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Euler Equations in 1-D

Conservation laws for mass, momentum and energy

∂u
∂t

+
∂f(u)

∂x
= 0, u =


ρ

ρv

E

 , f(u) =


ρv

p + ρv2

(E + p)v


ρ = density, v = velocity, p = pressure

E = total energy/volume = ρe +
1
2
ρv2

Equation of state: p = p(ρ, e); for a calorically ideal gas

p = (γ − 1)ρe =⇒ p = (γ − 1)

[
E − 1

2
ρv2
]

Non-linear system of hyperbolic conservation laws
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Schemes for conservation laws

I Hyperbolic equations: eigenvalues

v − c , v , v + c , c = speed of sound

I Solutions can be discontinuous: look for weak solutions
I Finite volume method

I based on integral formulation, hence capable of computing weak solutions
I piecewise constant solution
I Riemann problems solved exactly/approximately to obtain flux
I Higher order scheme via local solution reconstruction

I Discontinuous Galerkin method
I piecewise polynomial solutions, possibly discontinuous across cells
I Riemann solver technology can be used
I high order accuracy possible (no need for reconstruction)
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Numerical Dissipation in Fixed Mesh Methods

v1

v2

v1

v1 + v

v2 + v

v1 + v

V = 1 V = 10 V = 100
Kelvin-Helmholtz problem at time t = 2.0 with different boost velocities V

on a fixed mesh (Springel)
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Numerical viscosity
I Upwind scheme for a linear convection equation ut + aux = 0,

duj
dt

+ max(a, 0)
uj − uj−1

h
+ min(a, 0)

uj+1 − uj
h

= 0

I Modified partial differential equation

∂u

∂t
+ a

∂u

∂x
=

1
2
|a|h(1− ν)

∂2u

∂x2 +O(h2), ν =
|a|∆t

h

Numerical viscosity is proportional to |a|
I Euler equations: numerical viscosity proportional to |v |+ c

I Not Galilean invariant, adds too much dissipation if large relative
velocities are present

I Frame moving with velocity w , largest eigenvalue = |v − w |+ c

I Idea is to construct scheme with w ≈ v
=⇒ move the mesh along with the fluid
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Mesh
I Partition the domain into disjoint cells

Ω(t) =
N⋃
i=0

Cj(t), Cj(t) =
(
xj− 1

2
(t), xj+ 1

2
(t)
)

1
2

N + 1
2

1 Njj − 1 j + 1

j − 1
2

j + 1
2

Cjx = 0 x = 1

I Discrete time levels given by {tn}
I Time steps given by ∆tn = tn+1 − tn
I Velocity of cell boundaries are assumed constant in a time step ∆tn

d
dt

xj+ 1
2
(t) = wj+ 1

2
(t) = wn

j+ 1
2
, tn ≤ t ≤ tn+1

=⇒ xj+ 1
2
(t) = xn

j+ 1
2

+ (t − tn)wn
j+ 1

2
, tn ≤ t ≤ tn+1

Jayesh Badwaik ALE DG Method TIFR-CAM 6 / 44



Mesh
I Center of the cell xj(t) and length hj(t) are given by

xj(t) =
1
2

(
xj− 1

2
(t) + xj+ 1

2
(t)
)
, hj(t) = xj+ 1

2
(t)− xj− 1

2
(t)

I Velocity at the interior points is given by linear interpolation

w(x , t) =
xj+ 1

2
(t)− x

hj(t)
wn
j− 1

2
+

x − xj+ 1
2
(t)

hj(t)
wn
j+ 1

2

I Example of moving cell

x

t

tn

tn+1

x 1
2

x 3
2

x 5
2

x 7
2

x 9
2

x 1
2

x 3
2

x 5
2

x 7
2

x 9
2

C1 C2 C3 C3
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Solution Space

j − 1
2

j + 1
2

Cj−1 Cj Cj−1

I Solution is approximated by piecewise
polynomials.

I allowed to be discontinuous at cell
boundaries

I For degree k ≥ 0, the solution in the j-th cell is given by

uh(x , t) =
k∑

m=0

uj ,m(t)ϕ(x , t)

ϕm(x , t) = ϕ̂m(ξ) =
√
2m + 1Pm(ξ), ξ(x , t) =

x − xj(t)
1
2hj(t)
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Solution Space

I orthogonality property

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

ϕl(x , t)ϕm(x , t)dx = hj(t)δlm

I This allows us to write the expression for the “moments” as

uj ,m(t) =

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

uh(x , t)ϕl(x , t)dx
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Derivation of the ALE-DG scheme

Introduce the change of variable (x , t)→ (ξ, τ) by

τ = t, ξ =
x − xj(t)

