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Abstract. We present a finite volume scheme for ideal compressible magnetohydrodynamic
(MHD) equations on 2-D Cartesian meshes. The semi-discrete scheme is constructed to be entropy
stable by using the symmetrized version of the equations as introduced by Godunov. We first
construct an entropy conservative scheme for which sufficient condition is given and we also derive
a numerical flux satisfying this condition. Secondly, following a standard procedure, we make the
scheme entropy stable by adding dissipative flux terms using jumps in entropy variables. A semi-
discrete high resolution scheme is constructed that preserves the entropy stability of the first order
scheme. We demonstrate the robustness of this new scheme on several standard MHD test cases.
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1. Introduction. The equations of ideal compressible MHD are a system of
eight non-linear conservation laws for mass, momentum, energy and magnetic field.
Due to their hyperbolic nature, these equations admit discontinuous solutions. The
magnetic field has to be divergence-free which is a reflection of the principle that
there are no magnetic monopoles. The MHD equations ensure that the rate of change
of divergence is zero. If the initial divergence is zero, then it remains zero for future
times. In a numerical computation, it is not obvious that the divergence free condition
will be satisfied, even approximately. This can lead to instabilities in the computations
and/or loss of positivity of density and pressure. Many numerical schemes have been
proposed to deal with this important problem starting with the earliest works which
were based on one-dimensional Riemann solvers for the 7× 7 system of conservation
laws [8, 9, 11, 13, 3]. These schemes require additional steps to take care of the zero
divergence constraint. In [8] the authors suggest to project the numerical solution
obtained for the magnetic field from a 1-D Riemann solver based scheme onto the
subspace of zero divergence solutions which involves the solution of an elliptic Poisson
equation. Another method is the so-called constrained transport method [13] in which
a staggered grid is used to preserve a specific discretization of divergence by solving
additional equations for a vector potential A which is related to the magnetic field B
by B = ∇×A. Unstaggered versions of the constrained transport method have also
been developed, see [15, 37, 24]. There are many Riemann solvers available in the
literature, e.g., based on Roe-type schemes [36, 4], based on HLLC schemes [26, 23]
or relaxation solvers [6, 7, 27].

A different class of schemes which do not explictly control the divergence are also
developed in the literature. Powell [33] noticed that the MHD equations are weakly
hyperbolic and proposed to add source terms to recover the missing eigenvector, lead-
ing to a model that is not conservative. A Godunov-type finite volume scheme based
on an 8 wave Riemann solver was constructed for the modified equations which lead
to a stable scheme without any explicit control on the magnetic divergence. These
modified equations have the property that the divergence is advected with the flow.
Any numerical errors in the divergence are also expected to be advected thus pre-
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venting accumulation of error. While these source terms lead to a stable scheme in
computations, it is known that in some problems, the non conservative nature of the
scheme leads to wrong solutions [47]. The generalization of this approach in [12] in-
volved adding additional source terms which diffuse the error in divergence apart from
advecting it and requires solution of an extra scalar equation. In the framework of re-
laxation solvers [27], source terms are added only in the magnetic field equation which
helps to construct a positivity preserving scheme. Much before this, Godunov [22]
had pointed out that systems like MHD which have a divergence constraint cannot be
symmetrized unless some additional source terms are added. These source terms are
identical to those developed by Powell. The ability to symmetrize the equations im-
plies the existence of an entropy condition which gives some stability to the solutions
since the entropy is a convex function of the state variables.

The above approaches have been used to develop high order schemes following
different techniques. High order schemes based on TVD reconstruction, ENO and
WENO reconstructions, ADER-WENO scheme, etc., are also available, see e.g., [31,
44, 1, 2]. Discontinuous Galerkin (DG) schemes for MHD have been developed, see [29,
30] for central DG schemes, and [4, 5] for entropy stable schemes. The DG scheme
in [38] is based on constrained transport to control the divergence, and is not provably
entropy stable since it does not make use of entropy variables.

In this work we develop a semi-discrete entropy stable finite volume scheme for
MHD equations on 2-D Cartesian meshes, and the scheme can be easily extended to
three dimensions. Our approach which uses colocated variables for all the variables,
is based on the following ingredients where the main design principle is to obtain an
entropy stable scheme.

1. We construct an entropy conservative scheme for MHD equations in Go-
dunov’s symmetrized form. For this purpose we give sufficient conditions on
the numerical fluxes and give one example of a flux that satisfies this condition

2. We then add dissipative fluxes which lead to entropy production and hence
entropy stability. A high order version of the scheme is constructed using
reconstruction scheme that is also entropy stable.

3. The semi-discrete equations resulting from the above steps are integrated in
time using a Runge-Kutta scheme.

The above approach has already been used for standard conservation laws like Euler
equations starting with [42, 43] where entropy conservative and entropy stable schemes
were characterized. In case of the shallow water equations which contain a source
term, an entropy stable scheme has been developed in [17], which also required the
extension of the usual characterizations of entropy stable fluxes. Unlike in the case of
MHD where the Powell terms are added to obtain the entropy condition, the source
terms in the shallow water model are already present to represent bottom topography
and naturally lead to an entropy condition. Practical numerical flux functions that
satisfy necessary conditions for entropy conservation were later developed in [25, 10].
Entropy stable dissipation operators have been developed in [43] and also used in [25,
16, 10]. The high resolution scheme used in the present work is similar to the TeCNO
scheme [16] developed in the context of usual conservation laws where the high order
entropy conservative scheme from [28] is used. The important idea in this scheme is
to ensure that the jump in the reconstructed quantities at any cell face must have the
same sign as the jump in the quantities at the cell centers. This sign property enables
us to obtain the desired entropy inequalities. Arbitrarily high order sign preserving
ENO reconstructions have been presented in [16] though in the present work, we only
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discuss the second order version.
The resulting semi-discrete scheme is entropy stable and a fully discrete scheme is

obtained by using a Runge-Kutta scheme for time integration. Similar to the TeCNO
schemes, the fully discrete scheme presented here cannot be proven to be entropy
stable but we show through numerical experiments, that entropy is generated by the
fully discrete scheme thus indicating stability of the numerical scheme. The numerical
examples given in this paper show that the proposed scheme is stable without any
explicit control on the divergence. However on some test problems, it is found to
give wrong solutions, which is a common problem of all non-conservative schemes as
pointed out in [47]. A natural resolution to this problem is provided by the use of
a space-time discontinuous Galerkin (DG) framework which is part of our ongoing
work. The numerical flux developed in this paper provides the necessary ingredients
to construct an entropy stable DG scheme. The source terms can be avoided by
the use of locally divergence-free basis functions for the magnetic field and hence the
scheme will be conservative, though requiring additional stabilization terms∗.

The rest of the paper is organized as follows. In section 2 we introduce the MHD
equations and discuss its symmetrization properties and Godunov’s modification. In
section 3 we present the finite volume scheme, and discuss the entropy conservative
and entropy stable schemes, together with the high resolution version of the scheme.
Section 4 presents the results of some standard MHD test cases computed with the
present scheme. The paper ends with summary and conclusions in section 5.

