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ABSTRACT

In this paper, we propose to study meta-modeling tech-
niques in order to develop a two-level modeling procedure
for aerodynamic design. Two typical problems are succes-
sively examined: the acceleration of a genetic algorithm by
using an inexact pre-evaluation approach and the estimation
of statistics for robust design under uncertain operating con-
ditions. Radial basis functions are employed to approximate
the aerodynamic coefficients in both cases. The proposed
approach is applied to optimize the wing shape of a business
aircraft.
INTRODUCTION

Optimum shape design in aerodynamics has been an ac-
tive research topic for the last years. Deterministic (gradient-
based) and semi-stochastic (evolutionary) methods provide
solutions to perform both global and accurate search. How-
ever, the computational cost related to the flow analysis us-
ing Computational Fluid Dynamics (CFD) codes is still an
obstacle to extend the current results to complex industrial
problems.

The present study aims at developing a two-level model-
ing strategy to address this difficulty. We propose to include
in the design procedure a low-cost modeling technique be-
side the expensive CFD solver, which allows to avoid some
expensive evaluations without degrading the accuracy of the
result.

Particularly, Meta-Models (MMs), i.e. models of models,
are under consideration here as methods to interpolate data
from prior computations, thanks to their capability to predict
non-linear behaviors. However, our strategy can possibly
use other simplified modeling, such as low-fidelity physics
or coarse grid computations.

The proposed two-level modeling strategy is applied to ac-
celerate a genetic algorithm and estimate statistics for a ro-
bust design problem.
META-MODELS

Principles
MMs are surrogate models whose evaluations are far less

expensive than the original model (PDEs solving for in-
stance). Then, they can be used for a negligible cost to rem-
place some evaluations of the original model or to provide
additional information.

MMs are constructed according to available data that are
stored in a database. This database can be generated sepa-
rately or compiled during optimization. The MMs and the
database used for the construction can be either global or lo-
cal. In the former case, the database should cover the whole
design space, whereas in the latter case the database only

contains data located in a prescribed region of the design
space. MMs mostly used for data fitting are:

• polynomial fitting (least-squares approximation) ;

• artificial neural networks (multi-layer perceptrons) [13];

• radial basis functions [11] ;

• Kriging methods (Gaussian process models) [15].

Although the last three options are well suited to highly non-
linear behaviors, such as those encountered in aerodynamics,
the present study only uses Radial Basis Functions (RBFs).

MMs can be employed in numerical optimization accord-
ing to one of the two following strategies:

1. Generate a priori a global database, construct one MM
and then solve the optimization problem using only the
MM evaluations. The original model is then used a
posteriori to evaluate the fitness of the optimal design
found.

2. Solve the optimization problem using both the original
model and several MMs, which are constructed using
local databases that compile some previous evaluations,
in an interactive multi-level evaluation strategy.

The first option is usually used iteratively by including in
the database new data computed in the vicinity of the opti-
mum design found. However, this option relies on a weak
coupling between the models and can lead to local optima.
If the whole design space is not filled enough by the data
contained in the database, the MM can lead the optimizer to
non-optimal design. On the contrary, the second strategy re-
lies on a two-level modeling approach, that allows a progres-
sive database filling in most promising regions. This strong
coupling between the models yields a more robust algorithm.

This two-level modeling strategy is demonstrated in the
present study for two different applications in aerodynamic
design: the acceleration of a genetic algorithm and the esti-
mation of uncertainty in robust design.
Radial basis functions

RBFs are non-polynomial interpolation methods for scat-
tered data [11]. They have been found to be very accurate for
highly non-linear data in high dimension [3]. RBFs seek an
approximation of the function J (x), x ∈ <n of the form:

J̃ (x) =

Nc
∑

j=1

ωj φj(x), (1)

where:
φj(x) = Φ(‖x− xj‖). (2)



(xj)j=1,...,Nc
are called RBFs centers. Several radial func-

tions Φ can be considered. For the present study a Gaussian
function is employed:

Φ(r) = e−
r
2

s
2 , (3)

where s is a parameter called attenuation factor. Therefore,
the evaluation of the RBFs using (1-3) has a negligible com-
putational cost.

