On Stability Estimates for Backward Heat Conduction Problem

M. Thamban Nair

Department of Mathematics
IIT Madras

E-Mail: mtnair@iitm.ac.in
URL: http://mat.iitm.ac.in/home/mtnair/public_html

ICM Satellite Conference on "PDE and Related Topics"
TIFR-CAM, Bangalore
August 13-17, 2010.
Plan of the talk

- BHCP - an introduction.
- Ill-posedness of BHCP - illustration.
- Form of the solution: $\Omega = \mathbb{R}^d$ and bounded $\Omega \subset \mathbb{R}^d$.
- BHCP as an operator equation.
- Stability estimates.
- Regularization
While dealing with a heat conducting body $\Omega \subseteq \mathbb{R}^d$, one may have to investigate the temperature profile

$$u(x, t), \quad x \in \Omega, \quad t \geq 0,$$

from the known data at a particular time, say $t = \tau$.

From this knowledge, one would like to know the temperature for the time $t < \tau$ as well as for $t > \tau$.

It is well known that the latter is a well-posed problem.

However, the former, the so called \textit{backward heat conduction problem} (BHCP) is an ill-posed problem.
BHCP: Introduction

While dealing with a heat conducting body \(\Omega \subseteq \mathbb{R}^d \), one may have to investigate the temperature profile

\[
 u(x, t), \quad x \in \Omega, \quad t \geq 0,
\]

from the known data at a particular time, say \(t = \tau \).

From this knowledge, one would like to know the temperature for the time \(t < \tau \) as well as for \(t > \tau \).

It is well known that the latter is a well-posed problem.

However, the former, the so called \textit{backward heat conduction problem} (BHCP) is an ill-posed problem.
In this talk, we shall discuss the case of the ill-posedness of the backward heat conduction problem (BHCP).

Recall that the heat equation associated with Ω is given by

$$\frac{\partial u}{\partial t} = c^2 \Delta u, \quad x \in \Omega, \quad t > 0,$$

(1)

where $u(x, t)$ represents the temperature at the point $x \in \Omega$ at time t.

We have the following two situations:

Direct Problem: From the knowledge of the temperature at time $t = t_0$, that is, $u(x, t_0)$, determine the temperature at a later time $t = \tau$, that is, $u(x, \tau)$ for $\tau > t_0$.

Inverse Problem: From the knowledge of the temperature at a particular time $\tau > 0$, that is, $u(x, \tau)$, determine the temperature at an earlier time $t = t_0$, that is, $u(x, t_0)$ for $t_0 < \tau$.
In this talk, we shall discuss the case of the ill-posedness of the backward heat conduction problem (BHCP).

Recall that the heat equation associated with Ω is given by

$$\frac{\partial u}{\partial t} = c^2 \Delta u, \quad x \in \Omega, \quad t > 0,$$

where $u(x, t)$ represents the temperature at the point $x \in \Omega$ at time t.

We have the following two situations:

Direct Problem: From the knowledge of the temperature at time $t = t_0$, that is, $u(x, t_0)$, determine the temperature at a later time $t = \tau$, that is, $u(x, \tau)$ for $\tau > t_0$.

Inverse Problem: From the knowledge of the temperature at a particular time $\tau > 0$, that is, $u(x, \tau)$, determine the temperature at an earlier time $t = t_0$, that is, $u(x, t_0)$ for $t_0 < \tau$.
In this talk, we shall discuss the case of the ill-posedness of the backward heat conduction problem (BHCP).

Recall that the heat equation associated with Ω is given by

$$\frac{\partial u}{\partial t} = c^2 \Delta u, \quad x \in \Omega, \quad t > 0, \quad (1)$$

where $u(x, t)$ represents the temperature at the point $x \in \Omega$ at time t.

We have the following two situations:

Direct Problem: From the knowledge of the temperature at time $t = t_0$, that is, $u(x, t_0)$, determine the temperature at a later time $t = \tau$, that is, $u(x, \tau)$ for $\tau > t_0$.

Inverse Problem: From the knowledge of the temperature at a particular time $\tau > 0$, that is, $u(x, \tau)$, determine the temperature at an earlier time $t = t_0$, that is, $u(x, t_0)$ for $t_0 < \tau$.
In this talk, we shall discuss the case of the ill-posedness of the backward heat conduction problem (BHCP).

Recall that the heat equation associated with Ω is given by

$$\frac{\partial u}{\partial t} = c^2 \triangle u, \quad x \in \Omega, \quad t > 0, \quad (1)$$

where $u(x, t)$ represents the temperature at the point $x \in \Omega$ at time t.

We have the following two situations:

Direct Problem: From the knowledge of the temperature at time $t = t_0$, that is, $u(x, t_0)$, determine the temperature at a later time $t = \tau$, that is, $u(x, \tau)$ for $\tau > t_0$.

Inverse Problem: From the knowledge of the temperature at a particular time $\tau > 0$, that is, $u(x, \tau)$, determine the temperature at an earlier time $t = t_0$, that is, $u(x, t_0)$ for $t_0 < \tau$.
In this talk, we shall discuss the case of the ill-posedness of the backward heat conduction problem (BHCP).