1
2hj(t)

Calculate the rate of change of moments of the solution starting from

d
dt

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

uh(x , t)ϕl(x , t)dx =
d
dτ

ˆ +1

−1
uh(ξ, τ)ϕ̂l(ξ)

1
2
hj(τ)dξ

=
1
2

ˆ +1

−1

[
hj(τ)

∂uh

∂τ
+ uh

dhj
dτ

]
ϕ̂l(ξ)dξ

But we have

∂uh

∂τ
(ξ, τ) =

∂uh

∂t
(x , t) + w(x , t)

∂uh

∂x
(x , t)

Jayesh Badwaik ALE DG Method TIFR-CAM 10 / 44



Derivation of the ALE-DG scheme
and

dhj
dτ

= wj+ 1
2
− wj− 1

2
= hj

∂w

∂x
since w(x , t) is linear in x

d
dt

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

uh(x , t)ϕl(x , t)dx =

ˆ +1

−1

[
∂uh

∂t
+ w

∂uh

∂x
+ uh

∂w

∂x

]
ϕ̂l(ξ)

1
2
hjdξ

=

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

[
−∂f (uh)

∂x
+

∂

∂x
(wuh)

]
ϕl(x , t)dx

Define the flux
g(u,w) = f (u)− wu

Performing an integration by parts in the x variable, we obtain

d
dt

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

uh(x , t)ϕl(x , t)dx =

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

g(uh,w)
∂

∂x
ϕl(x , t)dx

+ĝj− 1
2
(uh(t))ϕl(x

+

j− 1
2
, t)− ĝj+ 1

2
(uh(t))ϕl(x

−
j+ 1

2
, t)
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Derivation of the ALE-DG scheme

where we have introduced the numerical flux

ĝj+ 1
2
(uh(t)) = ĝ(u−

j+ 1
2
,u+

j+ 1
2
,wj+ 1

2
)

Integrating over the time interval (tn, tn+1) we obtain

hn+1
j un+1

j ,l = hnj u
n
j ,l +

ˆ tn+1

tn

ˆ x
j+ 1

2
(t)

x
j− 1

2
(t)

g(uh,w)
∂

∂x
ϕl(x , t)dxdt

+

ˆ tn+1

tn

[ĝj− 1
2
(t)ϕl(x

+
j− 1

2
, t)− ĝj+ 1

2
(t)ϕl(x

−
j+ 1

2
, t)]dt

This has an implicit nature; uh is known only at t = tn but we need it over
the interval [tn, tn+1]
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Derivation of the ALE-DG scheme

Assume that we can get a predicted solution Uh; then using quadratures, the
fully discrete scheme

hn+1
j un+1

j,l = hnj u
n
j,l + ∆tn

∑
r

θrhj(τr )
∑
q

ηqg(Uh(xq, τr ),w(xq, τr ))
∂

∂x
ϕl(xq, τr )

+∆tn
∑
r

θr [ĝj− 1
2

(Uh(τr ))ϕl(x
+
j− 1

2
, τr )− ĝj+ 1

2
(Uh(τr ))ϕl(x

−
j+ 1

2
, τr )]

τr , θr = nodes and weights for time qudrature

xq, ηq = nodes and weights for spatial quadrature

Spatial quadrature: use q = k + 1 point Gauss quadrature.
Time quadrature: use mid-point rule for k = 1, two point Gauss quadrature
for k = 2, 3, etc.
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Mesh velocity

I Mesh velocity must be close to the local fluid velocity
I simple choice is to take an average

w̃n
j+ 1

2
=

1
2

[v(x−
j+ 1

2
, tn) + v(x+

j+ 1
2
, tn)]

I perform some smoothing of the mesh velocity, e.g.,

wn
j+ 1

2
=

1
3

(w̃n
j− 1

2
+ w̃n

j+ 1
2

+ w̃n
j+ 3

2
)
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Predictor via Taylor expansion

x

t

tn

τ1

τ2

tn+1

i− 1
2

x0 xq(tn)

xq(τ2)

x2 i+ 1
2

The Taylor expansion around (Xq, tn) is

u(xq, τr ) = u(Xq, tn) + (τr − tn)
∂u
∂t

(Xq, tn) + (xq − Xq)
∂u
∂x

(Xq, tn)

+O(τr − tn)2 + O(xq − Xq)2
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Predictor via Taylor expansion

and hence the predicted solution is

U(xq, τr ) = uh(Xq, tn) + (τr − tn)
∂uh

∂t
(Xq, tn) + (xq − Xq)

∂uh

∂x
(Xq, tn)

Using the conservation law, the time derivative is written as
∂u
∂t = −∂f

∂x = −A∂u
∂x so that predictor is given by

Uh(xq, τr ) = un
h (Xq)− (τr − tn) [A(un

h (Xq))− wqI ]
∂un

h

∂x
(Xq)

The above predictor is used for the case of polynomial degree k = 1.

