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Introduction Compressible fluid model in one dimension

Compressible Navier-Stokes system

A model for flow of compressible fluid in Ω ⊂ R:
Density ρ(x, t), velocity u(x, t) of the fluid in Ω× (0, T ) :

∂tρ+ ∂x(ρu) = 0

(ρu)t + (ρu2)x + (p(ρ))x − νuxx = 0.

Pressure p is
p(ρ) = (a ργ) for γ ≥ 1, a > 0.

Can we control the fluid?

Can we stabilize the nonlinear system?
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Introduction Compressible fluid model in one dimension

Scope of our work

Linearize the system around constant steady states

With suitable boundary conditions get the spectrum and a Fourier
basis

Study controllability of the linearized system : interior and boundary
null controllability and approximate controllability

Study feedback stabilization of the linearized system

Using this study, analyse local stabilization of the nonlinear system
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Linearization around null velocity

Initial boundary value problem for the linearized system

Domain Ω = (0, π)

(ρs, us) : a constant steady state solution with ρs > 0, us ≥ 0

Linearized system around this solution :

∂tρ + usρx + ρs ux = 0

∂tu − ν

ρs
uxx + us ux + aγ ργ−2

s ρx = fχO

with O ⊂ Ω

Initial, boundary conditions :

ρ(x, 0) = ρ0(x) ; u(x, 0) = u0(x), x ∈ Ω

u(0, t) = q0(t) ; u(π, t) = q1(t) ∀ t > 0

Additional boundary conditions for ρ at x = 0 when us > 0

Distributed control f ; Boundary controls q0, q1
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Linearization around null velocity Existence via semigroup theory

Function space framework

Function space for the case us = 0 : Z = L2(Ω) × L2(Ω)

Equip with inner product, denoting b = aγργ−2
s〈(

ρ
u

)
,

(
σ
v

)〉
z

= b

∫ π

0
ρ(x)σ(x)dx+ ρs

∫ π

0
u(x)v(x)dx

Call ν0 = ν
ρs
. Define the subspace :

D(A) = {
(
ρ(x)
u(x)

)
∈ Z : u(x) ∈ H1

0 (Ω), (−bρ(x)+ν0u
′(x)) ∈ H1(Ω)}

Define A : D(A)→ Z :

A =

[
0 −ρs ddx

−aγργ−2
s

d
dx

ν
ρs

d2

dx2

]
D(A) is dense in Z ; A is maximal dissipative

(A,D(A)) is the infinitesimal generator of C0 semigroup S(t) on Z.
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Linearization around null velocity Existence via semigroup theory

Operator Equation

Call U(x, t) =

(
ρ(x, t)
u(x, t)

)
System without controls :

dU(t)

dt
= AU(t), t > 0

U(0) = U0 ∈ Z.

For every U0 ∈ Z, there is a unique solution U in C([0,∞),Z)

Compressible Navier-Stokes Equations 30th June, 2015 8 / 33



Linearization around null velocity Spectral Analysis

Spectrum of A when us = 0

The point spectrum of A

lies on the left half plane

consists of a finite number of pairs of complex eigenvalues :

|Real(λk)| ≥
ν

2ρs
:=

ν0

2
, |Im(λk)| ≤

2aγρs
ν

.

and an infinite number of pairs of real eigenvalues :

lim
n→∞

λn = −aγρs
ν

:= −ω0, µn → −∞ as n→∞.

Eigenfunctions corresponding to λn and µn :

ξn(x) =

(
cos(nx)
λn
ρsn

sin(nx)

)
, ζn(x) =

(
cos(nx)
µn
ρsn

sin(nx)

)
.
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Linearization around null velocity Spectral Analysis

a = ρs = ν = 1, γ = 50, ν0/2 = .5, ω0 = 50.
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Linearization around null velocity Spectral Analysis

Orthonormal basis

Define a Fourier basis {Φn} in Z :

Φ0(x) =
1√
bπ

(
1
0

)
;

Φ2n(x) =

√
2

bπ

(
cos(nx)

0

)
, Φ2n−1(x) =

√
2

ρsπ

(
0

sin(nx)

)
for n ≥ 1.

Define the subspaces :

V0 = span {Φ0}; Vn = span {Φ2n,Φ2n−1}, n ≥ 1

Z is the orthogonal sums of the subspaces {Vn}n≥0.

Z0, is the orthogonal sum of {Vn}n≥1 :

Z0 := {
(
ρ
u

)
∈ Z :

∫ π

0
ρ(x)dx = 0}.
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Linearization around null velocity Null Controllability

Null Controllability of the Linearized system at (ρs, 0):

Null Controllable if and only if the initial density is in H1 and the control
acts on the whole domain!