Recall that the heat equation associated with Ω is given by

$$\frac{\partial u}{\partial t} = c^2 \Delta u, \quad x \in \Omega, \quad t > 0,$$

where $u(x, t)$ represents the temperature at the point $x \in \Omega$ at time t.

We have the following two situations:

Direct Problem: From the knowledge of the temperature at time $t = t_0$, that is, $u(x, t_0)$, determine the temperature at a later time $t = \tau$, that is, $u(x, \tau)$ for $\tau > t_0$.

Inverse Problem: From the knowledge of the temperature at a particular time $\tau > 0$, that is, $u(x, \tau)$, determine the temperature at an earlier time $t = t_0$, that is, $u(x, t_0)$ for $t_0 < \tau$.
We shall see that the direct problem is well-posed in the setting of $L^2(\Omega)$:

Given $u(\cdot, t_0)$ in $L^2(\Omega)$ for some $t_0 \geq 0$ and $t > t_0$, there exists a unique solution $u(\cdot, t)$ which depends continuously on the data $u(\cdot, t_0)$,

whereas the inverse problem, the BHCP, is ill-posed:

A solution need not exist unless the data $u(x, \tau)$ is too smooth, and even if a unique solution exists, it does not depend continuously on the data.

In fact, the BHCP belongs to a class of problems called severely ill-posed problems.
• In order to obtain stable approximate solutions for the BHCP, some *regularization methods* have to be used.

• For obtaining error estimates, it is necessary to assume some *a priori source conditions* on the unknown entities.

• The derived error estimates are usually compared with certain known *stability estimates* based on the source conditions.

• Standard result in this regard\(^1\) is for determining stability estimates for \(u(\cdot, t_0)\) for \(t_0 > 0\).

• Such results are not valid for \(t_0 = 0\).

• To deal with the case of \(t_0 = 0\), advanced analytic tools, developed recently\(^2\), have to be employed.

\(^1\)See, e.g., Kirsch (1996)

\(^2\)Tautenhahn (1998), Nair, Schock and Tautenhahn (2003), Nair, Pereverzev and Tautenhahn (2005)
Ill-Posedness of the Problem: Illustration

Let us first look at the form of the solution.

We consider the cases of $\Omega = \mathbb{R}^d$ and $\Omega \subset \mathbb{R}^d$ a bounded domain separately.

Case (i): $\Omega = \mathbb{R}^d$:

In this case, applying Fourier transform to the equation

$$\frac{\partial u}{\partial t} = c^2 \triangle u,$$

with $f_0 := u(\cdot, 0)$, we get

$$\frac{\partial \hat{u}}{\partial t}(\xi, t) + 4\pi^2 c^2 |\xi|^2 \hat{u}(\xi, t) = 0,$$

with $\hat{u}(\xi, 0) = \hat{f}_0(\xi)$.
The solution of the above ODE is given by

\[\hat{u}(\xi, t) = \hat{f}_0(\xi) e^{-4\pi^2 c^2 |\xi|^2 t}. \]

Then, for \(0 \leq t \leq \tau \), we have

\[\hat{u}(\xi, \tau) = \hat{u}(\xi, t) e^{-4\pi^2 c^2 |\xi|^2 (\tau - t)}. \]

Thus, \(0 \leq t_0 \leq \tau \),

\[\hat{u}(\xi, t_0) = \hat{u}(\xi, \tau) e^{4\pi^2 c^2 |\xi|^2 (\tau - t_0)}. \]

From this it follows that

- small error in the data \(u(\cdot, \tau) \) leads to large deviation in the solution \(u(\cdot, t_0) \).
An Illustration

For instance, let $\xi_0 \in \mathbb{R}^d$ and $g \in L^2(\mathbb{R}^d)$ be such that

$$
\hat{g}(\xi) = \begin{cases}
\hat{u}(\xi, \tau), & |\xi - \xi_0| > 1 \\
\hat{u}(\xi, \tau) + \delta \sqrt{\eta_d}, & |\xi - \xi_0| \leq 1.
\end{cases}
$$

where η_d is the volume\(^3\) of the sphere in \mathbb{R}^d. Then we have

$$
\|g - u(\cdot, \tau)\|_2^2 = \|\hat{g} - \hat{u}(\cdot, \tau)\|_2^2 = \int_{|\xi - \xi_0| \leq 1} \eta_d \delta^2 d\xi = \delta^2.
$$

If f is the solution corresponding to the noisy data g, then we have

$$
\hat{f}(\xi) = \hat{g}(\xi) e^{4\pi^2 \sigma^2 |\xi|^2 (\tau - t_0)}.
$$

\(^3\)Jason D.M. Rennie, Nov. 22 (2005): For $d \geq 2$, $\eta_d = \frac{2^{(d+1)/2} \pi^{(d-1)/2}}{d(d-2)!}$ for d odd, and $\eta_d = \frac{2\pi^{d/2}}{d(d/2-1)!}$ for d even.
Note that
\[\| f - u(\cdot, t_0) \|_2^2 = \| \hat{f} - \hat{u}(\cdot, t_0) \|_2^2 = \eta_d \delta^2 \int_{|\xi - \xi_0| \leq 1} e^{8\pi^2 c^2 |\xi|^2 (\tau - t_0)} d\xi. \]

