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Objective

f : a ‘smooth’, isotropic, real valued Gaussian random field defined
on the the paramater space Mt , which for simplicity, we shall take
as Sd(t) (d-dimensional sphere with radius t).
Then, define

Au,t = Au(f , Sd(t)) = {x ∈ Sd(t) : f (x) ≥ u}

Main goal: CLT for the (appropriately normalized) Lipschitz-Killing
Curvatures (LKCs) of Au,r as r → ∞
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State of the art

Pham (2014) proved central limit theorem for the volume of
the excursion sets, under two different settings: growing
parameter space with a fixed threshold; growing parameter
space with an increasing threshold.

Estrade and León (2015) proved CLT for the Euler-Poincaré
characteristic of the excursion sets (fixed threshold; growing
parameter space).

Proofs of Estrade-Leon, at some level, are related of Kratz and
León (2001), where the authors proved a central limit theorem for
functionals of random field, where the functionals depend on the
field through the field, its first and second order derivatives.

What’s our objective? CLT for other global geometric functionals,
like Lipschitz-Killing curvatures of excursion sets.

But why does one care?
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Lipschitz-Killing curvatures. What are they?
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Notion of Euler-Poincaré characteristic (from Keith
Worsley’s page)

Euler Characteristic in 3D: 
EC = #blobs - #tunnels or handles + #hollows 
 

EC(                  ) = 1 – 0 + 0 = 1 

EC(                  ) =  1 – 1 + 0 = 0 

EC(                  ) = 1 - 3 + 0 = -2 

EC(                  ) = 1 - 0 +1 = 2 

Keith

Euler Characteristic in 3D: 
EC = #blobs - #tunnels or handles + #hollows 
      = 2 - 1 + 0 = 1 

EC = #points - #edges + #faces - #cubes 
      = 55 - 90 + 40 - 4 = 1 

Keith
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Lipschitz-Killing curvatures via Crofton’s/Hadwiger’s
formula (1860s)

Graff(n, k): affine Grassmannian, of all k-dimensional
subspaces of Rn.

Equip Graff(n, k) with a measure λn,k , which is invariant
under the set of rigid motions E (n).

This measure can be factored as νnk on the Grassmannian
Gr(n, k) and Lebesgue measure on Rn, and can be normalized

so that νnk (Gr(n, k)) =

�
n

k

�
=

�
n

k

�
ωn

ωkωn−k
.

Let M ⊂ Rn, nice and compact, then we have
�

Graff(n,n−k)
L0(M ∩ V ) dλn

n−k(V ) = Lk(M).

where L0 is the Euler-Poincaré characteristic, and Lk is the
k-th Lipschitz-Killing curvature (LKC).
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LKCs: properties

For an m-dimensional subset A ⊂ Rn, L0(A) is its
Euler–Poincaré characteristic, and Lm(A) is its m-dimensional
volume.

Li , of say a set A, is an intrinsic, integral geometric
characteristics of the set.

Writing R for the Riemannaian curvature tensor, LKCs for a
smooth Riemannian manifold M can be defined as

Lk(M) = c(n, k)

�

M
Tr

�
R

n−k
2

�
Volg

whenever n−k
2 is an integer, and it is zero otherwise.

Scaling: Lk(λA) = λkLk(A).
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Lipschitz–Killing curvatures (LKCs): examples

A box B with dimensions (a, b, c): L0(B) = 1,
L1(B) = (a+ b + c), L2(B) = (ab + bc + ac), L3(B) = abc .

A ball Bn(r) of radius r in Rn:

Lj(Bn(r)) = r
j

�
n

j

�
ωn

ωn−j

A sphere S
n−1(r) of radius r in Rn:

Lj(S
n−1(r)) = 2r j

�
n

j

�
ωn

ωn−j
,

for even values of (n − j − 1), and 0 otherwise.

For a unit codimensional manifold, every alternate Li vanishes.
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Plan of action

For V ∈ Graff(d + 1, k), let us define

L
#
0 (u,Mt ;V ) =

L0 (Au(f ;Mt ∩ V ))− E (L0 (Au(f ;Mt ∩ V )))

|Mt ∩ V |
1/2

.

where |Mt ∩ V )| is (k − 1)-dimensional volume.

Plan: prove the convergence of fdd of L#
0 (u,Mt ; ·); invoke

tightness; check that the variance of L#
d+1−k(u,Mt) has a

uniform upper bounded, and also that the variance is not
degenerate; get the required CLT by observing that
L
#
d+1−k(u,Mt) is a “nice” functional of the random field

L
#
0 (u,Mt ; ·)
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Another approach
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Lipschitz-Killing curvatures via tube formula

Steiner’s tube formula

Let A be a nice subset of Rn;
λn be the n-dimensional Lebesgue
measure.

Let

Tube(A, ρ) = A+Bn(0, ρ) = {x ∈ Rn : dist(x ,A) ≤ ρ}

Then Steiner’s tube formula is given by:

λn(Tube(A, ρ)) =

dim(A)�

i=0

ωn−iρ
n−i

Li (A),

(Li (A))
dim(A)
i=1 = Lipschitz–Killing curvatures, and ωn−i is the

volume of a unit ball in Rn−i .
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Identifying the LKCs of excursion set in an analytic way

A tube formula for the excursion set on Mt

Note that

Tube(Au(f ;Mt); ρ) = Au(f ;Mt) + Bd+1(0, ρ)

where Bd+1(0, ρ) = {x ∈ Rd+1 : �x� ≤ ρ}.
Then, recalling that Mt is just a d-dimensional sphere with radius
t, the volume of the tube can be simplified as:

Vol (Tube(Au(f ;Mt); ρ))

= Hd(Au(f ;Mt))

� ρ

−ρ
det(I + u∇Er )H1(du)

+

� ρ

0

� π

0

�

∂Au(f ;Mt)
det

�
I + u∇

�
cos θEr − sin θ

d�

i=1

[Ei f ]Ei

��

×Hd−1(dx)H1(dθ)H1(du)
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Recipe for CLT

Then, Lk is identified (modulo constants) as the coefficient of
u
(d+1−k).

Notice that since all the terms appearing in the expression
above are solely dependent on the field f through f , ∇f , and
∇2

f , which falls in the realm of Kratz-Leon (though in the
setting of a manifold).

Hermite expansion: the terms coming from the determinant
are clearly, polynomials involving the field, its derivative and
second derivative.But the second integral in the tube formula
is over ∂Au(f ;Mt). But notice that

�

∂Au(f ;Mt)
g(x) Hd−1(dx) =

�

Mt

g(x) δ(f (x)=u) �∇f (x)� Hd(dx)

Need also a Hermite expansion for δ, which has also been
done earlier by Kratz-Leon, Estrade-Leon, ...
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Back to the recipe for CLT

Once we have the Hermite expansion for the random variables
inside the integral, we invoke the standard Nourdin-Peccati
type of scheme.

Projection onto each chaos converges to Gaussian.

Check non-degeneracy of the variance (already done in the
earlier setup).

Conclude convergence of L#
d+1−k(Au(f ;Mt)) to a Gaussian

limit as t → ∞.
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