2. Ideal MHD equations. The equations governing compressible ideal MHD
flows can be written as a system of conservation laws for mass, momentum, energy
and magnetic field in the following form

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · [ρuu + (p+

1

2
|B|2)I −BB] = 0

∂E

∂t
+∇ · [(E + p+

1

2
|B|2)u− (u ·B)B] = 0

∂B

∂t
+∇ · (uB −Bu) = 0

where ρ is the density, u is the fluid velocity, p is the pressure, E is the total energy
and B is the magnetic field. We assume that the total energy E is given by

E =
p

γ − 1
+

1

2
ρ|u|2 +

1

2
|B|2

where γ > 1 is the ratio of specific heats which is taken to be constant. The ideal
MHD equations form a system of hyperbolic conservation laws which we will write in
component form as

(2.1)
∂w

∂t
+
∂fα
∂xα

= 0

We use the Einstein summation convention on repeated indices like α which runs over
the number of spatial dimensions. In the two dimensional case, the expressions for

∗Tim Barth, private communication
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w, fα are given by

w =
[
ρ, ρu1, ρu2, ρu3, E, B1, B2, B3

]>

f1 =



ρu1
p+ ρu21 + 1

2 |B|
2 −B2

1

ρu1u2 −B1B2

ρu1u3 −B1B3

(E + p+ 1
2 |B|

2)u1 − (u ·B)B1

0
u1B2 − u2B1

u1B3 − u3B1


, f2 =



ρu2
ρu1u2 −B1B2

p+ ρu22 + 1
2 |B|

2 −B2
2

ρu2u3 −B2B3

(E + p+ 1
2 |B|

2)u2 − (u ·B)B2

u2B1 − u1B2

0
u2B3 − u3B2


Note that we include the velocity and magnetic field components in the third direction
but these are assumed to be independent of the third spatial dimension. An additional
constraint that needs to be satisfied is that the magnetic field B must be divergence-
free,

∇ ·B = 0

In fact if the above constraint is satisfied at the initial time, then the equation for B
implies that

∂

∂t
∇ ·B = 0

and the constraint is satisfied for future times also. In general we have to interpret
the solution in the distributional sense, see e.g. [14]. If B is discontinuous across
some surface, then the divergence condition implies that the normal component of B
is continuous across the surface of discontinuity.

2.1. Symmetric form and entropy variables. It is well known that weak
solutions of conservations laws are not unique. According to the second law of ther-
modynamics, the entropy condition is an important property which must be satisfied
by any physical system. By demanding that weak solutions satisfy some form of the
entropy condition, we can obtain uniqueness, atleast for scalar problems [20], while for
systems this question is still open in general. However, the entropy condition is still a
useful design principle since in most cases, it is the only non-linear stability property
we can prove for numerical schemes. One way to introduce the entropy condition is
through a convex entropy function.

Definition 1. A strictly convex function U(w) is called an entropy for the
system (2.1) if there are associated entropy fluxes Fα(w) such that†

(2.2) F ′α(w) = U ′(w)f ′α(w)

The functions (U,Fα) are said to form an entropy pair. If a system of conservation
laws admits an entropy pair, then smooth solutions of the conservation law satisfy an
additional entropy conservation law as can be seen below

0 = U ′(w)
∂w

∂t
+ U ′(w)f ′α(w)

∂w

∂xα
=
∂U

∂t
+
∂Fα
∂xα

†We will use the convention that gradients of scalar quantities are written as row vectors; thus
U ′(w) is a row vector.
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For solutions which are not smooth, the above equation is replaced with an inequality

∂U

∂t
+
∂Fα
∂xα

≤ 0

which is to be interpreted in the weak sense and is known as the entropy condition.
Definition 2. The conservation law (2.1) is said to be symmetrizable if there

exists a change of variables w → v which symmetrizes it, i.e., equation (2.1) becomes

∂w

∂v

∂v

∂t
+
∂fα
∂w

∂w

∂v

∂v

∂xα
= 0

where ∂w
∂v is a symmetric positive definite matrix and ∂fα

∂w
∂w
∂v are symmetric matrices.

There is a close connection between the existence of an entropy pair and the
symmetrization of a system of conservation laws.

Theorem 2.1. (Mock) A necessary and sufficient condition for the system (2.1)
to possess a strictly convex entropy U(w) is that there exists a change of dependent
variables w = w(v) that symmetrizes (2.1). (For proof, see [21])

If the transformation w → v symmetrizes the equations, then there exist twice
differentiable functions U(v), Fα(v) with U(v) strictly convex such that

w = U ′(v)>, fα = F ′α(v)>

Define U(w) to be the Legendre transform of U(v)

U(w) = sup
v
{v ·w − U(v)}

Let the supremum be attained at v∗ = v(w) so that

(2.3) U(w) = v(w) ·w − U(v(w))

Differentiating this expression we get

U ′(w)> = v(w) + v′(w)w − v′(w)U ′(v(w))> = v

Let us also define

(2.4) Fα(w) = v(w) · fα(w)−Fα(v(w))

Differentiating this expression

F ′α(w) = v(w) · f ′α(w) + v′(w)fα − v′(w)F ′α(v)> = v(w) · f ′α(w) = U ′(w)f ′α(w)

Thus (2.3), (2.4) give the relationship between the entropy pair (U,Fα) and the con-
jugate quantities (U ,Fα).

2.2. Entropy function for ideal MHD. We would like to ask if the MHD
equations have an entropy function and if they are symmetrizable. If we define the
thermodynamic entropy

s = ln(pρ−γ)

then the equations of ideal MHD can be used to derive an equation for ρs

∂(ρs)

∂t
+∇ · (ρsu) + (γ − 1)

ρ(u ·B)

p
∇ ·B = 0
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This equation suggests that under the constraint ∇ ·B = 0, the following quantities

(2.5) U = − ρs

γ − 1
, Fα = − ρsuα

γ − 1

satisfy an additional conservation law for smooth solutions, so that U is an entropy
function. The entropy variables corresponding to the above entropy function are given
by

v = U ′(w)> =
[
γ−s
γ−1 − β|u|

2, 2βu, −2β, 2βB
]>

, where β =
ρ

2p

However the change of variable w → v fails to symmetrize the ideal MHD equa-
tions [4], i.e.,

∂fα
∂v
6=
(
∂fα
∂v

)>
Moreover, (U,Fα) do not satisfy equation (2.2); instead we have

(2.6) F ′α(w) = U ′(w)f ′α(w) + 2β(u ·B)B′α(w)

2.3. Godunov’s symmetrization of ideal MHD equations. To achieve
symmetrization of systems with divergence constraint like ideal MHD, Godunov [22, 5]
introduced a modified form of the ideal MHD equations. Here, we largely follow the
approach in [4, 5]. In terms of the symmetrization variables v let φ(v) be a homoge-
neous function of degree one, i.e.,

(2.7) v · φ′(v)> = φ(v)

Then consider the modified MHD equations

(2.8)
∂w

∂t
+
∂fα
∂xα

+ φ′(v)>∇ ·B = 0

Since ∇ ·B = 0 the above modification is consistent. If the transformation w → v
symmetrizes equation (2.8), then there exist twice differentiable functions U(v), Fα(v)
with U(v) strictly convex such that