Since \(|\xi| \geq |\xi_0| - |\xi - \xi_0|\), it follows that
\[\| f - u(\cdot, t_0) \|_2^2 \geq \eta_d \delta^2 \int_{|\xi - \xi_0| \leq 1} e^{8\pi^2 c^2 (|\xi_0| - 1)^2 (\tau - t_0)} d\xi \]
\[= \delta^2 e^{8\pi^2 c^2 (|\xi_0| - 1)^2 (\tau - t_0)}. \]

Thus,
\[\| g - u(\cdot, \tau) \|_2 \leq \delta \quad \text{but} \quad \| f - u(\cdot, t_0) \|_2 \geq \delta e^{4\pi^2 c^2 (|\xi_0| - 1)^2 (\tau - t_0)}. \]

- The error gets amplified by a factor of \(e^{4\pi^2 c^2 (|\xi_0| - 1)^2 (\tau - t_0)}. \)
Form of the solution

Case (i): $\Omega = \mathbb{R}^d$.

Note that the right hand side of

$$\hat{u}(\xi, \tau) = \hat{u}(\xi, t)e^{-4\pi^2 c^2 |\xi|^2 (\tau - t)}.$$

is a product of convolution of the functions $u(x, t)$ and

$$v(x, t) := \frac{1}{[4\pi c^2 (\tau - t)]^{d/2}} e^{-|x|^2/4\pi c^2 (\tau - t)},$$

the so called heat kernel. Therefore,

$$u(x, \tau) = \frac{1}{[4\pi c^2 (\tau - t)]^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/4\pi c^2 (\tau - t)} u(y, t) \, dy.$$

To obtain the above, we used the following result:

$$f(x) = e^{-a\pi |x|^2} \iff \hat{f}(\xi) = \frac{1}{a^{d/2}} e^{-\pi |\xi|^2/a}.$$
Thus, for $0 < t_0 < \tau$, we have

$$f_\tau := u(x, \tau) = \frac{1}{[4\pi c^2(\tau - t_0)]^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/4\pi c^2(\tau-t_0)} f_{t_0}(y) \, dy.$$

The above equation also shows that small error in the data $u(\cdot, \tau)$ leads to large deviation in the solution $u(\cdot, t_0)$.
Case (ii): $\Omega \subset \mathbb{R}^d$ is a bounded domain with smooth boundary $\partial\Omega$ and the solution $u(x, t)$ is required to satisfy the boundary condition

$$u(x, t) = 0, \quad x \in \partial\Omega, \ t > 0. \quad (2)$$

In this case, by method of separation of variables, for every $f_0 := u(\cdot, 0) \in L^2(\Omega)$, the solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} e^{-\lambda_n^2 t} \langle f_0, \varphi_n \rangle \varphi_n(x), \quad x \in \Omega, \ t > 0. \quad (3)$$

Here, (λ_n) is a sequence of positive real numbers such that $\lambda_n \to \infty$ as $n \to \infty$ and (φ_n) in $L^2(\Omega)$ is a complete orthonormal sequence in $L^2(\Omega)$. In fact,

$$\Delta \varphi_n + \lambda_n^2 \varphi_n = 0 \quad \forall \ n \in \mathbb{N}.$$
Remark: It can be seen that if \(\Omega = [0, \ell] \) for some \(\ell > 0 \), then

\[
\lambda_n := \frac{cn\pi}{\ell} \quad \text{and} \quad \varphi_n(x) := \sqrt{\frac{2}{\ell}} \sin(n\pi x/\ell), \quad x \in [0, \ell], \quad n \in \mathbb{N}.
\]

Now, let \(0 \leq t_0 < \tau \) and let us denote

\[
f_t := u(\cdot, t), \quad t \geq 0.
\]

Then, from (3), it follows that

\[
f_\tau := u(\cdot, \tau) = \sum_{n=1}^{\infty} e^{-\lambda_n^2(\tau-t_0)} \langle f_{t_0}, \varphi_n \rangle \varphi_n \tag{4}
\]

so that

\[
f_{t_0} := u(\cdot, t_0) = \sum_{n=1}^{\infty} e^{\lambda_n^2(\tau-t_0)} \langle f_\tau, \varphi_n \rangle \varphi_n. \tag{5}
\]
From expressions (4) and (5), we can infer the following.

- The problem of finding $f_\tau := u(\cdot, \tau)$ from the knowledge of $f_{t_0} := u(\cdot, t_0)$ for $t_0 < \tau$ is a well posed problem.