This procedure can be extended to higher orders by including more terms in
the Taylor expansion but the algebra becomes complicated.
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Predictor using Runge-Kutta

Idea: Apply RK scheme to obtain solution in [tn, tn+1]

Choose a set of (k + 1) distinct nodes, e.g., Gauss-Legendre or
Gauss-Lobatto nodes, which uniquely define the polynomial of degree k .

Nodes are moving with velocity w(x , t), the time evolution of the solution at
x = xm is governed by

dUm

dt
=

∂

∂t
Uh(xm, t) + w(xm, t)

∂

∂x
Uh(xm, t)

= − ∂

∂x
f (Uh(xm, t)) + w(xm, t)

∂

∂x
Uh(xm, t)

= −[A(Um(t))− wm(t)I ]
∂

∂x
Uh(xm, t) =: Km(t)

with initial condition

Um(tn) = uh(xm, tn) = un
h (xm)
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Predictor using Runge-Kutta
Using a Runge-Kutta scheme of sufficient order, we will approximate the
solution at these nodes as

Um(t) = uh(xm, tn)+
ns∑
s=1

bs((t−tn)/∆tn)Km,s , t ∈ [tn, tn+1), m = 0, 1, . . . , k

Km,s = Km(tn + τs), τs = stage time

x

t

tn

τ1

τ2

tn+1

i− 1
2

x0 x1 x2 i+ 1
2

Quadrature points for third order scheme
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Predictor using Runge-Kutta

Once the predictor is computed as above, it must be evaluated at the
quadrature point (xq, τr ) as follows. For each time quadrature point
τr ∈ [tn, tn+1],

1. Compute nodal values Um(τr ), m = 0, 1, . . . , k

2. Convert nodal values to modal coefficients um,r , m = 0, 1, . . . , k

3. Evaluate predictor Uh(xq, τr ) =
∑k

m=0 um,rϕm(xq, τr )

The predictor is also computed at the cell boundaries using the above
procedure.
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Limiter

I Discontinuous solutions obtained from high order schemes suffer from
numerical oscillations: loss of TVD property

I Post process the DG solution with a TVD or TVB limiter (Cockburn &
Shu)

I To make density/pressure postive, apply positivity limiter of Zhang &
Shu
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Grid coarsening

I Grid cells can become small in size, e.g., around shocks
I Time step is reduced due to CFL condition
I If hnj < hmin, then merge this cell with one of its neighbouring cells.

Transfer solution by L2 projection.
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Choosing the time step
I Geometrical constraint: cell size must not change by more than a

fraction β

(1− β)hnj ≤ hn+1
j ≤ (1 + β)hnj e.g., β = 0.1

=⇒ ∆tn ≤
βhnj

|wn
j+ 1

2
− wn

j− 1
2
|

I First order scheme with Rusanov flux is positive if

∆tn ≤ ∆t
(1)
n := min

j

 (1− 1
2β)hnj

1
2(λn

j− 1
2

+ λn
j+ 1

2
)
,

βhnj
|wn

j+ 1
2
− wn

j− 1
2
|


I In general, when degree k polynomials are used

∆tn =
CFL
2k + 1

∆t
(1)
n , CFL ≈ 0.5
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Order of Accuracy
Smooth Solution Test Case

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
x

1.0

1.2

1.4

1.6

1.8

2.0

D
e
n
si

ty

Smooth Solution

ρ(x , 0) = 1 + exp(−10x2), v(x , 0) = 1, p(x , 0) = 1
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Order Accuracy
Fixed Mesh, Lax Friedrichs Flux, L2 Errors

NC Taylor Error Rate CERK2 Error Rate CERK3 Error Rate

100 4.370E-02 3.498E-03 3.883E-04

200 6.611E-03 2.725 4.766E-04 2.876 1.620E-05 4.583

400 1.332E-03 2.518 6.415E-05 2.885 9.376E-07 4.347

800 3.151E-04 2.372 8.246E-06 2.910 5.763E-08 4.239

1600 7.846E-05 2.280 1.031E-06 2.932 3.595E-09 4.180

Table: Order of accuracy study on static mesh
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Order Accuracy
Moving Mesh, Lax Friedrichs Flux, L2 Errors