(2.9) w = U ′(v)>, fα = F ′α(v)> − φ′(v)>Bα

We can see that this is true by combining (2.8), (2.9) to obtain

U ′′(v)︸ ︷︷ ︸
SPD

∂v

∂t
+ (F ′′α(v)− φ′′(v)Bα)︸ ︷︷ ︸

Sym

∂v

∂xα
= 0

which is in symmetric form. Now define U and Fα as

(2.10) U(w) = v(w) ·w − U(v(w)), Fα(w) = v(w) · F ′α(v(w))−Fα(v(w))

Differentiating U(w), Fα(w), we obtain v = U ′(w)> and

(2.11) F ′α(w) = v(w) · f ′α(w) + φ(v)B′α(w) = U ′(w)f ′α(w) + φ(v)B′α(w)
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Now taking dot product of entropy variables v with (2.8)

0 = v ·
(
∂w

∂t
+
∂fα
∂xα

+ φ′(v)>∇ ·B
)

=
∂U

∂t
+

(
v · ∂fα

∂w
+ φ(v)B′α(w)

)
∂w

∂xα

=
∂U

∂t
+
∂Fα
∂w

∂w

∂xα
, using (2.11)

=
∂U

∂t
+
∂Fα
∂xα

We thus obtain the entropy equation without having to make use of the zero divergence
condition. This will be useful in constructing stable numerical scheme, where the
numerical divergence may not be zero.

We have to still find an entropy pair (U,Fα). Taking the entropy and entropy
flux as in (2.5), we can determine the function φ(v) by comparing (2.11) with (2.6)

(2.12) φ(v) = 2β(u ·B)

In terms of the components of v, this function can be written as

φ(v) = −v2v6 + v3v7 + v4v8
v5

which is homogeneous of degree one. Moreover, computing its Jacobian we obtain

φ′(v) =
[
0, B, u ·B, u

]
With the above choice of φ(v) the MHD equations (2.8) are identical to the equations
proposed by Powell [33] using different considerations. From (2.7), (2.9), (2.10) the
entropy flux is

(2.13) Fα = v · fα + φBα −Fα

while the conjugate variables are given by

U = v ·w − U = ρ+ β|B|2

and

Fα = v · fα + φBα − Fα = ρuα + βuα|B|2 = Uuα

2.4. Induction equation. In the modified MHD system (2.8), the induction
equation is given by

∂B

∂t
+∇ · (uB −Bu) + u∇ ·B = 0

Define D = ∇ ·B and taking divergence of above equation we get

∂D
∂t

+∇ · (uD) = 0

Using the continuity equation we can rewrite this equation as

∂

∂t

(
D
ρ

)
+ u · ∇

(
D
ρ

)
= 0
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The quantity Dρ is constant along particle paths. If the initial value of D is zero, then
it remains zero for later times. If the fluid entering the domain has zero divergence,
then the divergence is zero throughout the domain. This property may be useful in
computations since the errors in divergence may be advected away by the flow [33]
instead of accumulating in some region and causing instabilities.

3. Finite volume method. We now construct a finite volume scheme for equa-
tion (2.8). Consider a uniform Cartesian mesh with spacing ∆x, ∆y. The cell centers
are indexed by (i, j) while the faces are indexed by half indices. E.g., the face between
(i, j) and (i+ 1, j) is denoted by (i+ 1

2 , j), etc. Let us define the following notations
for the arithmetic average of any quantity

(·)i+ 1
2 ,j

=
1

2
[(·)i,j + (·)i+1,j ], (·)i,j+ 1

2
=

1

2
[(·)i,j + (·)i,j+1]

The semi-discrete finite volume scheme for (2.8) is given by

d

dt
wi,j +

f1,i+ 1
2 ,j
− f1,i− 1

2 ,j

∆x
+

f2,i,j+ 1
2
− f2,i,j− 1

2

∆y

+ φ′(vi,j)
>

(
B1,i+ 1

2 ,j
−B1,i− 1

2 ,j

∆x
+
B2,i,j+ 1

2
−B2,i,j− 1

2

∆y

)
= 0(3.1)

The quantities f1,i+ 1
2 ,j

, f2,i,j+ 1
2

are numerical fluxes in the x, y directions across the
vertical and horizontal faces of the cells, respectively. The divergence of the magnetic
field in the source term has been discretized using central differencing. We have to
next specify how the numerical fluxes are computed. In the first step, we construct
an entropy conservative scheme followed by an entropy stable scheme.

3.1. Entropy conservative scheme. For usual symmetrizable conservation
laws like Euler equations, there is a theory of entropy conservative schemes, see e.g.,
[43]. However this is not sufficient in the case of MHD, see the remark after the fol-
lowing theorem. For the MHD equations, the next theorem gives sufficient conditions
on the numerical flux so that the scheme given by (3.1) is entropy conservative.

Theorem 3.1. Assume that the numerical fluxes f1,i+ 1
2 ,j

, f2,i,j+ 1
2

satisfy

(3.2) (vi+1,j − vi,j) · f1,i+ 1
2 ,j

= F1,i+1,j −F1,i,j − (φi+1,j − φi,j)B1,i+ 1
2 ,j

(3.3) (vi,j+1 − vi,j) · f2,i,j+ 1
2

= F2,i,j+1 −F2,i,j − (φi,j+1 − φi,j)B2,i,j+ 1
2

Then the semi-discrete finite volume scheme (3.1) is entropy conservative, i.e., it
satisfies

(3.4)
d

dt
U(wi,j) +

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j

∆x
+
F2,i,j+ 1

2
− F2,i,j− 1

2

∆y
= 0

where the numerical entropy fluxes are given by

(3.5) F1,i+ 1
2 ,j

= vi+ 1
2 ,j
· f1,i+ 1

2 ,j
+ φi+ 1

2 ,j
B1,i+ 1

2 ,j
−F1,i+ 1

2 ,j

(3.6) F2,i,j+ 1
2

= vi,j+ 1
2
· f2,i,j+ 1

2
+ φi,j+ 1

2
B2,i,j+ 1

2
−F2,i,j+ 1

2
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Proof: First of all, we can easily check that the above numerical entropy fluxes
are consistent with the entropy flux as given in equation (2.13). Taking dot product
of vi,j with the finite volume scheme (3.1) yields equation (3.4). We can verify this
result by a reverse calculation as follows. First of all

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j
= vi+ 1

2 ,j
· f1,i+ 1

2 ,j
− vi− 1

2 ,j
· f1,i− 1

2 ,j

+φi+ 1
2 ,j
B1,i+ 1

2 ,j
− φi− 1

2 ,j
B1,i− 1

2 ,j

−(F1,i+ 1
2 ,j
−F1,i− 1

2 ,j
)

Using (3.2) we get

F1,i+ 1
2 ,j
−F1,i− 1

2 ,j
=

1

2
(F1,i+1,j −F1,i,j) +

1

2
(F1,i,j −F1,i−1,j)