Theorem

[SC,MR,JPR]
For every T > 0, the system is null controllable in time T , using interior
control f ∈ L2((0,∞), L2(Ω)) for velocity, if and only if

U0 =

(
ρ0

u0

)
∈ H1

m(Ω)× L2(Ω),

H1
m(Ω) = {ρ ∈ H1(Ω) :

∫ π

0
ρ(x)dx = 0}

.

Hence the system is exponentially stabilizable using a control for velocity
acting on the whole domain.
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Stabilization around null velocity stabilization of the linearised system

Stabilization of the linearized system at (ρs, 0)

The linearized system is

stable with decay rate e−ωt for 0 < ω < min { ν0/2, ω0 }
ω0, the accumulation point for the real eigenvalues of A.

not stabilizable with decay rate e−ωt for ω > ω0 [2]

Qn : Is the linearized system stabilizable when ν0/2 < ω0 ?

Difficulty : Some eigenvalues will become unstable.
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Stabilization around null velocity stabilization of the linearised system

Stabilization of the linearized system at (ρs, 0)

A system of controlled PDE in Z

z′(t) = Az(t) +Bu(t), t > 0, z(0) = z0 ∈ Z

stabilizable by feedback when there exists an operator K ∈ L(Z,U)
such that A+BK is exponentially stable in Z.

Main Result : Linearized system is stabilizable by a feedback control
even when ν0/2 < ω0, with decay rate e−ωt for 0 < ω < ω0.

Idea of the proof :

Define Aω = A+ ωI for 0 < ω < ω0.

Finitely many eigenvalues of Aω are unstable in this case.

Project the system onto the unstable subspace, Zu and stable
subspace Zs.
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Stabilization around null velocity stabilization of the linearised system

Construction of Feedback Control

Use Hautus test to show (Aω, B) is stabilizable in Z0.

Finite dimensional projected system (ΠuAω,ΠuB) is also stabilizable.

Hence there exists a feedback Ku such that (ΠuAω + ΠuBKu) is
stable.

Ku can be obtained by solving a finite dimensional Riccati equation.

Define Km = KuΠu.

For all z0 ∈ Z0, solution of

z′(t) = Az(t) +BKmz(t), t > 0, z(0) = z0

decays exponentially :

‖z(t)‖ ≤ Ce−γ1t‖z0‖.
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Stabilization around null velocity Stabilization of the Nonlinear system

Stabilization for nonlinear system

Qn : Is the nonlinear system stabilizable near constant steady states?
At what rate of decay?

Usual Strategy

Compute the feedback control for the linearized system

Put it into the nonlinear system, treating the nonlinear terms as
source term on the right hand side for an iterative process

In each iteration get the solution of a linear system

Show the convergence of the iterates in a suitable small
neighbourhood of the steady state solution
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Stabilization around null velocity Stabilization of the Nonlinear system

Initial Reductions

Let (ρs, us) be a constant steady state.

Rewrite the equation for the perturbation (σ, v) ;

σ = ρ− ρs ; v = u− us
around this steady state

To get exponential decay e−ωt, rewrite the equation for

σ̂ = σeωt, v̂ = veωt,

Then it is enough to show that bounded solution (σ̂, v̂) exists for all t for
the last nonlinear system.

This is usually done by some iteration process.
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Stabilization around null velocity Stabilization of the Nonlinear system

Stabilization of nonlinear system

Main Difficulty

What is a good space to set up the iteration process?

Equation for density ρ is a transport equation

One of the nonlinear terms ρxv ;

there is no gain in regularity for ρ ;

The derivative is in a less regular space

This is an obstacle to set up an iteration process
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Stabilization around null velocity Stabilization of the Nonlinear system

Change of coordinates

Use the transformation of coordinates :

y → Xv̂(y, t)

for each t > 0 and for v̂ in a suitable space,

∂Yv̂
∂t

(x, t) = e−ωtv̂(Yv̂(x, t), t), Yv̂(x, 0) = x, for t > 0.

Then the transformed system does not have the difficult nonlinear term !

New Difficulties :

The control domain is transformed to a time dependent domain

The transformed density variable is no more of zero average.
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Stabilization around null velocity Stabilization of the Nonlinear system

Outline of the Strategy

For initial velocity sufficiently small, find a fixed set O lying in every
transformed control interval for each t > 0.

Split the transformed density into two parts :

one part with average zero;

the other part, depending only on time, lying in a suitable weighted
Lebesgue space.