- The BHCP of determining $f_{t_0} := u(\cdot, t_0)$ from the knowledge of $f_\tau := u(\cdot, \tau)$ for $\tau > t_0$ is an ill-posed problem.

More precisely, we have the following:
(i) The problem has no solution unless $f_\tau := u(\cdot, \tau)$ satisfies the Piccard condition

$$\sum_{n=1}^{\infty} e^{2\lambda_n^2(\tau-t_0)}|\langle f_\tau, \varphi_n \rangle|^2 < \infty.$$ \hspace{1cm} \text{(6)}

(ii) Also, (5) shows that closeness of \tilde{f}_τ to f_τ does not imply closeness of \tilde{f}_{t_0} to f_{t_0}, as $\lambda_n \rightarrow \infty$ as $n \rightarrow \infty$.
For example, if
\[f_{\tau,k} := f_\tau + e^{-\lambda_k(\tau-t_0)} \varphi_k \]
then the solution at \(t_0 \) is given by
\[f_{t_0,k} = \sum_{n=1}^{\infty} e^{\lambda_n^2(\tau-t_0)} \langle f_{\tau,k}, \varphi_n \rangle \varphi_n. \]

Then we have
\[\| f_{\tau,k} - f_\tau \|_2 = e^{-\lambda_k(\tau-t_0)} \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty \]
but
\[\| f_{t_0,k} - f_{t_0} \|_2 \rightarrow \infty \quad \text{as} \quad k \rightarrow \infty. \]
BHCP as an Operator Equation

Case (i): $\Omega = \mathbb{R}^d$.

Recall that

$$u(x, \tau) = \frac{1}{[4\pi c^2(\tau - t_0)]^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/4\pi c^2(\tau-t)} u(y, t_0) \, dy.$$

Thus, the problem is to solve the operator equation

$$Af = f_\tau,$$

where $A : L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d)$ is defined by

$$(Af)(x) = \frac{1}{[4\pi c^2(\tau - t_0)]^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/4\pi c^2(\tau-t_0)} f(y) \, dy.$$
We observe that

\[A = F^{-1} \hat{A} F, \]

where \(F \) is the Fourier transform operator,

\[(Ff)(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} dx, \]

and \(\hat{A} \) is the multiplication operator

\[(\hat{A}f)(\xi) = e^{-4\pi^2 ct^2 |\xi|^2 (\tau-t_0)} f(\xi), \quad f \in L^2(\mathbb{R}^d). \]

- \(A \) is a non-compact operator with non-closed range.
Case (ii): $\Omega \subset \mathbb{R}^d$ is a bounded domain in \mathbb{R}^d.

In this case, the equation to be solved is

$$Af = f_\tau,$$

(7)

where $A : L^2(\Omega) \to L^2(\Omega)$ is given by

$$Af := \sum_{n=1}^{\infty} e^{-\lambda_n^2(\tau-t_0)} \langle f, \varphi_n \rangle \varphi_n.$$

(8)

- A is a compact positive self-adjoint operator\(^4\) on $L^2(\Omega)$.

In both the cases, the problem is ill-posed.

Regularization methods are to be used\(^5\).

By a regularization method we mean a family of well-posed problems (depending on certain parameter) whose solutions approximate the solution of the ill-posed problem.

Before considering regularization methods, we shall discuss stability estimates based on certain source conditions which are used to measure the quality of a regularization method.

\(^5\)Nair (2009), Linear Operator Equations: Approximation and Regularization, World Scientific
Stability Estimates

We would like to have estimates of the form

$$\|u(\cdot, t_0)\|_2 \leq \Phi(\|u(\cdot, \tau)\|_2)$$

(9)

for some function $\Phi(\cdot)$ which satisfies the condition $\Phi(\lambda) \to 0$ as $\lambda \to 0$.

Since the problem of determining $u(\cdot, t_0)$ from the knowledge of $u(\cdot, \tau)$ is ill-posed, an estimate such as the above will not be possible unless we restrict the solution $u(\cdot, t_0)$ to certain source set in $L^2(\Omega)$.

Thus, it is necessary to identify a source set $\mathcal{M} \subseteq L^2(\Omega)$ and obtain a function $\Phi_{\mathcal{M}}(\cdot)$ such that

$$\Phi_{\mathcal{M}}(\lambda) \to 0 \quad \text{as} \quad \lambda \to 0$$

and

$$\|u(\cdot, t_0)\|_2 \leq \Phi_{\mathcal{M}}(\|u(\cdot, \tau)\|_2)$$

(10)

whenever $u(\cdot, t_0) \in \mathcal{M}$.
Now, let us see how estimate of the form (10) is important when we deal regularization methods.

Any continuous function $R : L^2(\Omega) \to L^2(\Omega)$ can be called a \textit{regularization method} for solving an operator equation

$$Af = g,$$

where $A : L^2(\Omega) \to L^2(\Omega)$ is a bounded operator with non-closed range.