=
1

2
[(vi+1,j − vi,j) · f1,i+ 1

2 ,j
+ (φi+1,j − φi,j)B1,i+ 1

2 ,j
]

+
1

2
[(vi,j − vi−1,j) · f1,i− 1

2 ,j
+ (φi,j − φi−1,j)B1,i− 1

2 ,j
]

and hence

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j
= vi,j · (f1,i+ 1

2 ,j
− f1,i− 1

2 ,j
) + φi,j(B1,i+ 1

2 ,j
−B1,i− 1

2 ,j
)

= vi,j ·
[
(f1,i+ 1

2 ,j
− f1,i− 1

2 ,j
) + φ′(vi,j)

>(B1,i+ 1
2 ,j
−B1,i− 1

2 ,j
)
]

where we made use of (2.7). Similarly it is easy to show that

F2,i,j+ 1
2
− F2,i,j− 1

2
= vi,j ·

[
(f2,i,j+ 1

2
− f2,i,j− 1

2
) + φ′(vi,j)

>(B2,i,j+ 1
2
−B2,i,j− 1

2
)
]

This completes the proof of the theorem.
Remark. The definition of entropy conservative flux given in (3.2), (3.3) seems to

be essential. If we adopt the standard definition of Tadmor [43] and require that the
numerical flux satisfy the following condition

(3.7) (vi+1,j − vi,j) · f1,i+ 1
2 ,j

= F1,i+1,j −F1,i,j

then

vi,j ·
[
(f1,i+ 1

2 ,j
− f1,i− 1

2 ,j
) + φ′(vi,j)

>B1,i+1,j −B1,i−1,j

2

]
=
(
vi+ 1

2 ,j
· f1,i+ 1

2 ,j
+ φi,jB1,i+ 1

2 ,j
−F1,i+ 1

2 ,j

)
−
(
vi− 1

2 ,j
· f1,i− 1

2 ,j
+ φi,jB1,i− 1

2 ,j
−F1,i− 1

2 ,j

)
But the above quantities inside the brackets are not fluxes due to the presence of the
term φi,j and we cannot obtain a discrete entropy equation. Moreover, we are not
able to find consistent numerical fluxes which satisfy equation (3.7). Finally, from
equation (2.9) we obtain

∂v

∂x1
· f1 =

∂F1

∂x1
− ∂φ

∂x1
B1

and (3.2) is a discrete approximation of the above equation. Thus the usual necessary
conditions as in [43] need to be modifed for the MHD system to account for the
divergence constraint.
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3.2. Construction of entropy conservative fluxes. We now want to con-
struct explicit and simple expressions for numerical fluxes satisfying equation (3.2)
and (3.3). Consider equation (3.2) which we will write without any grid indices as

(3.8) ∆v · f1 = ∆F1 −B1∆φ

and the overbar denotes the arithmetic average. Following Roe [35], let us introduce
the logarithmic average ϕ̂ of two strictly positive quantities ϕl, ϕr as

ϕ̂ =
ϕr − ϕl

lnϕr − lnϕl
=

∆ϕ

∆ lnϕ

A numerically stable procedure to compute the average when ϕl ≈ ϕr is given in [25].
We will also need the following formula for the difference of a product of two quantities

∆(ab) = b∆a+ a∆b

Following the approach in [10], we write the difference in entropy variables in terms
of the differences in ρ, u1, u2, u3, β, B1, B2, B3 as

∆v =



1
ρ̂∆ρ− 2β(u1∆u1 + u2∆u2 + u3∆u3) +

[
1

(γ−1)β̂
− |u|2

]
∆β

2β∆u1 + 2u1∆β

2β∆u2 + 2u2∆β

2β∆u3 + 2u3∆β
−2∆β

2β∆B1 + 2B1∆β

2β∆B2 + 2B2∆β

2β∆B3 + 2B3∆β


, f1 =



f
(1)
1

f
(2)
1

f
(3)
1

f
(4)
1

f
(5)
1

f
(6)
1

f (7)

f (8)


where the superscript denotes the vector component. The left hand side of (3.8) can
be written as

∆v · f1 =
f
(1)
1

ρ̂
∆ρ+ (−2u1βf

(1)
1 + 2βf

(2)
1 )∆u1 + (−2u2βf

(1)
1 + 2βf

(3)
1 )∆u2

+(−2u3βf
(1)
1 + 2βf

(4)
1 )∆u3

+

[(
1

(γ − 1)β̂
− |u|2

)
f
(1)
1 + 2u1f

(2)
1 + 2u2f

(3)
1 + 2u3f

(4)
1 − 2f

(5)
1

+2B1f
(6)
1 + 2B2f

(7)
1 + 2B3f

(8)
1

]
∆β

+2βf
(6)
1 ∆B1 + 2βf

(7)
1 ∆B2 + 2βf

(8)
1 ∆B3

Similarly we write the differences ∆F1 and ∆φ as

∆F1 = ∆(ρu1) + ∆(βu1|B|2)

= u1∆ρ+ (ρ+ β |B|2)∆u1 + u1|B|2∆β + 2βu1 B1∆B1 + 2βu1 B2∆B2 + 2βu1 B3∆B3

and

∆φ = 2∆(β(u ·B))

= 2β B1∆u1 + 2β B2∆u2 + 2β B3∆u3 + 2(u1 B1 + u2 B2 + u3 B3)∆β

+2βu1∆B1 + 2βu2∆B2 + 2βu3∆B3
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so that the right hand side of (3.8) can be written as

∆F1 −B1∆φ = u1∆ρ

+(ρ+ β |B|2 − 2β B1B1)∆u1

−2β B1B2∆u2

−2β B1B3∆u3

+[u1|B|2 − 2(u1 B1 + u2 B2 + u3 B3)B1]∆β

+2(βu1 B2 − βu2 B1)∆B2

+2(βu1 B3 − βu3 B1)∆B3

Equating the coefficients of ∆ρ, ∆u1, ∆u2, ∆u3, ∆B1, ∆B2, ∆B3 and ∆β on both
sides of equation (3.8) in this order, we obtain the entropy conservative numerical
fluxes as follows.

Theorem 3.2. The numerical fluxes given by

f
(1)
1 = ρ̂u1

f
(2)
1 =

ρ

2β
+ u1f

(1)
1 +

1

2
|B|2 −B1B1

f
(3)
1 = u2f

(1)
1 −B1B2

f
(4)
1 = u3f

(1)
1 −B1B3

f
(6)
1 = 0

f
(7)
1 =

1

β
(βu1 B2 − βu2 B1)

f
(8)
1 =

1

β
(βu1 B3 − βu3 B1)

f
(5)
1 =

1

2

[
1

(γ − 1)β̂
− |u|2

]
f
(1)
1 + u1f

(2)
1 + u2f

(3)
1 + u3f

(4)
1

+B1f
(6)
1 +B2f

(7)
1 +B3f

(8)
1 − 1

2
u1|B|2 + (u1B1 + u2B2 + u3B3)B1

satisfy equation (3.2).

