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Euler Equations in 1-D

Conservation laws for mass, momentum and energy

p pv
u oM o f(u) = 2
ot ox P I
E (E+p)v
p = density, v = velocity, p = pressure

1
E = total energy/volume = pe + EPV2

Equation of state: p = p(p, e); for a calorically ideal gas
L
p=(y—1pe = p=(y-1) E~-Spv
Non-linear system of hyperbolic conservation laws
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Schemes for conservation laws

» Hyperbolic equations: eigenvalues
v—c, v, v+, ¢ = speed of sound

» Solutions can be discontinuous: look for weak solutions
» Finite volume method

» based on integral formulation, hence capable of computing weak solutions
> piecewise constant solution

» Riemann problems solved exactly/approximately to obtain flux

» Higher order scheme via local solution reconstruction

» Discontinuous Galerkin method

» piecewise polynomial solutions, possibly discontinuous across cells
» Riemann solver technology can be used
» high order accuracy possible (no need for reconstruction)
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Numerical Dissipation in Fixed Mesh Methods

~— 1 ~— v+
e U2 — U2+U
-~ v ~— V] +v

AREPO, fixed, 1= 2.0, V= 100

V=1 V=10 V =100
Kelvin-Helmholtz problem at time t = 2.0 with different boost velocities V
on a fixed mesh (Springel)
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Numerical viscosity

» Upwind scheme for a linear convection equation u; + au, = 0,

d . C— Ui . —
Iy max(a, O)M + min(a, O)M =0

dt h h
» Modified partial differential equation
ou ou 1 0?u 5 la| At

Numerical viscosity is proportional to |a|
» Euler equations: numerical viscosity proportional to |v| + ¢

» Not Galilean invariant, adds too much dissipation if large relative
velocities are present

» Frame moving with velocity w, largest eigenvalue = |v — w| + ¢
» Idea is to construct scheme with w ~ v
= move the mesh along with the fluid

Jayesh Badwaik ALE DG Method TIFR-CAM 5/ 44



Mesh

» Partition the domain into disjoint cells

N
2w =Uawm, G- (x-1(0.%,1()
1=
r=0 C; r=1
I B I I
I R B e R R
1 -3 i+s N+

» Discrete time levels given by {t,}

» Time steps given by At, = tp11 — ¢,

» Velocity of cell boundaries are assumed constant in a time step At,

d = =w" <t<
axﬁ-%(t) = WH-%(t) = VVJ-JF%? th St < thha
n n
:>Xj+%(t):xj+%+(t—t,,)wj+%, th <t < tpy1
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Mesh

» Center of the cell x;(t) and length h;(t) are given by

(8) =5 (1 (O +x,1(0) 0 B) = x,1(0) = x_1 (1)

1
2

» Velocity at the interior points is given by linear interpolation

w(x,t) = 7)%%(” - XW” A A 411 w!
’ hi(t) I3 hi(t) U2
» Example of moving cell
t
77777 xT .TZX x x T 71”71
7777777 a Gy Gy G S
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Solution Space

__— » Solution is approximated by piecewise
_ polynomials.
» allowed to be discontinuous at cell
o o om boundaries
‘ jl% jig ‘

» For degree k > 0, the solution in the j-th cell is given by

k
up(x, t) = Z Uj,m(t)sp(xﬂ t)
m=0

x = x;(t)

em(x,t) = Pm(€) = V2m + 1Py(€),  &(x,t) = Th (1)
27
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Solution Space

» orthogonality property
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Derivation of the ALE-DG scheme

Introduce the change of variable (x, t) — (&, 7) by

x — x;(t)
3hi(t)

Calculate the rate of change of moments of the solution starting from

T=t &=

d 30 d [+t 1

By 00 = [ e )0 5

1 Tt Ouy, dh;]
= 2/1 [hj(T)aTJrUth @1(&)dg

But we have

Ouy, - Oouy, Ouy,
W(é’ﬂ = E(X’ t) + w(x, t)W(Xa t)
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Derivation of the ALE-DG scheme

and

=h

dh; ow
A S S

since w(x, t) is linear in x

d % 1 M ou, Ouy, ow] . 1
T /X up(x, t)i(x, t)dx /71 [8t + - + Uhax] @/(g)ihjdf

Xj+%(t) 5f(uh) 9
- / © {_ ox *aX(W"h)} i(x, t)dx

N=

Define the flux
g(u,w)=f(u) —wu
Performing an integration by parts in the x variable, we obtain

