisson random measure with intensity $m(d z)$; and

$$
u(0, x)=u_{0}(x), \quad x \in \mathbb{R}^{d}
$$

\# We want to find a $L^{p}\left(\mathbb{R}^{d}\right)$-valued process $u(t, \cdot)$ which satisfies (3)

Balance laws with Poisson noise

Our specific interest is the initial value problem

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t) \tag{3}
\end{equation*}
$$

for $t>0, x \in \mathbb{R}^{d} ;, \tilde{N}(d z, d t)$ compensated Poisson random measure with intensity $m(d z)$; and

$$
u(0, x)=u_{0}(x), \quad x \in \mathbb{R}^{d}
$$

\# We want to find a $L^{p}\left(\mathbb{R}^{d}\right)$-valued process $u(t, \cdot)$ which satisfies (3) /solves (3).

Balance laws with Poisson noise

Our specific interest is the initial value problem

$$
\begin{equation*}
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t) \tag{3}
\end{equation*}
$$

for $t>0, x \in \mathbb{R}^{d} ;, \tilde{N}(d z, d t)$ compensated Poisson random measure with intensity $m(d z)$; and

$$
u(0, x)=u_{0}(x), \quad x \in \mathbb{R}^{d}
$$

\# We want to find a $L^{p}\left(\mathbb{R}^{d}\right)$-valued process $u(t, \cdot)$ which satisfies
(3) /solves (3). What do we exactly mean by solution here?

Notable features
(etifr

Notable features

- Eq. (3) is defined on a filtered probability space $\left(\Omega, P, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$.

Notable features

- Eq. (3) is defined on a filtered probability space $\left(\Omega, P, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$.
- Solutions need to predictable processes.
- May not have smooth solutions in general.
- May have too many weak solutions.

Notable features

- Eq. (3) is defined on a filtered probability space $\left(\Omega, P, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$.
- Solutions need to predictable processes.
- May not have smooth solutions in general.
- May have too many weak solutions.
- Requires an entropy solution framework.

Notable features

- Eq. (3) is defined on a filtered probability space $\left(\Omega, P, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$.
- Solutions need to predictable processes.
- May not have smooth solutions in general.
- May have too many weak solutions.
- Requires an entropy solution framework.
- Solution process with have discontinuous paths.

Notable features

- Eq. (3) is defined on a filtered probability space $\left(\Omega, P, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$.
- Solutions need to predictable processes.
- May not have smooth solutions in general.
- May have too many weak solutions.
- Requires an entropy solution framework.
- Solution process with have discontinuous paths.
\# Usual deterministic calculus needs to be replaced by Itô-Lévy calculus.
\# The entropy inequalities will have non-localities.

Viscous problem

Consider the viscous perturbation

$$
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t)+\epsilon \Delta u d t .
$$

Viscous problem

Consider the viscous perturbation

$$
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t)+\epsilon \Delta u d t .
$$

Assume that above eqn. has smooth solution. For a given convex entropy pair (β, ζ), and nonnegative test function $\psi(t, x)$, by Itô-Lévy formula

Viscous problem

Consider the viscous perturbation

$$
d u(t, x)+\operatorname{div}_{x} F(u(t, x)) d t=\int_{|z|>0} \eta(x, u ; z) \tilde{N}(d z, d t)+\epsilon \Delta u d t
$$

Assume that above eqn. has smooth solution. For a given convex entropy pair (β, ζ), and nonnegative test function $\psi(t, x)$, by Itô-Lévy formula

$$
d\left[\beta\left(u_{\epsilon}(t, x)\right) \psi\right]=\partial_{t} \psi \beta\left(u_{\epsilon}\right) d t-\psi \operatorname{div}_{x} \zeta\left(u_{\epsilon}\right) d t
$$

$$
+\int_{|z|>0} \psi\left(\beta\left(u_{\epsilon}+\eta\left(x, u_{\epsilon} ; z\right)\right)-\beta\left(u_{\epsilon}\right)\right) \tilde{N}(d z, d t)
$$