The training of the RBFs consists in determining the
weights (ωj)j=1,...,Nc

to fit the data. Suppose that the
function value is known for a set of Nc points that corre-
spond to the RBF centers (xi)i=1,...,Nc

. Then, the weights
(ωj)j=1,...,Nc

are determined from the interpolation condi-
tions:

J (xi) =

Nc
∑

j=1

ωj φj(xi) i = 1, . . . , Nc. (4)

Thus, (ωj)j=1,...,Nc
is the solution of the following linear

system:








φ1(x1) . . . φNc
(x1)

φ1(x2) . . . φNc
(x2)

. . . . . . . . .

φ1(xNc
) . . . φNc

(xNc
)























ω1

ω2

. . .

ωNc















=















J (x1)
J (x2)

. . .

J (xNc
)















.

(5)
The matrix of the system is obviously symmetric. It is also
positive-definite if the RBF centers (xj)j=1,...,Nc

are dis-
tinct. One can notice that it is a full matrix. However, its
dimension Nc is usually moderate in practice. Then, the
computational cost of its inversion is far lower than that of
PDEs solving. The attenuation factor s can be determined
experimentally by the user. The following empirical formula
is proposed in [10]:

s = dmax(nNc)
−

1

n , (6)

where n is the dimension of the problem and dmax the maxi-
mum distance between RBF centers. However, the choice of
the attenuation factor can be tedious for some applications.
Then, we propose to optimize it by minimizing an error esti-
mation functional. According to [14], we employ the leave-
one-out technique: one point of the data set is ignored during
the training. This point is then used to estimate the fitting er-
ror. By considering successively all the points of the data set,
one can estimate a global error for a given attenuation fac-
tor. Thus, a Particle Swarm Optimization (PSO) algorithm is
used to determine the attenuation factor that minimises this
error.
MULTI-LEVEL EVOLUTIONARY OPTIMIZATION

Methodology
Genetic Algorithms (GAs) are optimization methods that

mimic the Darwinian evolution process. They are able to
find global optima for multimodal or even discontinuous cost
functions. However, a large number of cost function evalua-
tions is required to converge to the optimum design.

Consider a typical parametric shape optimization problem:

Minimize J (x) x ∈ <n,

Subject to C(x) ≤ 0,
(7)

A classical GA to solve such a problem is organized as:

1. Evaluate the fitness of all individuals in the population ;

2. Apply the selection operator to eliminate non-promising
individuals ;

3. Apply the crossover operator to generate offsprings
from the selected individuals ;

4. Apply the mutation operator to modify randomly the
offsprings.

Gianakoglou [6, 7] has proposed a two-level evaluation
strategy, called Inexact Pre-Evaluation (IPE), to reduce the
computational time related to GAs. It relies on the obser-
vation that numerous cost function evaluations are useless,
since numerous individuals do not survive to the selection
operator. Then, it is not necessary to determine their fitness
accurately. The strategy proposed by Gianakoglou consists
in using MMs to pre-evaluate the fitness of the individuals
in the population. Then, only a small portion of the popula-
tion, that corresponds to the most promising individuals, are
accurately evaluated using the original and expensive model.

The database is generated progressively by including at
each generation the data provided by the evaluations using
the original model. Using such a strategy, the database is
progressively enriched in the promising regions of the de-
sign space and the accuracy of the MMs is progressively im-
proved.

In the next section this strategy is applied to the optimiza-
tion of a wing shape in transonic regime.
Test-case

The test-case considered here corresponds to the optimiza-
tion of the wing shape of a business aircraft (courtesy of Pi-
aggio Aero Ind.). The test-case is described in depth in [1].
The free-stream Mach number is M∞ = 0.83 and the in-
cidence α = 2◦. Initially, the wing section is supposed to
correspond to the NACA 0012 airfoil.

Figure 1: Initial wing shape and mesh in the symmetry plane.