However, if the data is noisy, say \tilde{g} in place of g, with

$$\|g - \tilde{g}\| \leq \delta$$

for some noise level $\delta > 0$, then, in order that $R\tilde{g}$ approximate the solution f, it is necessary that the R has to have some additional properties with respect to certain appropriate source set \mathcal{M}.
So, given a function $R : L^2(\Omega) \to L^2(\Omega)$, a source set $\mathcal{M} \subseteq L^2(\Omega)$ and $\delta > 0$, consider the quantity

$$E_\delta(\mathcal{M}, R) := \sup\{\|f - R\tilde{g}\|_2 : f \in \mathcal{M}, \|Af - \tilde{g}\|_2 \leq \delta\}.$$

Then the requirement is:

$$\lim_{\delta \to 0} E_\delta(\mathcal{M}, R) = 0.$$

A regularization method R_0 is said to be order optimal for the source set \mathcal{M}, if there exists a constant $\kappa > 0$ such that

$$\|f - R_0\tilde{g}\|_2 \leq \kappa \inf_R E_\delta(\mathcal{M}, R)$$

whenever $f \in \mathcal{M}$ and $\tilde{f} \in L^2(\Omega)$ is such that $\|Af - \tilde{g}\|_2 \leq \delta$.
The quantity
\[\tilde{E}_\delta(\mathcal{M}) := \inf_R E_\delta(\mathcal{M}, R) \]
is called the \textit{worst case error estimate} corresponding to the source set \(\mathcal{M} \) and error level \(\delta \).

It is known that\(^6\) if \(\mathcal{M} \) is a convex and balanced set, then
\[\omega_\delta(\mathcal{M}) \leq \tilde{E}_\delta(\mathcal{M}) \leq 2\omega_\delta(\mathcal{M}), \]
where
\[\omega_\delta(\mathcal{M}) := \sup\{ \|f\|_2 : f \in \mathcal{M}, \|Af\|_2 \leq \delta \}. \]

\(^6\)Michelli and Rivlin (1977)
Thus:

- A regularization method R_0 is order optimal for the source set \mathcal{M}, if there exists a constant $\kappa > 0$ such that

$$\|f - R_0 \tilde{g}\|_2 \leq \kappa \omega_\delta(\mathcal{M})$$

whenever $f \in \mathcal{M}$ and $\tilde{g} \in L^2(\Omega)$ is such that $\|Af - \tilde{g}\|_2 \leq \delta$.

- The source set \mathcal{M} has to be identified in such a way that

$$\omega_\delta(\mathcal{M}) \to 0 \quad \text{as} \quad \delta \to 0.$$

In this regard we observe the following\(^7\):

- If A is not bounded below and $\mathcal{M} = \{f \in L^2(\Omega) : \|f\|_2 \leq \rho\}$, then $\omega_\delta(\mathcal{M}) = \rho$.

- If $f \in \mathcal{M} \cap N(A)$, then $\omega_\delta(\mathcal{M}) \geq \|f\|$.

\(^7\)Nair (2009)
Once we have an estimate of the form (10), i.e.,

$$
\|f\| \leq \Phi_{\mathcal{M}}(\|Af\|_2)
$$

(11)

whenever $f \in \mathcal{M}$, it follows that

$$
\omega_\delta(\mathcal{M}) \leq \Phi_{\mathcal{M}}(\delta).
$$

(12)

If we can show the relation (12) is sharp, then the efforts would be to obtain a regularization method R which leads to an estimate of the form

$$
\|f - R\tilde{g}\|_2 \leq \kappa \Phi_{\mathcal{M}}(\delta)
$$

so that the method R is order optimal.

For the BHCP, we now derive estimates of the form (11) for certain source set \mathcal{M} and remark that the derived estimate is sharp for the proposed source set \mathcal{M}.
Case (i): $\Omega = \mathbb{R}^d$

(a) Assume $t_0 > 0$.

For $0 \leq t < \tau$, define

$$(A_{t,\tau} f)(x) = \frac{1}{[4\pi c^2(\tau - t)]^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/4\pi c^2(\tau - t)} f(y) \, dy.$$

Then the equation to be solved is

$$Af = f_\tau := u(\cdot, \tau),$$

where $A := A_{t_0, \tau}$.

In this case, we consider the source set as

$$M_\rho := \{u(\cdot, t_0) \in L^2(\mathbb{R}^d) : \|u(\cdot, 0)\|_2 \leq \rho\},$$

i.e.,

$$M_\rho = \{A_{0, t_0} f : \|f\|_2 \leq \rho\}.$$
Note that with $p > 1$, $q > 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$ and using Hölder’s inequality, we have

$$\| u(\cdot, t_0) \|^2_2 = \| \hat{u}(\cdot, t_0) \|^2_2 = \int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2} t_0 d\xi.$$

$$= \int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^{2/p} e^{-8\pi^2 c^2 |\xi|^2} t_0 |\hat{f}_0(\xi)|^{2/q} d\xi$$

$$\leq \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2} t_0 p \right)^{1/p} \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 d\xi \right)^{1/q}$$