d [543 X, 1 (t) )
7 wxenenax = [T gl w) Jex ax
dt /. NG x._1(t) Ox
=3 =3
+8- 1 (n(0)ei(x" 1, ) = &1 (un(D)r(, 5, 1)
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Derivation of the ALE-DG scheme

where we have introduced the numerical flux

5 P
gj+%(uh(t)) = g(uj+%,uj+%, Wj+%)

Integrating over the time interval (t,, t,1+1) we obtain
tht1 X l(t) o
+1,.n+1 _ Jt3
™ tul = = hiuf, +/t /X g(up, W)&QO/(X, t)dxdt

tn+1
S + A —
[ lg 0005 50— gy (e e

This has an implicit nature; uy, is known only at t = t, but we need it over
the interval [tp, thy1]
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Derivation of the ALE-DG scheme

Assume that we can get a predicted solution Up; then using quadratures, the
fully discrete scheme

n n 3
WY = ol At Ze h; T,)ang (Un(xq: ), w(xq, 7)) 5 —01(q, 77)

+Atn29 [gj_f(Uh(Tr))sD/( 1 7r) = 81 (Un(70)) @i (X1, 77)]

7,0, = nodes and weights for time qudrature
Xq,1q = nodes and weights for spatial quadrature

Spatial quadrature: use g = k 4+ 1 point Gauss quadrature.
Time quadrature: use mid-point rule for k = 1, two point Gauss quadrature
for k = 2,3, etc.
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Mesh velocity

» Mesh velocity must be close to the local fluid velocity

» simple choice is to take an average

Wy = S0 ) + V(s to)]

» perform some smoothing of the mesh velocity, e.g.,

1
n ~n ~ n ~ n
w. 1 =—=(w. 1 +Ww 1+w 3
J+3 3( J=3 J+3 J+§)
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Predictor via Taylor expansion

t
!
,,,,,,,,,,,,,,,,,,,,,,, o)
77777777777777777777777777777777777777777777777 1
X—F e tn
9 Z(tn) 3yl
The Taylor expansion around (X, t,) is
ou ou
u(xq,7) = u(Xg, tn) + (1, — tn)a(xqa tn) + (xg — Xq)&(an tn)

+0(7, — ta)? + O(xq — Xq)2
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Predictor via Taylor expansion

and hence the predicted solution is

Ou,
ot

8uh

(Xqvtn)+(xq_x ) Ox

U(xq,7) = up(Xg, tn) + (7r = tn) (Xq, tn)

Using the conservation law, the time derivative is written as

9u — _9f — _ A9 5o that predictor is given by

Un(g, ) = U(Xe) — (7 — 1) [A(UE(Xq)) — wal] T (X,)

The above predictor is used for the case of polynomial degree k = 1.

This procedure can be extended to higher orders by including more terms in
the Taylor expansion but the algebra becomes complicated.

Jayesh Badwaik ALE DG Method TIFR-CAM 16 / 44



Predictor using Runge-Kutta

Idea: Apply RK scheme to obtain solution in [t,, th+1]

Choose a set of (k + 1) distinct nodes, e.g., Gauss-Legendre or
Gauss-Lobatto nodes, which uniquely define the polynomial of degree k.

Nodes are moving with velocity w(x, t), the time evolution of the solution at
X = X, is governed by

% = aat_Uh(Xma t) + W(va t)aaXUh(Xm, t)
= —%f(uh(xmat))‘f' W(Xm’t)%uh(xm’t)
= AWUR(0) ~ wn()1)-5 Unloem, ) = Kin()

with initial condition
Um(tn) = Uh(Xma tn) = ulr;(xm)
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Predictor using Runge-Kutta

Using a Runge-Kutta scheme of sufficient order, we will approximate the
solution at these nodes as

Un(t) = tp(xm, tn)+ > _ bs((t—tn)/At))Kms, t € [tn, tnr1), m=0,1,..

s=1

Kmn,s = Km(tn + 7‘5), Ts = stage time

Quadrature points for third order scheme
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Predictor using Runge-Kutta

Once the predictor is computed as above, it must be evaluated at the
quadrature point (xq, 7,) as follows. For each time quadrature point

Tr € [tn, tht1),
1. Compute nodal values Uy, (7,), m=0,1,...,k
2. Convert nodal values to modal coefficients vy, ,, m=0,1,..., k
3. Evaluate predictor Uy(xq,7,) = anzo Um rom(Xq, Tr)

The predictor is also computed at the cell boundaries using the above
procedure.
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Limiter