The goal of the optimization is to reduce the drag coeffi-
cient CD subject to the constraint that the lift coefficient CL

should not decrease more than 0.1%. The constraint is taken
into account using a penalization approach. Then, the result-
ing cost function is :

JOPT =
CD

CD0

+ 104 max(0, 0.999−
CL

CL0

). (8)

CD0 and CL0 are respectively the drag and lift coefficients
corresponding to the initial shape (NACA 0012 section). The
aerodynamic coefficients are computed by simulating three-
dimensional inviscid compressible flows governed by the Eu-
ler equations. An unstructured mesh, composed of 31124



nodes, is generated around the wing, including a refined area
in the vicinity of the shock (see figure (1)).
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Figure 2: FFD lattice around the wing: moving control points
(filled markers) and frozen control points (empty markers).

The shape parameterization is ensured by the Free-Form
Deformation (FFD) approach [1, 4]. A FFD lattice is built
around the wing with ξ, η and ζ in the chordwise, spanwise
and thickness directions respectively. The lattice is chosen in
order to fit the planform of the wing (see figure (2)). Then,
the leading and trailing edges are kept fixed during the op-
timization by freezing the control points that correspond to
i = 0 and i = ni. Moreover, control points are only moved
vertically. Three parameterization levels are under consider-
ation in the next sections. The coarsest one corresponds to
ni = 3, nj = 1 and nk = 1. Therefore, (4 − 2)× 2× 2 = 8
degrees of freedom are taken into account in the optimiza-
tion. The medium parameterization corresponds to ni = 6,
nj = 1 and nk = 1 and counts (7−2)×2×2 = 20 degrees of
freedom. Finally, the finest parameterization corresponds to
ni = 9, nj = 1 and nk = 1 and counts (10−2)×2×2 = 32
degrees of freedom.

A real coding GA is used for this study. The selection is
ensured by a roulette wheel operator, whereas a two-point
crossover and a non-uniform mutation are used [9].
Results

The two-level modeling technique is tested on the shape
optimization problem presented above, using the coarsest pa-
rameterization (8 d.o.f.). The population used by the GA
counts 60 individuals. The evolution is simulated during 200
generations. The fitness is evaluated by CFD simulations
during the first 10 generations, yielding an initial database.
Then, three cases are studied:

• 100 % of evaluations use CFD simulations ;

• 30 % of evaluations use CFD simulations and 70 % use
RBFs predictions ;

• 20 % of evaluations use CFD simulations and 80 % use
RBFs predictions ;

RBFs are trained for each individual, using a local database
which includes 16 points, with an optimized attenuation fac-
tor.

The comparison of the results obtained is shown in fig-
ure 3, which depicts the cost function value with respect to
the number of CFD evaluations, and in table 1. As can be
seen, the use of RBFs for 70 % of the population yields re-
sults similar to those obtained with a classical GA. The num-
ber of evaluations using the CFD code is reduced by a factor

close to three. However, if one reduces the ratio of evalua-
tions using the CFD solver to 20 %, one observes a degra-
dation of the results. In that case, the progressive filling of
the database is too low in order the RBFs to provide suitable
information to the optimizer.
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Figure 3: Evolution of the cost function w.r.t. the number of
CFD evaluations.

Case Cost funct. Numb. of eval.
100 % CFD 0.5411 8431
30 % CFD 0.5512 3058
20 % CFD 0.5785 2074

Table 1: Results for the two-level evolutionary algorithm.

A comparison of the shapes obtained with the classical GA
and with the GA using 30 % of CFD evaluations is provided
by figure 4. As can be seen, similar shapes are obtained,
although the computational cost is significantly reduced.
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Figure 4: Comparison of the shapes at the root section : with
and without inexact pre-evaluation procedure.

ROBUST DESIGN

Introduction to robust design
Application of classical design methods to solve the prob-

lem (7) can lead to unexpected performance losses in practice
and unacceptable results. Indeed, the prescribed optimized
design is subject to inherent geometrical variations due to
manufacturing tolerances. Moreover, operating conditions,
such as Mach number, angle of attack, etc, are subject to vari-
ability and random fluctuations. Therefore, the fitness of the
optimal design predicted by CFD is usually not obtained in
practice, due to geometrical uncertainty and operating condi-
tion uncertainty.