Now, taking $p = \tau / t_0$, we obtain,

$$\| u(\cdot, t_0) \|^2_2 \leq \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2} \right)^{t_0 / \tau} \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 d\xi \right)^{1 - t_0 / \tau}$$

$$= \| u(\cdot, \tau) \|_{2}^{2t_0 / \tau} \| f_0 \|_{2}^{2(1 - t_0 / \tau)}.$$
Note that with \(p > 1, \ q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \) and using Hölder’s inequality, we have

\[
\| u(\cdot, t_0) \|_2^2 = \| \hat{u}(\cdot, t_0) \|_2^2 = \int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2 t_0} d\xi.
\]

\[
= \int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^{2/p} e^{-8\pi^2 c^2 |\xi|^2 t_0} |\hat{f}_0(\xi)|^{2/q} d\xi.
\]

\[
\leq \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2 t_0} d\xi \right)^{1/p} \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 d\xi \right)^{1/q}
\]

Now, taking \(p = \tau / t_0 \), we obtain,

\[
\| u(\cdot, t_0) \|_2^2 \leq \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 e^{-8\pi^2 c^2 |\xi|^2 \tau} d\xi \right)^{t_0/\tau} \left(\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 d\xi \right)^{1-t_0/\tau}
\]

\[
= \| u(\cdot, \tau) \|_2^{2t_0/\tau} \| f_0 \|_2^{2(1-t_0/\tau)}.
\]
Thus,
\[\| u(\cdot, t_0) \|_2 \leq \| u(\cdot, \tau) \|_2^{t_0/\tau} \| f_0 \|_2^{1-t_0/\tau}. \]

Hence, if \(u(\cdot, t_0) \in M_\rho \), equivalently, if \(\| u(\cdot, 0) \|_2 \leq \rho \), then we have
\[\| u(\cdot, t_0) \|_2 \leq \rho^{1-t_0/\tau} \| u(\cdot, \tau) \|_2^{t_0/\tau}. \]

In particular,
\[\omega_\delta(M_\rho) \leq \rho^{1-t_0/\tau} \delta^{t_0/\tau}. \]

Note that the above stability estimate is not useful for the case of \(t_0 = 0 \).

In fact, if \(t_0 = 0 \), then
\[M_\rho = \{ f \in L^2(\mathbb{R}^d) : \| f \|_2 \leq \rho \}. \]

In this case we have \(\omega_\delta(M_\rho) = \rho \), since \(A \) is not bounded below.
(b): Let $t_0 = 0$ and $f_0 := u(\cdot, 0)$.

In this case, we consider the source set as

$$M_{\rho, s} := \{ f \in H^s(\mathbb{R}^d) : \| f \|_{2,s} \leq \rho \},$$

for $s > 0$.

Here $H^s(\mathbb{R}^d)$ is the Sobolev space of order s, i.e., the space of all $f \in L^2(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 (1 + |\xi|^2)^s d\xi < \infty,$$

and $\| \cdot \|_{2,s}$ is the Sobolev norm on $H^s(\mathbb{R}^d)$ defined by

$$\| f \|_{2,s} := \left[\int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 (1 + |\xi|^2)^s d\xi \right]^{1/2}.$$
Now, we write
\[\|f_0\|_2^2 = \int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 d\xi = \int_{\mathbb{R}^d} (1 + |\xi|^2)^{-s} |\hat{f}_0(\xi)|^2 (1 + |\xi|^2)^s d\xi \]
so that
\[\frac{\|f_0\|_2^2}{\|f_0\|_{2,s}^2} = \int_{\mathbb{R}^d} (1 + |\xi|^2)^{-s} d\mu(\xi), \]
where
\[d\mu(\xi) = \frac{|\hat{f}_0(\xi)|^2 (1 + |\xi|^2)^s}{\int_{\mathbb{R}^d} |\hat{f}_0(\xi)|^2 (1 + |\xi|^2)^s d\xi} d\xi \]
is a probability measure.
Therefore, by Jensen’s inequality, we have

\[
\psi \left(\frac{\|f_0\|_2^2}{\|f_0\|_{2,s}^2} \right) = \int_{\mathbb{R}^d} \psi \left((1 + |\xi|^2)^{-s} \right) d\mu(\xi)
\]

\[
\leq \frac{\int_{\mathbb{R}^d} \psi \left((1 + |\xi|^2)^{-s} \right) |\hat{f}_0(\xi)|^2(1 + |\xi|^2)^s d\xi}{\|f_0\|_{2,s}^2}
\]

for any convex function \(\psi\). We define \(\psi\) in such a way that

\[
\psi \left((1 + |\xi|^2)^{-s} \right) |\hat{f}_0(\xi)|^2(1 + |\xi|^2)^s = |\hat{u}(\xi, \tau)|^2.
\]

Recall that

\[
\hat{u}(\xi, \tau) = \hat{f}_0(\xi) e^{-4\pi^2 c^2 |\xi|^2 \tau}.
\]

Thus, the relation \(\psi\) has to satisfy is

\[
\psi \left((1 + |\xi|^2)^{-s} \right) |\hat{f}_0(\xi)|^2(1 + |\xi|^2)^s = e^{-8\pi^2 c^2 \tau |\xi|^2} |\hat{f}_0(\xi)|^2.
\]
This is accomplished by defining $\psi(\cdot)$ as

$$
\psi(\lambda) := e^{8\pi^2 c^2 \tau} \lambda e^{-8\pi^2 c^2 \tau / \lambda^{1/s}}, \quad \lambda > 0.
$$

It can be verified that

- ψ is convex, and
- $\lambda \mapsto \psi(\lambda) / \lambda$ is increasing.

