Polynomial vector fields with algebraic trajectories

Israel Vainsencher (UFMG)
abstract: Hilbert schemes have their counterpart in the theory of polynomial differential equations, namely the spaces of foliations. While a general surface of degree $d \geq 4$ in P^{3} contains no line -in fact, only complete intersection curves are allowed- those that do contain some line, correspond to a subvariety of codimension $d-3$ and degree $\binom{d+1}{4}\left(3 d^{4}+6 d^{3}+17 d^{2}+22 d+24\right) / 4$! in a suitable P^{N}. In the same vein, while a general foliation (i.e., roughly a polynomial vector field) of degree $d \geq 2$ has no algebraic leaf, those that do have, say in P^{2}, an invariant line, correspond to a subvariety of a suitable P^{N} of degree $3\binom{d+3}{4}$. We show how to derive formulas like this for a wider class of invariant curves such as lines, conics, twisted cubics... (Joint with Viviana Ferrer Cuadrado).