σ(x, t) = σm(x, t) + σΩ(t), with σΩ(t) =
1

π

∫
Ω
σ(x, t) dx.
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Stabilization around null velocity Stabilization of the Nonlinear system

Change of coordinates

Denote
Ωx := (0, π) and Q∞x := Ωx × (0,∞),

Under some conditions on v̂, for each t > 0,
Yv̂(·, t) maps Ωx onto Ωy smoothly.

For t > 0, Xv̂(·, t) is the inverse mapping of Yv̂(·, t). Set

σ̃(x, t) = σ̂(Yv̂(x, t), t), ṽ(x, t) = v̂(Yv̂(x, t), t), g̃(x, t) = ĝ(Yv̂(x, t), t),

The control domain (`1, `2) is also transformed :

˜̀
1,ṽ(t) = Xv̂(`1, t) and ˜̀

2,ṽ(t) = Xv̂(`2, t),
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Stabilization around null velocity Stabilization of the Nonlinear system

Transformed system

(σ̃, ṽ, g̃), together with (X,Y ) = (Xv̂, Yv̂), satisfy the following new
nonlinear system

σ̃t + ρsṽx − ωσ̃ = F1(σ̃, ṽ, t), in Q∞x ,

ṽt + bσ̃x − ν0ṽxx − ωṽ = F2(σ̃, ṽ, t) + χO g̃, in Q∞x ,

σ̃(0) = σ0, ṽ(0) = v0 in Ωx,

∫
Ωx

σ0(x)dx = 0,

ṽ(0, t) = 0, ṽ(π, t) = 0, ∀t > 0,

Y (x, t) = x+

∫ t

0
e−ωsṽ(x, s) ds, t > 0, x ∈ Ωx,

X(Y (x, t), t) = x, x ∈ Ωx, Y (X(y, t), t) = y, y ∈ Ωy, t > 0,˜̀
j,ṽ(t) = X(`j , t), for j = 1, 2.
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Stabilization around null velocity Stabilization of the Nonlinear system

Stabilization of Transformed System

Let ω ∈ (0, ω0). There exists a bounded linear operator K from
L2(Ωx)× L2(Ωx) into L2(Ωx) of the form

K(σ, v)(x) =

∫ π

0
kσ(x, ξ)σ(ξ) dξ +

∫ π

0
kv(x, ξ) v(ξ) dξ,

with kσ ∈ L2(Ωx × Ωx) and kv ∈ L2(Ωx × Ωx), and there exist constants
µ0 > 0 and C̃1 > 0, depending on K, such that, for all 0 < µ < µ0 and
all initial conditions (σ0, v0) satisfying

‖(σ0, v0)‖H1
m(Ωx)×H1

0 (Ωx) ≤ C̃1 µ̄,

the closed loop nonlinear system after setting

g̃(t) = K(σ̃(t), ṽ(t))

admits a unique solution (σ̃, ṽ, X, Y ) in the ball Dµ.
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Stabilization around null velocity Stabilization of the Nonlinear system

Back to Original system

Find a feedback control for the original system by making a reverse change
of variables :

σ̂(ζ, t) = σ̃(X(ζ, t), t)

v̂(ζ, t) = ṽ(X(ζ, t), t),

for all ζ ∈ Ωy, ∀t ∈ (0,∞).

Then feedback control is transformed in the form

K̂(σ̂(t), v̂(t), Xv̂(t))(y) = K (σ̃(·, t), ṽ(·, t)) ◦X(y, t), ∀ (y, t) ∈ Q∞y .
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Stabilization around null velocity Stabilization of the Nonlinear system

Closed Loop Nonlinear system

ρt + (ρv)y = 0, in (0, π)× (0,∞),

ρ(vt + vvy) + (p(ρ))y − νvyy =

ρχ(`1,`2) K̂
(
eωt(ρ(t)− ρ̄), eωtv(t), Y (t), X(t)

)
in (0, π)× (0,∞),

ρ(0) = ρ0, v(0) = v0, in (0, π),

v(0, t) = 0, v(π, t) = 0, ∀t > 0,

Y (x, t) = x+

∫ t

0
v(Y (x, s), s) ds, t > 0, x ∈ Ωx,

X(Y (x, t), t) = x, x ∈ Ωx,

Y (X(y, t), t) = y, y ∈ Ωy, t > 0.
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Stabilization around null velocity Stabilization of the Nonlinear system

Stabilization Theorem

Let ω belong to (0, ω0). There exist

(i) a continuous nonlinear mapping K̂ of the variables (ρ, v,X, Y ) from
H1
m(Ωy)×H1

0 (Ωy)×H1(Ωx)×H1(Ωy) into L2(Ωx) and

(ii) positive constants µ̂0, Ĉ1

such that, for all 0 < µ̂ < µ̂0 , for all initial condition
(ρ0, v0) ∈ H1(Ωy)×H1

0 (Ωy) satisfying

‖(ρ0 − ρs, v0)‖H1
m(Ωy)×H1

0 (Ωy) ≤ Ĉ1µ̂,

the nonlinear closed loop system admits a unique solution (ρ, v,X, Y )
satisfying, for all (y, t) ∈ Q∞y ,

‖(ρ(·, t)− ρs, v(·, t))‖H1
m(Ωy)×H1

0 (Ωy) ≤ C µ̂ e−ωt, ρ(y, t) ≥ ρs
2
.