Remark. We can check that the above numerical fluxes are consistent. Moreover,

the condition that f
(6)
1 = 0 which is the x component of the flux in the equation

for B1, comes out automatically in the above derivation. Similar expressions can be
derived for the flux in the y direction which we do not list here. Note that since
equation (3.2) is a scalar equation, there might be other choices for the flux that
satisfy this equation. In fact in the case of Euler equations, several such fluxes are
known, see [43, 25, 10]. In the rest of the paper, the above entropy conservative fluxes
will be denoted by f∗.

3.3. Entropy stable scheme. The finite volume scheme with the entropy con-
servative flux is not suitable for discontinuous solutions since entropy has to be gen-
erated at the shocks. Entropy generation at discontinuities amounts to replacing the
equalities in (3.2), (3.3) with ≤ inequalities. In order to achieve this, we can add
dissipative terms to the numerical flux. The form of the dissipative flux we choose
involves the jump in the entropy variables at the cell interface which helps to obtain
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an entropy inequality [43, 25, 16, 10]. We first state the general form of a numerical
flux which achieves this property.

Theorem 3.3. Let f∗
1,i+ 1

2 ,j
, f∗

2,i,j+ 1
2

be entropy conservative fluxes satisfy-

ing (3.2), (3.3) respectively. Let D1,i+ 1
2 ,j

, D2,i,j+ 1
2

be symmetric positive definite

matrices. Then the finite volume scheme (3.1) with numerical fluxes
(3.9)

f1,i+ 1
2 ,j

= f∗1,i+ 1
2 ,j
− 1

2
D1,i+ 1

2 ,j
∆vi+ 1

2 ,j
, f2,i,j+ 1

2
= f∗2,i,j+ 1

2
− 1

2
D2,i,j+ 1

2
∆vi,j+ 1

2

satisfies the cell entropy inequality

d

dt
U(wi,j) +

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j

∆x
+
F2,i,j+ 1

2
− F2,i,j− 1

2

∆y
≤ 0

with the numerical entropy fluxes

F1,i+ 1
2 ,j

= vi+ 1
2 ,j
· f∗1,i+ 1

2 ,j
+ φi+ 1

2 ,j
B1,i+ 1

2 ,j
−F1,i+ 1

2 ,j
+

1

2
v>i+ 1

2 ,j
D1,i+ 1

2 ,j
∆vi+ 1

2 ,j

F2,i,j+ 1
2

= vi,j+ 1
2
· f∗2,i,j+ 1

2
+ φi,j+ 1

2
B2,i,j+ 1

2
−F2,i,j+ 1

2
+

1

2
v>i,j+ 1

2
D2,i,j+ 1

2
∆vi,j+ 1

2

Proof: First of all, we can easily check that the above numerical entropy fluxes are
consistent with the entropy flux as given in equation (2.13). Taking dot product of
vi,j with the finite volume scheme (3.1), a simple computation shows that we obtain

d

dt
U(wi,j) +

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j

∆x
+
F2,i,j+ 1

2
− F2,i,j− 1

2

∆y

= − 1

2∆x

[
∆v>i+ 1

2 ,j
D1,i+ 1

2 ,j
∆vi+ 1

2 ,j
+ ∆v>i− 1

2 ,j
D1,i− 1

2 ,j
∆vi− 1

2 ,j

]
− 1

2∆y

[
∆v>i,j+ 1

2
D2,i,j+ 1

2
∆vi,j+ 1

2
+ ∆v>i,j− 1

2
D2,i,j− 1

2
∆vi,j− 1

2

]
≤ 0

where the numerical entropy fluxes are as defined in the theorem. The inequality is
obtained because the dissipation matrices D1, D2 are positive definite.

3.4. Dissipation flux. The simplest choice for the dissipation matrices is a
diagonal matrix D1 = λI for some λ > 0. This amounts to adding a scalar dissipation
which can lead to excessive amount of smearing of discontinuities since it does not
distinguish between the various waves present in the solution. A more sophisticated
approach is to add dissipation based on the eigenvectors like in the Roe scheme. Let
us first write the modified MHD equations (2.8) in the conservation variables and in
quasi-linear form as

∂w

∂t
+Aα

∂w

∂xα
= 0, Aα = f ′α(w) + φ′(v)>B′α(w)

or in symmetric form using entropy variables

Ã0
∂v

∂t
+ Ãα

∂v

∂xα
= 0, Ã0 = w′(v), Ãα = AαÃ0
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For any unit vector n define‡

A(n) = Aαnα, Ã(n) = Ãαnα = A(n)Ã0

Note that Ã0 is a right symmetrizer of the matrix A(n). From the Eigenvector Scaling
Theorem [4], it follows that there exist scaled eigenvectors of A(n) such that

A(n) = R̃(n)Λ(n)R̃−1(n), Ã0 = R̃(n)R̃>(n), Ã(n) = R̃(n)Λ(n)R̃>(n)

By the definition of Ã0 we have

dw = Ã0dv and hence R̃−1(n)dw = R̃>(n)dv

The numerical flux of a Roe-type scheme [34, 18] across the face (i+ 1
2 , j) would be

of the form

f1,i+ 1
2 ,j

=
1

2
(f1,i,j + f1,i+1,j)−

1

2
R̃(e1)|Λ(e1)|R̃(e1)−1∆wi+ 1

2 ,j
, e1 = (1, 0, 0)

Using the transformation property between w to v, we can write the dissipation flux
in the above formula as

1

2
R̃(e1)|Λ(e1)|R̃(e1)−1∆wi+ 1

2 ,j
≈ 1

2
R̃(e1)|Λ(e1)|R̃(e1)>∆vi+ 1

2 ,j

Hence the dissipation matrices can be taken to be

(3.10) D1,i+ 1
2 ,j

= R̃i+ 1
2 ,j
|Λi+ 1

2 ,j
|R̃>i+ 1

2 ,j
, D2,i,j+ 1

2
= R̃i,j+ 1

2
|Λi,j+ 1

2
|R̃>i,j+ 1

2

where the eigenvectors and eigenvalues are computed at some average state corre-
sponding to the interface. The eight eigenvalues Λ and the corresponding eigenvectors
were derived in [4] and are given in the Appendix.

3.5. High resolution scheme. The scheme (3.1), (3.9), (3.10) is first order
accurate in space due to the presence of terms like ∆vi+ 1

2 ,j
which are O(∆x) for

smooth functions. Higher order accurate schemes are obtained by a more accurate
computation of the jump at the cell faces. Define the set of primitive variables q =
[ρ,u, p,B]> which we will use to express some of the quantities since they have simple
dependencies. The numerical flux of the first order scheme in the x1 direction can be
written as

f1,i+ 1
2 ,j

= f∗1 (qi,j , qi+1,j)−
1

2
D1(qi,j , qi+1,j)(vi+1,j − vi,j)

The dissipation matrix D1 is evaluated at an average state of the interface (i+ 1
2 , j)

which we indicate by its dependance on the two states qi,j and qi+1,j . For the higher
order scheme, the numerical flux is given by

f1,i+ 1
2 ,j

= f∗1 (qi,j , qi+1,j)−
1

2
D1(qi,j , qi+1,j)(v

R
i+ 1

2 ,j
− vLi+ 1

2 ,j
)

where vR
i+ 1

2 ,j
, vL

i+ 1
2 ,j

are obtained by a reconstruction process. For this purpose let

us define the minmod function

M(a, b) =

{
smin(|a|, |b|) if s = sign(a) = sign(b)