$$
+\int_{|z|>0} \psi\left(\beta\left(u_{\epsilon}+\eta\left(x, u_{\epsilon} ; z\right)\right)-\beta\left(u_{\epsilon}\right)-\eta\left(x, u_{\epsilon} ; z\right) \beta^{\prime}\left(u_{\epsilon}\right)\right) m(d z) d t
$$

$$
+\psi(t, x)\left(\epsilon \Delta_{x x} \beta\left(u_{\epsilon}\right)-\epsilon \beta^{\prime \prime}\left(u_{\epsilon}\right)\left|\nabla_{x} u_{\epsilon}\right|^{2}\right) d t
$$

Entropy inequalities

Definition (entropy solution)
A $L^{2}\left(\mathbb{R}^{d}\right)$-valued $\left\{\mathcal{F}_{t}: t \geq 0\right\}$-predictable process $u(t, x)$ is an entropy solution of (3) if
(1) For each $T>0, p=2,3,4, \ldots, \sup _{0 \leq t \leq T} E\left[\|u(t)\|_{p}^{p}\right]<\infty$.

Entropy inequalities

Definition (entropy solution)

A $L^{2}\left(\mathbb{R}^{d}\right)$-valued $\left\{\mathcal{F}_{t}: t \geq 0\right\}$-predictable process $u(t, x)$ is an entropy solution of (3) if (1) For each $T>0, p=2,3,4, \ldots, \sup _{0 \leq t \leq T} E\left[\|u(t)\|_{p}^{p}\right]<\infty$. (2) For $0 \leq \psi \in C_{c}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ and convex entropy pair (β, ζ)
$\langle\psi(0), \beta(u(0))\rangle+\int_{t=0}^{T}\left\langle\partial_{t} \psi(t), \beta(u(t))\right\rangle d t+\int_{r=0}^{T}\left\langle\zeta(u(r)), \nabla_{x} \psi(r)\right\rangle d r$
$+\int_{r=0}^{T} \int_{|z|>0}\langle\beta(u(r)+\eta(., u(r) ; z))-\beta(u(r,)),. \psi(r, \cdot)\rangle \tilde{N}(d z, d r)$
$+\int_{r=0}^{T} \int_{|z|>0}\left\langle\beta(u(r)+\eta(\cdots))-\beta(u(r))-\eta(\cdots) \beta^{\prime}(u(r)), \psi(r)\right\rangle m(d z)$
$\geq 0 \quad P-a . s$

Assumptions

- $F(s) \in C^{2}\left(\mathbb{R}: \mathbb{R}^{d}\right)$ with polynomially growing derivatives.
- There exist $K>0$ and $\lambda^{*} \in[0,1)$ s.t for all $x, y \in \mathbb{R}^{d} ; u, v \in \mathbb{R} ; \quad z \in \mathbb{R}$,

$$
|\eta(x, u ; z)-\eta(y, v ; z)| \leq\left(\lambda^{*}|u-v|+K|x-y|\right)(|z| \wedge 1)
$$

- The Lévy measure $m(d z)$ satisfies $\int_{\mathbb{R}_{z}}\left(|z|^{2} \wedge 1\right) m(d z)<\infty$.
- There is $g \in L^{\infty}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$ s.t.
$|\eta(x, u ; z)| \leq g(x)(1+|u|)(|z| \wedge 1)$.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.
- A. Debussche \& J. Vovelle [J. Funct. Anal, 2010]. Kinetic formulation.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.
- A. Debussche \& J. Vovelle [J. Funct. Anal, 2010]. Kinetic formulation.
- G. Q. Chen, Q. Ding \& K. H. Karlsen [Arch. Rat. Mech. Anal, 2012]. TV approach.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.
- A. Debussche \& J. Vovelle [J. Funct. Anal, 2010]. Kinetic formulation.
- G. Q. Chen, Q. Ding \& K. H. Karlsen [Arch. Rat. Mech. Anal, 2012]. TV approach.
- C. Bauzet, G. Vallet \& P. Wittbold [JHDE, 2012]. Entropy process solution.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.
- A. Debussche \& J. Vovelle [J. Funct. Anal, 2010]. Kinetic formulation.
- G. Q. Chen, Q. Ding \& K. H. Karlsen [Arch. Rat. Mech. Anal, 2012]. TV approach.
- C. Bauzet, G. Vallet \& P. Wittbold [JHDE, 2012]. Entropy process solution.
- IHB, A. Majee [J. Funct. Anal, 2014]. Strong entropy solution and weak-in-time formulation.

