Polynomial vector fields with algebraic trajectories Israel Vainsencher (UFMG)

abstract: Hilbert schemes have their counterpart in the theory of polynomial differential equations, namely the spaces of foliations. While a general surface of degree $d \ge 4$ in P^3 contains no line –in fact, only complete intersection curves are allowed– those that do contain some line, correspond to a subvariety of codimension d-3 and degree $\binom{d+1}{4}(3d^4+6d^3+17d^2+22d+24)/4!$ in a suitable P^N . In the same vein, while a general foliation (i.e., roughly a polynomial vector field) of degree $d \ge 2$ has no algebraic leaf, those that do have, say in P^2 , an invariant line, correspond to a subvariety of a suitable P^N of degree $3\binom{d+3}{4}$. We show how to derive formulas like this for a wider class of invariant curves such as lines, conics, twisted cubics... (Joint with Viviana Ferrer Cuadrado).