0 otherwise

‡These quantities depend on the state w but we do not show the explicit dependance to keep
the notation simple.
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i.e., this function selects the smallest value in absolute terms. For each interface
(i+ 1

2 , j), let us define a new set of variables

zk,j = R̃>i+ 1
2 ,j

vk,j , k = i− 1, i, i+ 1, i+ 2 R̃i+ 1
2 ,j

= R̃(e1, qi,j , qi+1,j)

We reconstruct the variable z using the minmod function and compute v by inverting
the above relationship, i.e.,

zLi+ 1
2 ,j

= zi,j +
1

2
M (zi,j − zi−1,j , zi+1,j − zi,j)

zRi+ 1
2 ,j

= zi+1,j −
1

2
M (zi+1,j − zi,j , zi+2,j − zi+1,j)

and

vLi+ 1
2 ,j

= (R̃>i+ 1
2 ,j

)−1zLi+ 1
2 ,j
, vRi+ 1

2 ,j
= (R̃>i+ 1

2 ,j
)−1zRi+ 1

2 ,j

Note that this reconstruction must be performed at each interface since the variable
z is defined at a particular interface by the above formula. We point out that the
entropy conservative flux f∗1 is computed using the solution at the cell centers and
the reconstructed values are used only in the jump terms in the dissipative flux. In
practice it is not necessary to invert the eigenvector matrix and we compute the higher
order numerical flux as

f1,i+ 1
2 ,j

= f∗1 (qi,j , qi+1,j)−
1

2
R̃i+ 1

2 ,j
|Λi+ 1

2 ,j
|(zRi+ 1

2 ,j
− zLi+ 1

2 ,j
)

A similar procedure is performed to compute the flux in the y direction. With this re-
construction procedure, the entropy stability of the semi-discrete finite volume scheme
is proved in the theorem below. For convenience let us define

J·Ki+ 1
2 ,j

= (·)Ri+ 1
2 ,j
− (·)Li+ 1

2 ,j
, J·Ki,j+ 1

2
= (·)Ri,j+ 1

2
− (·)Li,j+ 1

2

Theorem 3.4. Let f∗
1,i+ 1

2 ,j
, f∗

2,i,j+ 1
2

be entropy conservative fluxes satisfy-

ing (3.2), (3.3) respectively, and D1,i+ 1
2 ,j

, D2,i,j+ 1
2

be symmetric positive definite

matrices given by (3.10). Then the finite volume scheme (3.1) with numerical fluxes
(3.11)

f1,i+ 1
2 ,j

= f∗1,i+ 1
2 ,j
− 1

2
D1,i+ 1

2 ,j
JvKi+ 1

2 ,j
, f2,i,j+ 1

2
= f∗2,i,j+ 1

2
− 1

2
D2,i,j+ 1

2
JvKi,j+ 1

2

satisfies the cell entropy inequality

d

dt
U(wi,j) +

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j

∆x
+
F2,i,j+ 1

2
− F2,i,j− 1

2

∆y
≤ 0

with the numerical entropy fluxes

F1,i+ 1
2 ,j

= vi+ 1
2 ,j
· f∗1,i+ 1

2 ,j
+ φi+ 1

2 ,j
B1,i+ 1

2 ,j
−F1,i+ 1

2 ,j
+

1

2
v>i+ 1

2 ,j
D1,i+ 1

2 ,j
JvKi+ 1

2 ,j

F2,i,j+ 1
2

= vi,j+ 1
2
· f∗2,i,j+ 1

2
+ φi,j+ 1

2
B2,i,j+ 1

2
−F2,i,j+ 1

2
+

1

2
v>i,j+ 1

2
D2,i,j+ 1

2
JvKi,j+ 1

2
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State ρ u1 u2 u3 p B1 B2 B3

Left 1 0 0 0 1 0.75 1 0
Right 0.125 0 0 0 0.1 0.75 −1 0

Table 1
Brio-Wu shock tube problem: γ = 5/3, T = 0.2

Proof: If wi,j = wi+1,j then zL
i+ 1

2 ,j
= zR

i+ 1
2 ,j

and hence vL
i+ 1

2 ,j
= vR

i+ 1
2 ,j

. The numeri-

cal entropy flux F1,i+ 1
2 ,j

is consistent with the entropy flux as given in equation (2.13).
Similarly we see that F2,i,j+ 1

2
is also consistent. Taking dot product of vi,j with the

finite volume scheme (3.1), a simple computation shows that we obtain

d

dt
U(wi,j) +

F1,i+ 1
2 ,j
− F1,i− 1

2 ,j

∆x
+
F2,i,j+ 1

2
− F2,i,j− 1

2

∆y

= − 1

2∆x

[
∆v>i+ 1

2 ,j
D1,i+ 1

2 ,j
JvKi+ 1

2 ,j
+ ∆v>i− 1

2 ,j
D1,i− 1

2 ,j
JvKi− 1

2 ,j

]
− 1

2∆y

[
∆v>i,j+ 1

2
D2,i,j+ 1

2
JvKi,j+ 1

2
+ ∆v>i,j− 1

2
D2,i,j− 1

2
JvKi,j− 1

2

]
= − 1

2∆x

[
∆z>i+ 1

2 ,j
|Λi+ 1

2 ,j
|JzKi+ 1

2 ,j
+ ∆z>i− 1

2 ,j
|Λi− 1

2 ,j
|JzKi− 1

2 ,j

]
− 1

2∆y

[
∆z>i,j+ 1

2
|Λi,j+ 1

2
|JzKi,j+ 1

2
+ ∆z>i,j− 1

2
|Λi,j− 1

2
|JzKi,j− 1

2

]
≤ 0

where the numerical entropy fluxes are as defined in the theorem. The last inequality
is obtained because the reconstruction based on the minmod function satisfies the
sign property, i.e.,

sign(JzKi+ 1
2 ,j

) = sign(∆zi+ 1
2 ,j

), etc.

for each component of z. This proves the desired result.

Remark. The crucial property in the above proof was the sign property of the
reconstruction scheme. Any other reconstruction scheme for the z variables that
satisfies this property can also be used, e.g., the ENO-2 scheme. In fact, the extension
to arbitrarily higher orders of accuracy is possible using an ENO approach for which
the sign property has been shown in [16].