NC Taylor Error Rate CERK2 Error Rate CERK3 Error Rate

100 2.331E-02 3.979E-03 8.633E-04

200 6.139E-03 1.925 4.0582E-04 3.294 1.185E-05 6.186

400 1.406E-03 2.0258 5.250E-05 3.122 7.079E-07 5.126

800 3.375E-04 2.0366 6.626E-06 3.077 4.340E-08 4.760

1600 8.278E-05 2.0344 8.304E-07 3.057 2.689E-09 4.573

Table: Order of accuracy study on moving mesh
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Order Accuracy
Fixed Mesh, HLLC Flux, L2 Errors

NC Taylor Error Rate CERK2 Error Rate CERK3 Error Rate

100 4.582E-02 3.952E-03 3.464E-04

200 9.611E-03 2.253 4.048E-04 3.287 2.058E-05 4.073

400 2.052E-03 2.240 4.640E-05 3.206 1.287E-06 4.036

800 4.803E-04 2.192 5.623E-06 3.152 8.061E-08 4.023

1600 1.184E-04 2.149 6.929E-07 3.119 5.050E-09 4.016

Table: Order of accuracy study on static mesh
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Order Accuracy
Moving Mesh, HLLC Flux, L2 Errors

NC Taylor Error Order CERK2 Error Order CERK3 Error Order

100 1.590E-02 1.626E-03 1.962E-04

200 4.042E-03 1.977 2.072E-04 2.972 1.269E-05 3.950

400 1.014E-03 1.985 2.605E-05 2.982 7.983E-07 3.971

800 2.538E-04 1.990 3.261E-06 2.988 4.997E-08 3.980

1600 6.349E-05 1.992 4.077E-07 2.991 3.124E-09 3.985

Table: Order of accuracy study on moving mesh
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Sod Shocktube
Problem

The initial conditions are given by

(ρ, v , p) =

{
(1.0, 0.0, 1.0) x < 0.5
(0.125, 0.0, 0.1) x > 0.5

I T = 0.2.
I Number of cells = 100.
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Sod Shocktube
Lax Friedrichs Flux
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Contact

(ρ, v , p) =

{
(2.0, 1.0, 1.0) x < 0.5
(1.0, 1.0, 1.0) x > 0.5
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Shu-Osher
Problem

The initial conditions are given by

(ρ, v , p) =

{
(3.857143, 2.629369, 10.333333) x < −4
(1 + 0.2 sin(5x), 0.0, 1.0) x > −4

I T = 1.8
I Number of cells is 200.
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Shu-Osher Problem
Lax Friedrichs
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Shu-Osher
Roe Flux I
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Shu-Osher
Roe Flux II
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Shu-Osher
Roe Flux III
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Roe Flux and ALE
Near Zero Eigenvalues

I Eigenvalues for moving mesh

|v − w − c |, |v − w |, |v − w + c |

I For w ≈ v , |λ2| = |v − w | ≈ 0
I Dissipation is almost zero for the contact wave
I Modify eigenvalue in Roe flux

|λ2| =

{
|v − w | |v − w | > δ
1
2(δ + |v − w |2/δ) otherwise

, δ = 0.1c
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Shu-Osher
Roe Flux with eigenvalue fix

	3

	3.2

	3.4

	3.6

	3.8

	4

	4.2

	4.4

	4.6

	1 	1.2 	1.4 	1.6 	1.8 	2 	2.2 	2.4

Exact

Jayesh Badwaik ALE DG Method TIFR-CAM 37 / 44



123 Problem
Problem

The initial conditions are given by

(ρ, v , p) =

{
(1.0,−2.0, 0.4) x < −4
(1.0, 2.0, 0.4) x > −4

I Time of simulation is T = 0.15
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123 Problem
Lax Friedrichs Flux
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ALE Mesh

Average

Grid becomes coarse in ALE due to rarefaction
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Blast Test Case
Problem

The initial condition is given by

(ρ, v , p) =


(1.0, 0.0, 1000.0) x < 0.1
(1.0, 0.0, 0.01) 0.1 < x < 0.9
(1.0, 0.0, 100.0) x > 0.9

T = 0.038
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Blast Test Case
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Moving mesh results have better amplitude but slightly different shock
location
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Conclusions

I Developed a high order DG on moving meshes
I 2’nd, 3’rd, 4’th order schemes
I Single step schemes using a predictor

I Nearly Lagrangian character leads to better solutions
I Good accuracy obtained even with TVD limiters, since mesh is

automatically clustered
I Roe flux does not have entropy problem, but contact wave needs a fix

I fixing contact speed solves this, but exact contact preservation is lost
I This problem exists with HLLC also
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Future Work

I Add mesh refinement to increase accuracy in regions with rarefactions
I Add better limiters
I Extend the scheme to two dimensions
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Thank You
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