To overcome this difficulty, robust and reliability-based
design methods are developed, that assess the effects of un-



certainty on the design performance during the optimiza-
tion procedure. The objective of robust design methods is
to minimize the performance loss due to everyday fluctua-
tions, whereas the aim of reliability-based design methods is
to manage the consequences of extreme events. The present
work is focused on the development of numerical methods
for robust design in the framework of realistic aerodynamic
problems. Particularly, the optimization with uncertain oper-
ating conditions is addressed.
Methodology

In a statistical approach, one considers the fluctuat-
ing operating conditions (Mach number, angle of attack,
etc)) a = (am)m=1,...,M as samples of random variables
A = (Am)m=1,...,M , whose statistical characteristics are
known (mean µA = (µm

A )m=1,...,M , variance σ
2

A
=

(σ2
A

m
)m=1,...,M , etc). One also supposes for the sake of

simplicity that the random variables (Am)m=1,...,M are in-
dependent. The statistical characteristics of operating con-
ditions can be determined by experimental measurements or
engineering experience. Gaussian Probability Density Func-
tions (PDFs) or truncated Gaussian PDFs are often used in
practice (see [17] for instance).

The main consequence of this assumption is that the cost
function of the system is also a random variable J . Accord-
ing to the Von Neumann-Morgenstern decision theory [2],
the best choice is then to select the design which leads to the
best expected fitness. This is known as the Maximum Ex-
pected Value (MEV) criterion. In practice, it consists in min-
imizing the statistical mean µJ of the cost function. How-
ever, this strategy does not address the variability of the fit-
ness. For engineering problems, one also would like to select
a design for which the fitness is not subject to large variations
as operating conditions fluctuate. Then, a second criterion is
often joined to the MEV criterion, that relies on the mini-
mization of the fitness variance σ2

J :

Minimize
{ µJ =

∫

Ω(A)

J (x, a) ρA(a) da

σ2
J =

∫

Ω(A)

(J (x, a)) − µJ )2 ρA(a) da

Subject to P [C(x,A) ≤ 0] ≥ p x ∈ <n.

(9)

Ω(A) is the range of the random variable A and ρA is the
PDF of A. One can notice that, contrary to the classical
problem (7), the constraint is now expressed with a prob-
abilistic formulation: the probability P that the constraint
C(x,A)) ≤ 0 is verified should be larger than a prescribed
value p. This approach aims at determining a trade-off be-
tween the expected fitness and the expected fitness variation
as operating conditions randomly fluctuate. It is a significant
improvement over previous methods, such as multi-point op-
timization. The robust design problem is now considered
within a rigorous statistical framework. This allows to take
into account the random fluctuations of the fitness in the op-
timization problem, but also to care about the frequency of
occurence of the events, thanks to PDFs. Then, the most
probable events have a larger influence in the decision than
extreme and unlikely events. Although this approach is sat-
isfactory from theorical and practical viewpoints, its appli-
cation is not straigthforward. Particularly, the estimation of
the mean and variance can be tedious for complex CFD ap-
plications. The random variable J is an output of a complex

numerical simulation tool, such as a CFD solver, whereas A

is an input parameter. Therefore, the main issue is the esti-
mation of output uncertainty according to the knowledge of
input uncertainty, i.e. the propagation of uncertainty through
the CFD solver [12, 16, 17].

A classical approach to estimate statistics of a random
variable is to use Monte-Carlo methods. A sample of operat-
ing conditions (ai)i=1,...,N of size N is generated according
to the PDF ρA. Then, unbiased estimators of the mean and
variance are:

MJ =
1

N

N
∑

i=1

J (x, ai), (10)

S2
J =

1

N − 1

N
∑

i=1

(J (x, ai) −MJ)2. (11)

However, it is well known that this stochastic approach re-
quires large samples to provide an accurate estimation of
the variance. For CFD applications, a direct Monte-Carlo
method is not conceivable presently.