4. Numerical results. In this section, we present numerical results on some
standard two dimensional MHD test cases to illustrate the robustness of the pro-
posed scheme in computing discontinuous flows. The semi-discrete equations (3.1)
are integrated in time using a 3-stage, 3’rd order accurate strong stability preserv-
ing Runge-Kutta scheme [41]. The time step is chosen based on the following CFL
condition

∆t = cfl ·min
i,j

(
|(u1)i,j |+ (cf,1)i,j

∆x
+
|(u2)i,j |+ (cf,2)i,j

∆y

)−1
, 0 < cfl ≤ 1

where cf,1 and cf,2 are the fast speeds in the x1 and x2 directions, see Appendix. We
use a cfl number of 0.9 in all the test cases.
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State ρ u1 u2 u3 p B1 B2 B3

Left 1.08 1.2 0 0 0.95 2/
√

4π 3.6/
√

4π 2/
√

4π

Right 1 0 0 0 1 2/
√

4π 4/
√

4π 2/
√

4π
Table 2

Ryu-Jones problem: γ = 5/3, T = 0.2

4.1. Shock tube problems. We first present some one dimensional results for
shock tube problems. Since B1 = constant, the Powell terms are not present. The
first case is the Brio-Wu test case [9] and the second is the Ryu-Jones test case [39];
the initial conditions and some other parameters are shown in table (1) and (2),
respectively. We compare our numerical solutions with the exact solutions from the
Riemann solver of Torrilhon§, see also [46, 45]. The results obtained using 800 cells are
shown in figure (1) and (2). The numerical scheme is able to compute the correct jump
solutions, though there are some localized oscillations. We can obtain non-oscillatory
solutions by increasing the dissipation, e.g., by using the maximum eigenvalue in the
definition of the dissipation matrix (3.10), instead of eight eigenvalues. However we
prefer not to increase the dissipation since the oscillations are not too large and are
highly localized, and do not affect the solution away from the discontinuities.

4.2. Orszag-Tang vortex. This test case was originally proposed in [32] and is
widely used to test MHD schemes. The set of parameters we use for the test case are
similar to [47]. The computational domain is taken to be [0, 1] × [0, 1] with periodic
boundary conditions on all sides, the constant γ = 5

3 and initial condition is given by

ρ =
25

36π
, u = (− sin(2πy), sin(2πx), 0), p =

5

12π

B =
1√
4π

(− sin(2πy), sin(4πx), 0)

The smooth initial condition evolves to a more complex flow with many discontinuities.
The solution at time t = 0.5 is shown in figure (3) on grids of sizes 128×128, 256×256,
512×512 and 1024×1024. We find that the computations are stable on all the meshes,
including on the very fine mesh, which shows the robustness of the scheme. The large
scale structures are resolved on all meshes, but we see better resolution of the many
small scale features with mesh refinement. The variation of the pressure along the line
y = 0.3125 is shown in figure (4) for different meshes and is also compared with results
from the Athena code¶ using a mesh of 1024×1024 cells. The present results compare
well with Athena which uses a multi-dimensional advection scheme and constrained
transport [19] that is expected to be more accurate. To test the importance of the
source terms, we performed a computation by switching off the source terms but
retaining the rest of the scheme. The computations however break down after some
time due to loss of positivity of density/pressure, indicating the important of the
source terms and the resulting entropy stability. The entropy stability of the scheme
is established only at the semi-discrete level. With explicit time discretization by a
Runge-Kutta scheme, we cannot prove the entropy stability. We compute the total
entropy

∑
i,j U(wn

i,j)∆x∆y which in principle should decrease with time if the scheme

§Available at http://web.mathcces.rwth-aachen.de/mhdsolver/
¶We used Athena version 4.2 which is publicly available at http://trac.princeton.edu/Athena/
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Fig. 1. Brio-Wu shock tube problem using 800 cells

is entropy stable. This quantity is plotted in figure (5a) and we observe that the total
entropy does not increase with time. Since the solution is smooth in the initial times,
the entropy is constant and then it starts to decrease when discontinuities start to
form.

4.3. Rotor test. This test case was first proposed in [3] but we use the version
given in [47], where it is refered to as the first rotor problem. The computational
domain is [0, 1] × [0, 1] with periodic boundary conditions on all sides, the constant
γ = 5

3 and the initial condition is given as follows. For r < r0,

ρ = 10, (u1, u2) =
u0
r0

(−(y − 1/2), (x− 1/2))
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Fig. 2. Ryu-Jones problem using 800 cells

and for r0 < r < r1

ρ = 1 + 9f, (u1, u2) =
fu0
r

(−(y − 1/2), (x− 1/2)), f =
r1 − r
r1 − r0

and for r > r1

ρ = 1, (u1, u2) = (0, 0)

with r0 = 0.1, r1 = 0.115 and u0 = 2. The rest of the quantities are constant and
given by

u3 = 0, p = 1, B =
5

4π
(1, 0, 0)

The computations are performed on grids of sizes 128 × 128, 256 × 256, 512 × 512
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(a) 128× 128 (b) 256× 256

(c) 512× 512 (d) 1024× 1024

Fig. 3. Density at t = 0.5 for Orszag-Tang test case on different meshes. The density range is
0.09 to 0.48

and 1024× 1024. The Mach number contours are shown in figure (6). The circularly
rotating velocity field in the central portion is captured well in all the grids without
any distortion. Toth [47] reports that some dimensionally split schemes might lead
to loss of positivity which was not a problem with our unsplit scheme. However if
we do not add the source terms, then the computations were unstable due to loss of
positivity. The total entropy is shown in figure (5b) and we again observe a monotonic
decay which indicates that the fully discrete scheme is also entropy stable.

4.4. Smooth Alfvén waves. This test case is taken from [47] and consists of
a circularly polarized Alfvén wave which propagates at an angle of α = 30o. The
domain is taken to be the rectangle defined by 0 ≤ x ≤ 1/ cosα and 0 ≤ y ≤ 1/ sinα
with periodic boundary conditions on all sides. The constant γ = 5

3 and the initial
condition is given as follows.

ρ = 1, u = v⊥(− sinα, cosα, 0), p = 0.1

B1 = B|| cosα−B⊥ sinα, B2 = B|| sinα+B⊥ cosα, B3 = u3
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Fig. 5. Evolution of total entropy with time: (a) Orszag-Tang test (b) Rotor test

B‖ = 1, B⊥ = v⊥ = 0.1 sin(2πx‖), x‖ = x cosα+ y sinα

Due to periodicity the solution returns to its initial state after a time of t = 1 units
which is the period of the solution. Figure (7) shows B⊥ = B2 cosα − B1 sinα at
time t = 5 on meshes of sizes 32 × 32, 64 × 64 and 128 × 128. In (7a) we show the
results using the entropy stable scheme and we observe that the solutions converge
with grid refinement. However there is loss of accuracy at the smooth extrema which
is a general problem with limiters. We show the same results in (7b) where a MUSCL-
type reconstruction is used without any limiting and we observe very good accuracy
including at the extrema. The convergence of the L2 norm of the error in B1 with
grid refinement is shown in tables (3), (4), (5); both the unlimited MUSCL scheme
and the entropy conservative scheme show second order convergence while the limited
entropy stable scheme shows a rate between one and two.

Figure (8) shows the evolution of total entropy which should ideally remain con-
stant for this problem. For the entropy stable scheme, the entropy is not constant due
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(a) 128× 128 (b) 256× 256

(c) 512× 512 (d) 1024× 1024

Fig. 6. Mach contours for rotor test case at time t = 0.15 on different meshes. 30 contours
between 0 and 4.2 are shown.