Compressible Navier-Stokes Equations 30th June, 2015 26 / 33



Linearized system around nonzero velocity Spectral Analysis

Linearized system at (ρs, us)

For the linearized system around (ρs, us) with
periodic boundary conditions for ρ, u and ux in (0, 2π)

The Point Spectrum of A

Consists of eigenvalues {−λn}, in the left side of the complex plane

One sequence is
λhn = ω0 − εhn − i n us

with εhn → 0, as |n| → ∞, for n ∈ Z ;

The other sequence is

λpn = ν0n
2 − ω0 + εpn − i n us

with εpn → 0, as |n| → ∞, for n ∈ Z ;

No accumulation point in the spectrum

Absolute value of the eigenvalues goes to infinity.
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Linearized system around nonzero velocity Spectral Analysis

us = 1 = ρs = a = ν, γ = 25, ω0 = 25 and ω = 100
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Linearized system around nonzero velocity Null Controllability of the linearised system at (ρs, us):

Null Controllability

Can work with Fourier basis and Moment method to conclude null
controllability in for regular initial conditions. ( Chowdhury - Mitra)

Theorem

[SC,DM,MR,MRE]
For any T > 2π

us
and any initial condition (ρ0, u0) ∈ Ḣ1

per(I2π)× L2(I2π),
the system with periodic boundary condition is null controllable at time T
by a localized interior control f(·) ∈ L2(0, T ;L2(O)) acting only on the
velocity equation, where O is any nonempty open subset of I2π.

Hence the system is exponentially stabilizable using localized interior
control for velocity.
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Stabilization around non null velocity

Stabilization of linearized system

Qn : The linearized system at (ρs, us) is stabilizable at what rate of
decay?

Stabilizable in Ḣ1
per × L2 with any rate of decay

this is the optimal space for stabilization with arbitrary decay

Spectrum decouples into 2 distinct parts “hyperbolic part” and
“parabolic part”.
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Stabilization around non null velocity

Stabilization of linearized system

Difficulty : Hyperbolic part contains infinitely many eigenvalues for
ω > ω0

Use projection onto unstable eigensubspaces to compute feedback
stabilization

Take the infinite sum of these orthogonal components and show the
convergence

Orthogonal components of feedback control for hyperbolic
eigenvalues are summable if density lies in H1
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Stabilization around non null velocity

Coordinate transformation

For any smooth function v̂, L-periodic in the space variable and bounded
in L2(0,∞;H2

per(Ωy)), the L-periodic mapping Yv̂(·, t) from Ωx to Ωy

satisfies

∂Yv̂(x, t)

∂t
+ us

∂Yv̂(x, t)

∂x
= us + e−ωtv̂(Yv̂(x, t), t), ∀ (x, t) ∈ Q∞x ,

Yv̂(x, 0) = I(x), ∀ x ∈ Ωx,

Yv̂(x, ·) = Yv̂(x+ L, ·), ∀ x ∈ Ωx,

where I(x) is the identity mapping in R/(LZ).

For every t > 0, the mapping x→ Yv̂(x, t) is a smooth bijection from Ωx

to Ωy.

Denote by Xv̂(·, t) the L-periodic inverse of Yv̂(·, t).
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Stabilization around non null velocity

Stabilization Theorem

Let ω be any positive number. There exist positive constants µ̂0 and κ̂,
depending on ω, ρs, us, `1, `2 and L, such that, for 0 < µ̂ ≤ µ̂0 and any
initial condition (ρ0, u0) ∈ H1

per(Ωy)×H1
per(Ωy), where (ρ0, u0) obeys

‖(ρ0 − ρs, u0 − us)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ κ̂ µ̂,

there exists a control f ∈ L2(0,∞;L2(Ωy)) for which the nonlinear system
admits a unique solution (ρ, u) satisfying

‖(ρ(·, t)− ρs, u(·, t)− us)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ Ce
−ωt,

for some positive constant C depending on µ̂. Moreover

ρ(y, t) ≥ ρs
2

for all (y, t) ∈ Q∞y .
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