» Discontinuous solutions obtained from high order schemes suffer from
numerical oscillations: loss of TVD property

» Post process the DG solution with a TVD or TVB limiter (Cockburn &
Shu)

» To make density/pressure postive, apply positivity limiter of Zhang &
Shu
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Grid coarsening

» Grid cells can become small in size, e.g., around shocks

» Time step is reduced due to CFL condition

> If h? < hmin, then merge this cell with one of its neighbouring cells.
Transfer solution by L2 projection.
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Choosing the time step

» Geometrical constraint: cell size must not change by more than a
fraction (3

(1—p)h? <AL < (1+B)h!  eg, =01
Bh}

j+1 _WJ_;|

:>At,,_‘
W

» First order scheme with Rusanov flux is positive if

1 n n
At, < At = (1= 3008 phj
n — ’ 1/yn n ) __yn
" 5()\1 %+)\j+%) \ i WJ_%|

» In general, when degree k polynomials are used

FL
At, = ¢

1At,(,”, CFL ~ 0.5
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Order of Accuracy

Smooth Solution Test Case

— Smooth Solution

p(x,0) =1+ exp(_10X2)7 v(x,0) =1, p(x,0) =1
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Order Accuracy
Fixed Mesh, Lax Friedrichs Flux, L2 Errors

NC Taylor Error | Rate | CERK2 Error | Rate | CERK3 Error | Rate
100 4.370E-02 3.498E-03 3.883E-04

200 6.611E-03 | 2.725 4.766E-04 | 2.876 1.620E-05 4.583
400 1.332E-03 | 2.518 6.415E-05 2.885 9.376E-07 | 4.347
800 3.151E-04 | 2.372 8.246E-06 2.910 5.763E-08 | 4.239
1600 | 7.846E-05 | 2.280 1.031E-06 2.932 3.595E-09 | 4.180

Table: Order of accuracy study on static mesh
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Order Accuracy
Moving Mesh, Lax Friedrichs Flux, L? Errors

NC Taylor Error | Rate | CERK2 Error | Rate | CERK3 Error | Rate
100 2.331E-02 3.979E-03 8.633E-04

200 6.139E-03 1.925 4.0582E-04 | 3.294 1.185E-05 6.186
400 1.406E-03 | 2.0258 5.250E-05 3.122 7.079E-07 5.126
800 3.375E-04 | 2.0366 6.626E-06 3.077 | 4.340E-08 4.760
1600 | 8.278E-05 | 2.0344 | 8.304E-07 3.057 2.689E-09 4.573

Table: Order of accuracy study on moving mesh
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Order Accuracy

Fixed Mesh, HLLC Flux, L? Errors

NC Taylor Error | Rate | CERK2 Error | Rate | CERK3 Error | Rate
100 4.582E-02 3.952E-03 3.464E-04

200 9.611E-03 | 2.253 | 4.048E-04 | 3.287 2.058E-05 4.073
400 2.052E-03 | 2.240 | 4.640E-05 3.206 1.287E-06 | 4.036
800 4.803E-04 | 2.192 5.623E-06 3.152 8.061E-08 | 4.023
1600 | 1.184E-04 | 2.149 6.929E-07 3.119 5.050E-09 | 4.016

Table: Order of accuracy study on static mesh
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Order Accuracy

Moving Mesh, HLLC Flux, L? Errors

NC Taylor Error | Order | CERK2 Error | Order | CERK3 Error | Order
100 1.590E-02 1.626E-03 1.962E-04

200 4.042E-03 | 1.977 2.072E-04 2.972 1.269E-05 3.950
400 1.014E-03 | 1.985 2.605E-05 2.982 7.983E-07 3.971
800 2.538E-04 | 1.990 3.261E-06 2.988 4.997E-08 3.980
1600 | 6.349E-05 | 1.992 4.077E-07 2.991 3.124E-09 3.985

Table: Order of accuracy study on moving mesh
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Sod Shocktube

Problem

The initial conditions are given by

(1.0,0.0,1.0) x<05
(p,v,p) =
(0.125,0.0,0.1) x > 0.5

» T =0.2.
» Number of cells = 100.
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Sod Shocktube

Lax Friedrichs Flux

— Fixed Mesh — Moving Mesh
o o Avg o o Avg
0.8 —  Exact 0.8 — Exact
3,0.6 3‘0'6
@ @
c C
[ [
Qa a
0.4 0.4
0.2 0.2
0.0 0.0
0.2 03 04 05 06 0.7 08 09 0.2 03 04 05 06 0.7 08 09
X