Grid B1 Error B1 Rate div(B)
32× 32 0.128100E-01 - 0.252249E-02
64× 64 0.460111E-02 1.44 0.208190E-02

128× 128 0.172495E-02 1.41 0.540777E-03
256× 256 0.551577E-03 1.64 0.416279E-03

Table 3
Grid convergence study for circularly polarized Alfvén wave at t = 5 using entropy stable scheme

to the numerical dissipation, but we see convergence with grid refinement, while for
the entropy conservative scheme, it is nearly constant with time. Figure (9) shows the
evolution of maximum divergence in the computational domain with time for the two
schemes. The divergence is computed at the vertices using a central approximation.
For the entropy stable scheme, we see a systemic reduction in divergence with grid
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Fig. 7. Plot of B⊥ along y = 0 for the circularly polarized Alfvén wave at t = 5. (a) Entropy
stable scheme, (b) MUSCL-type reconstruction

Grid B1 Error B1 Rate div(B)
32× 32 0.707174E-02 - 0.242213E-04
64× 64 0.178342E-02 1.98 0.181577E-05

128× 128 0.446114E-03 1.99 0.192165E-06
256× 256 0.111522E-03 2.00 0.220774E-07

Table 4
Grid convergence study for circularly polarized Alfvén wave at t = 5 using MUSCL scheme

without limiter

Grid B1 Error B1 Rate div(B)
32× 32 0.709776E-02 - 0.121098E-12
64× 64 0.178256E-02 1.99 0.357769E-12

128× 128 0.445970E-03 1.99 0.138414E-11
256× 256 0.111509E-03 1.99 0.508130E-11

Table 5
Grid convergence study for circularly polarized Alfvén wave at t = 5 using entropy conservative

scheme
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Fig. 8. Evolution of total entropy with time for circularly polarized Alfvén wave: (a) entropy
stable scheme (b) entropy conservative scheme
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Fig. 9. Evolution of total entropy with time for circularly polarized Alfvén wave: (a) entropy
stable scheme (b) entropy conservative scheme

refinement and this is also true of the MUSCL scheme as seen in tables (3), (4), (5).
The entropy conservative scheme has very low levels of divergence but the maximum
value is seen to increase with grid refinement. This suggests that from the point of
view of divergence control, some numerical dissipation would be necessary as seen by
the convergence of the divergence for both the entropy stable scheme and the MUSCL
scheme with grid refinement.

4.5. Rotated shock tube problem. This test case is taken from [40] and
consists of a shock tube problem which is oblique to the Cartesian mesh. The shock
propagates at an angle of α = 45o and the initial left and right data in terms of
the primitive variables (ρ,u, p,B) are given by (1, 10, 0, 0, 20, 5/

√
4π, 5/

√
4π, 0) and

(1,−10, 0, 0, 1, 5/
√

4π, 5/
√

4π, 0) respectively. The initial discontinuity is along the
line x + y = 1/2 and we set the initial conditions by performing an averaging. The
mesh is Cartesian with ∆x = ∆y; we use 10 cells in the y direction and 256 or 512
cells in the x direction. Since the shock is oblique we used shifted periodic boundary
conditions on the top and bottom of the domain as explained in [47]. The solution
is computed until the time t = 0.08 cos(α) and slices along x axis are shown in
figure (10). These may be compared with the solutions from [40] except that they
plot the slice along the line x = y. The parallel component of magnetic field B‖
should be constant for this problem but this is not maintained by the scheme due to
its lack of conservation property, also see similar test case in [47] and the results from
a non-conservative 8-wave scheme. The other quantities shown have correct behaviour
(compare with [40]) except for oscillations near the shocks, which could again be a
consequence of non-conservative nature of the scheme. If we switch off the source
terms in the scheme and compute the solution, then we obtain a better solution for
B‖, while other quantities do not change significantly.

5. Summary and conclusions. We have constructed an entropy stable finite
volume scheme for the equations of ideal compressible MHD. This is achieved by
starting from Godunov’s symmetrization of MHD equations for which an entropy
conservative scheme is first constructed. A characterization is given on the numerical
flux which leads to entropy conservation property. We have also derived a numerical
flux with simple expressions which satisfies this property. This scheme is made en-
tropy stable by adding suitable dissipation terms based on entropy variables. Then
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a high resolution scheme based on a reconstruction process applied to scaled entropy
variables is constructed which is also entropy stable. The new scheme is applied to
some standard MHD test cases which show its robustness in computing discontinuous
solutions even on very fine meshes. The additional source terms introduced by Go-
dunov (and later by Powell) which are necessary for symmetrization of the equations
and for obtaining entropy stability, are found to be also crucial to maintain numerical
stability since the computations fail in some test cases due to loss of positivity of
density/pressure if we do not add these terms. While the fully discrete scheme with
explicit Runge-Kutta time stepping is not provably entropy stable, the numerical tests
show that the entropy condition is satisfied under time discretization and a CFL con-
dition. However, the lack of conservation property can lead to wrong solutions in
some rare cases as seen in the rotated shock tube problem, which is a well known
issue with all schemes using Powell terms. Thus in the finite volume setting, there is
a conflict between entropy stability which requires the source terms, and conservation
property which is lost due to the source terms. As discussed in the Introduction, the
proposed entropy stable fluxes can be used in a discontinuous Galerkin scheme to
obtain a conservative and entropy stable scheme which is part of our ongoing work.
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Appendix A. Entropy scaled eigenvectors for ideal MHD.
In this section we list the eigenvectors and eigenvalues of the symmetrized equa-

tions (2.8) as derived by Barth [4]. Define the vector b = B√
ρ and the fast and slow

speeds by

c2f,s =
1

2
(a2 + |b|2)± 1

2

√
(a2 + |b|2)2 − 4a2(b · n)2

We also define the following quantities which are useful to simplify the expressions

α2
f =

a2 − c2s
c2f − c2s

, α2
s =

c2f − a2

c2f − c2s

Let n⊥ a unit vector orthogonal to n and lying in the plane spanned by n and b, i.e.,

n⊥ · n = 0, |n⊥| = 1, n⊥ ∈ span{n, b}

The eigenvectors with respect to the primitive variables (ρ,u, p,B) are given below
together with the corresponding eigenvalues. To obtain the eigenvectors corresponding
to the conserved variables, we have to multiply the following vectors with the Jacobian
of the transformation.
Entropy and divergence wave: λ1 = λ2 = u · n

r̃1 =

√
γ − 1

γ


√
ρ

0
0
0

 , r̃2 =
1
√
γ


0
0
0
an


Alfvén waves: λ±a = u · n± b · n

r̃±a =
1√
2γ


0

∓ a√
ρ (n⊥ × n)

0
a(n⊥ × n)


Fast magneto-acoustic waves: λ±f = u · n± cf

r̃±f =
1√
2γ


αf
√
ρ

± 1√
ρcf

[αfa
2n + αsa{(b · n⊥)n− (b · n)n⊥}]

αf
√
ρa2

αsan
⊥


Slow magneto-acoustic waves: λ±s = u · n± cs

r̃±s =
1√
2γ


αs
√
ρ

± sign(b·n)√
ρcf

[αsa(b · n)n + αfc
2
fn
⊥]

αs
√
ρa2

−αfan⊥
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