Thus,

$$
\psi \left(\frac{\|f_0\|_2^2}{\|f_0\|_{2,s}^2} \right) \leq \frac{\|u(\cdot, \tau)\|_2^2}{\|f_0\|_{2,s}^2}.
$$

Now, let us assume that $f_0 \in M_{\rho,s}$ so that $\|f_0\|_{2,s} \leq \rho$.
Hence, using the property that $\lambda \mapsto \psi(\lambda)/\lambda$ is an increasing function, we have

$$\frac{\rho^2}{\|f_0\|_2^2} \psi \left(\frac{\|f_0\|_2^2}{\rho^2} \right) \leq \frac{\|f_0\|_{2,s}^2}{\|f_0\|_2^2} \psi \left(\frac{\|f_0\|_2^2}{\|f_0\|_{2,s}^2} \right) \leq \frac{\|u(\cdot, \tau)\|_2^2}{\|f_0\|_2^2}. $$

Thus,

$$\psi \left(\frac{\|f_0\|_2^2}{\rho^2} \right) \leq \frac{\|u(\cdot, \tau)\|_2^2}{\rho^2}$$

so that

$$\|f_0\|_2 \leq \rho \sqrt{\psi^{-1} \left(\frac{\|u(\cdot, \tau)\|_2^2}{\rho^2} \right)}$$

In particular,

$$\omega_\delta(M_\rho, s) \leq \rho \sqrt{\psi^{-1} \left(\frac{\delta^2}{\rho^2} \right)}.$$
It can be seen that

\[\psi(\lambda) = \lambda \varphi^{-1}(\lambda), \quad \lambda > 0, \]

where

\[\varphi(\lambda) := \left[\frac{1}{8\pi^2c^2\tau} \log \left(\frac{e^{8\pi^2c^2\tau}}{\lambda} \right) \right]^{-s}. \]

Also, it can be verified that

\[M_{\rho,s} = \{ f = [\varphi(A^*A)]^{1/2}h : \|h\|_2 \leq \rho \}, \]

where \(A := A_{0,\tau} \).
In regularization theory for the ill-posed operator equations \(Af = g \), it is known\(^8\) that if a source set is given as

\[
M = \{ f = [\varphi(A^*A)]^{1/2} h : \| h \| \leq \rho \},
\]

where \(\varphi(\cdot) \) is increasing with \(\lim_{\lambda \to 0} \varphi(\lambda) = 0 \) and \(\lambda \mapsto \psi(\lambda) := \lambda \varphi^{-1}(\lambda) \) is convex, then

\[
\omega_\delta(M) \leq \rho \sqrt{\psi^{-1}\left(\frac{\delta^2}{\rho^2}\right)}
\]

and this estimate is sharp.

Thus, for the BHCP: \(A_{0,\tau}f = f_\tau \), the derived estimate for the source set

\[
M_{\rho, s} := \{ f \in H^s(\mathbb{R}^d) : \| f \|_{2, s} \leq \rho \},
\]

is sharp.

\(^8\) Tautenhahn (1998), Nair, Schock & Tautenhahn (2003)
Case (ii): Ω is a bounded domain in \mathbb{R}^d.

Let $f_0 = u(\cdot, 0)$.

For $0 \leq t < \tau$, define

$$(A_{t, \tau} f)(x) = \sum_{n=1}^{\infty} e^{-\lambda_n^2(\tau-t)} \langle u(\cdot, t_0), \varphi_n \rangle \varphi_n$$

Then equation to be solved is

$$Af = f_\tau := u(\cdot, \tau)$$

where $A := A_{t_0, \tau}$.

Note that the operator A is compact, positive and self adjoint, with singular values (which are in fact eigenvalues)

$$\sigma_n := e^{-\lambda_n^2(\tau-t_0)}, \quad n \in \mathbb{N}.$$
Assume first that $t_0 > 0$. As in the previous case, we consider the source set as

$$M_\rho := \{ u(\cdot, t_0) \in L^2(\Omega) : \| u(\cdot, 0) \|_2 \leq \rho \},$$

i.e.,

$$M_\rho = \{ A_{0,t_0} f : \| f \|_2 \leq \rho \}.$$

Recall that

$$u(\cdot, t_0) = \sum_{n=1}^{\infty} e^{-\lambda_n^2 t_0} \langle f_0, \varphi_n \rangle \varphi_n.$$
Using Hölder’s inequality with $p \rangle 1$ and $q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$
\| u(\cdot, t_0) \|_2^2 = \sum_{n=1}^{\infty} e^{-2\lambda_n^2 t_0} |\langle f_0, \varphi_n \rangle|^2
\leq \left(\sum_{n=1}^{\infty} e^{-2p\lambda_n^2 t_0} |\langle f_0, \varphi_n \rangle|^2 \right)^{1/p} \left(\sum_{n=1}^{\infty} |\langle f_0, \varphi_n \rangle|^2 \right)^{1/q}.
$$