X
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Contact

(2.0,1.0,1.0) x <05

7V7 —
(P-v-P)=1(10.10,1.0) x>05

22 2.2
— Fixed Mesh — Moving Mesh
2.0 e o o Average 20 o o Average
— Exact — Exact
1.8 1.8
216 216
a @
2 2
33 I3
o =}
14 1.4
1.2 1.2
1.0 1.0
0.90 0.95 1.00 1.05 110  0.90 0.95 1.00 1.05 1.10
x x
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Shu-Osher

Problem

The initial conditions are given by

(oov.p) = (3.857143,2.629360, 10.333333) x < —4
PP (1 + 0.25in(5x), 0.0, 1.0) X> 4

» T =138

» Number of cells is 200.
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Shu-Osher Problem

Lax Friedrichs

5 5
4 4
3 3
fn) z
2 2
c f
[ [
a a
2 2
1/| — Fixed Mesh L" 1/| — Moving Mesh s
< < Avg ° < Avg
— Exact — Exact
0 0
3 -2 -1 o0 1 2 3 3 -2 -1 o0 1 2 3
X X
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Shu-Osher

Roe Flux |
5 5
4 4
3 3
fn) z
2 2
c f
[ [
a a
2 2
1/| — Fixed Mesh L" 1/| — Moving Mesh s
< < Avg ° < Avg
— Exact — Exact
0 0
=3 -2 -1 o0 1 2 3 -3 -2 -1 o0 1 2 3
X X
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Shu-Osher

Roe Flux Il
5 5
4 4
3 3
fn) z
2 2
c f
[ [
a a
2 2
1/| — Fixed Mesh L" 1/| — Moving Mesh s
< < Avg ° < Avg
— Exact — Exact
0 0
=3 -2 -1 o0 1 2 3 -3 -2 -1 o0 1 2 3
X X
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Shu-Osher

Roe Flux Il

4.6}
4.4}

4.2 “

o
3.8+ \

3.6f r
\

3.4} \ /

3.2*\\' N

‘;H ‘ " Exact
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Roe Flux and ALE

Near Zero Eigenvalues

v

Eigenvalues for moving mesh

lv—w —c|, v —wl, lv—w+ ¢

v

Forw=v, [M]=|v—w|x=0

v

Dissipation is almost zero for the contact wave

v

Modify eigenvalue in Roe flux

— — J
2| = |1V ¢ ) v W'_ “0 . s=o0lc
5(6 +|v—wl|?/d) otherwise
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Shu-Osher

Roe Flux with eigenvalue fix

4.6t Exact
4.4}
4.2}
\ “\\..
\
af \
3.8} \
3.6/ |
3.4t ‘
v |
3.2¢ |
I\\
37 12 14 16 18 22 24
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123 Problem

Problem

The initial conditions are given by

(1.0,—2.0,0.4) x < —4
(p,v,p) =
(1.0,2.0,0.4) x> —4

» Time of simulationis T =0.15
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123 Problem

Lax Friedrichs Flux

1.0 1.0
— Exact — Exact
— Fixed Mesh — ALE Mesh
0.8 = < Average 0.8 = o Average
0.6 0.6
2 z
£ Z
c c
3 a
0.4 0.4
0.2 0.2
0. 0.
90 0.2 0.4 0.6 0.8 To %89 0.2 0.4 0.6 0.8 1.0

X X

Grid becomes coarse in ALE due to rarefaction
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Blast Test Case

Problem

The initial condition is given by

(1.0,0.0,1000.0) x < 0.1
(p,v,p) = { (1.0,0.0,0.01) 0.1 <x<0.9
(1.0,0.0,100.0) x> 0.9

T =0.038
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Blast Test Case

7 7
— Fixed Mesh — Moving Mesh

6 o © Cell Averages 6 o c Cell Averages
— Exact — Exact

95 8.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Moving mesh results have better amplitude but slightly different shock
location
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Conclusions

» Developed a high order DG on moving meshes
» 2'nd, 3'rd, 4'th order schemes
» Single step schemes using a predictor
» Nearly Lagrangian character leads to better solutions
» Good accuracy obtained even with TVD limiters, since mesh is
automatically clustered
» Roe flux does not have entropy problem, but contact wave needs a fix

» fixing contact speed solves this, but exact contact preservation is lost
» This problem exists with HLLC also
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Future Work

» Add mesh refinement to increase accuracy in regions with rarefactions
» Add better limiters

» Extend the scheme to two dimensions
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Thank You
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