References

- H. Holden \& N. H. Risebro [App. Math.Opt, 1997]. Existence of weak solutions.
- J. U. Kim [Indiana Univ. Math. J, 2003]. Additive noise case.
- J. Feng \& D. Nualart [J. Funct. Anal, 2008]. Multiplicative noise.
- A. Debussche \& J. Vovelle [J. Funct. Anal, 2010]. Kinetic formulation.
- G. Q. Chen, Q. Ding \& K. H. Karlsen [Arch. Rat. Mech. Anal, 2012]. TV approach.
- C. Bauzet, G. Vallet \& P. Wittbold [JHDE, 2012]. Entropy process solution.
- IHB, A. Majee [J. Funct. Anal, 2014]. Strong entropy solution and weak-in-time formulation.
- Z. Dong and T. G. Xu [J. Funct. Anal., 2007]. Viscous burger with Lévy noise.
\mathfrak{C}^{6} tifr

$$
4 \square>4 \text { 吕 } \downarrow 4 \equiv>4 \equiv>\text { 三 }
$$

The viscous perturbation

$$
\begin{equation*}
d u_{\epsilon}+\operatorname{div}_{x} F_{\epsilon}\left(u_{\epsilon}\right) d t=\int_{|z|>0} \eta_{\epsilon}\left(x, u_{\epsilon} ; z\right) \tilde{N}(d z, d t)+\epsilon \Delta_{x x} u_{\epsilon} d t \tag{4}
\end{equation*}
$$

with $\sup _{\epsilon>0} \sup _{0 \leq t \leq T} E\left[\left\|u_{\epsilon}(0, \cdot)\right\|_{p}^{p}\right]<\infty$ for $p=2,4, \ldots$. . Then

Compactness

We establish compactness as Young measures with an additional parameter.

Compactness

We establish compactness as Young measures with an additional parameter.

Theorem (B, Karlsen \& Majee; 2014)
If $\bigcap_{p=1,2, . .} L^{p}\left(\mathbb{R}^{d}\right)$-valued \mathcal{F}_{0}-measurable random variable u_{0} satisfies

$$
\begin{equation*}
E\left[\left\|u_{0}\right\|_{p}^{p}+\left\|u_{0}\right\|_{2}^{p}\right]<\infty, \quad \text { for } p=1,2, \ldots \tag{5}
\end{equation*}
$$

Then there exists a entropy process solution of (3).

Uniqueness and existence

We now apply doubling to establish L^{1}-contraction, which gives

Uniqueness and existence

We now apply doubling to establish L^{1}-contraction, which gives

Theorem (B, Karlsen \& Majee; 2014)
The $\bigcap_{p=1,2, . .} L^{p}\left(\mathbb{R}^{d}\right)$-valued \mathcal{F}_{0}-measurable random variable u_{0} satisfies (5). Then the entropy process solution of (3) is unique. Moreover, it is the unique stochastic entropy solution.

Uniqueness and existence

We now apply doubling to establish L^{1}-contraction, which gives

Theorem (B, Karlsen \& Majee; 2014)
The $\bigcap_{p=1,2, . .} L^{p}\left(\mathbb{R}^{d}\right)$-valued \mathcal{F}_{0}-measurable random variable u_{0} satisfies (5). Then the entropy process solution of (3) is unique. Moreover, it is the unique stochastic entropy solution.

Thank You