Then, taking $p = \tau / t_0$, it follows that

$$
\| u(\cdot, t_0) \|_2 \leq \| g \|_2^{t_0/\tau} \| f_0 \|_2^{1-t_0/\tau}.
$$

Hence, we obtain

$$
\omega_\delta(M_\rho) \leq \rho^{1-t_0/\tau} \delta^{t_0/\tau}.
$$
Since
\[f_0 := u(\cdot, 0) = \sum_{n=1}^{\infty} e^{\lambda_n^2 t_0} \langle u(\cdot, t_0), \varphi_n \rangle \varphi_n \]
we have
\[u(\cdot, t_0) \in M_\rho \iff \| f_0 \|_2 \leq \rho \]
\[\iff \sum_{n=1}^{\infty} e^{2\lambda_n^2 t_0} | \langle u(\cdot, t_0), \varphi_n \rangle |^2 \leq \rho^2. \]

Thus,
\[M_\rho = \{ f \in L^2(\Omega) : \sum_{n=1}^{\infty} e^{2\lambda_n^2 t_0} | \langle f, \varphi_n \rangle |^2 \leq \rho^2 \}. \]

In view of this, one look for estimates under a less restrictive assumption.
Thus, consider the source set

\[\tilde{M}_\rho := \{ f \in L^2(\Omega) : \sum_{n=1}^{\infty} \lambda_n^2 |\langle f, \varphi_n \rangle|^2 \leq \rho^2 \}. \]

We note the following:

- The requirement \(u(\cdot, t_0) \in \tilde{M}_\rho \) is less restrictive than the requirement \(u(\cdot, t_0) \in \tilde{M}_\rho \).

- \(\tilde{M}_\rho \) is independent of \(t_0 \).

Hence, the estimates associated with \(\tilde{M} \) would be applicable to the case of \(t_0 = 0 \) as well.
It can be seen that

\[\sigma_n := e^{-\lambda_n^2(\tau-t_0)} \iff \lambda_n = \left[\frac{1}{\tau - t_0} \ln \left(\frac{1}{\sigma_n} \right) \right]^{1/2}. \]

Hence, we have

\[M_\rho = \left\{ f : \sum_{n=1}^{\infty} \frac{\left| \langle f, \varphi_n \rangle \right|^2}{\sigma_n^{2\mu}} \leq \rho^2 \right\}, \quad \mu := \frac{t_0}{\tau - t_0}. \]

and

\[\tilde{M}_\rho = \left\{ f : \sum_{n=1}^{\infty} \frac{\left| \langle f, \varphi_n \rangle \right|^2}{\varphi(\sigma_n)^2} \leq \rho^2 \right\} \]

where

\[\varphi(\sigma_n) := \left[\frac{1}{\tau - t_0} \ln \left(\frac{1}{\sigma_n} \right) \right]^{-1/2}, \quad n \in \mathbb{N}. \]

Note that \(\{ \varphi(\sigma_n) \} \) converges to 0 more slowly than \(\{ \sigma_n^{\mu} \} \).
Associated with the source set \tilde{M}_ρ we have the following stability estimate\(^9\).

\[\omega_\delta(\tilde{M}_\rho) \leq \rho \psi^{-1}\left(\frac{\delta}{\rho}\right), \]

where $\psi(\lambda) := \lambda \varphi^{-1}(\lambda)$.

It can be seen that

\[\rho \psi^{-1}\left(\frac{\delta}{\rho}\right) = \rho \sqrt{\tau - t_0} \left[\ln\left(\frac{\rho}{\delta}\right) \right]^{-1/2} \left[1 + o(1) \right]. \]

\(^9\)Nair, Schock and Tautenhahn (2003)
Regularization

Suppose the available data is noisy, i.e., we have \tilde{g} in place of $g := u(\cdot, \tau)$ with

$$\|g - \tilde{g}\|_2 \leq \delta$$

for some known noise level $\delta > 0$. Then one would like to have a regularized solution \tilde{f} in place of $f := u(\cdot, t_0)$ such that

$$\|f - \tilde{f}\|_2 \leq c_0 \rho \psi^{-1}\left(\frac{\delta}{\rho}\right)$$

whenever $u(\cdot, t_0) \in \tilde{M}_\rho$.

The above result has been proved in the context of Tikhonov regularization10 and Lavrentiev regularization11 by appropriate choices of the regularization parameter.

10Nair, Schock and Tautenhahn (2003)
11Nair and Tautenhahn (2004)
References

References