To overcome this difficulty, we propose according to [8]
to employ a two-level evaluation strategy. For each design
x, a small number Nc of cost function evaluations is per-
formed using the original model with variable operating con-
ditions. These evaluations J (x, ai) i = 1, . . . , Nc are used
as database to construct a MM J̃ (x,A) that describes the
effect of the random variable A on the cost function for the
considered design. Then, the MM is used in a Monte-Carlo
approach to estimate the mean and the variance of the cost
function, according to (10-11). Since all evaluations during
the Monte-Carlo estimation are using the MM, the computa-
tional cost is negligible. In the next section, this approach is
demonstrated for robust wing design.
Test-case

The optimization of the wing shape presented above is re-
visited in the context of robust design, with the finest param-
eterization (32 d.o.f.). We suppose that the free-stream Mach
number is subject to random fluctuation. For simplicity, we
assume that its PDF is Gaussian with a given mean µM and
variance σM . The mean Mach number corresponds to the
nominal Mach number µM = 0.83 and its standard devia-
tion is σM = 0.0166. Figure 5 depicts the Mach number
distribution.
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Figure 5: Probability density function of the free-stream
Mach number.

The behavior of the initial design (NACA 0012 section)



and the optimum design found solving the classical problem
(7) is first analyzed for a Mach number that varies around its
nominal value. Twenty-one flow analyses are performed in
the interval [µM −3σM , µM +3σM ]. Results are depicted in
figure 6. As expected, the optimum design is fully adapted to
the nominal Mach number: the drag coefficient is maintained
at a low value until the nominal Mach number and then in-
creases abruptly.
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Figure 6: Drag variation for fluctuating Mach number: initial
design and optimum design at nominal Mach number (0.83).

This observation motivates the robust design of the wing
subject to uncertain Mach number. Then, the classical prob-
lem (7) is replaced by the robust formulation (9). Our pur-
pose is now to reduce the mean drag as well as its vari-
ance. The lift constraint is now: the probability for the lift
to be higher than the prescribed value should be higher than
p = 0.95.
Uncertainty propagation

We study in this section the uncertainty propagation ap-
proach proposed above, that uses a two-level evaluation strat-
egy. We try to determine the PDF of the drag coefficient for
the optimum design found previously, as well as its mean
and its variance. First, a reference result is obtained by us-
ing the previous twenty-one analyses to construct a very fine
model (RBFs) and propagate the uncertainty by the Monte-
Carlo approach. This reference result is then compared to
the use of three possible models that rely on Nc = 5 points
in the database: linear fitting, quadratic fitting and RBFs. In
this case, RBFs use the empirical value for the attenuation
factor (6). The five points are uniformly distributed in the
interval [µM − 3σM , µM + 3σM ]. Figure 7 shows the data
fitting for the linear and quadratic least-squares approxima-
tions. The resulting PDF are compared to the reference result
in figures 8 and 9.

The linear fitting has obviously a poor accuracy and the re-
sulting PDF is Gaussian. This is far from the reference result,
for which the PDF has a more complex shape and is charac-
terized by a peak at low drag values. The quadratic fitting is
closer to the CFD calculations at high Mach numbers. Then,
the tail of the PDF is quite well reproduced. However, the
peak description is not satisfactory.

Figures 10 and 11 depict the results obtained with RBFs.
Obviously, the capability of RBFs to fit the data is better
than that of linear or quadratic functions. The resulting PDF
is similar to the reference PDF, except for the peak inten-
sity. This is due to the discrepancy that can be observed be-
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Figure 7: Five-point fitting using linear and quadratic least-
squares approximation.
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Figure 8: Probability density function for the drag coeffi-
cient: reference result compared to linear fitting.
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Figure 9: Probability density function for the drag coeffi-
cient: reference result compared to quadratic fitting.

tween the RBFs fitting and the CFD results at Mach num-
ber 0.82. To accurately represent the curvature in this re-
gion, the database must be enlarged. Using Nc = 7 points in
the database provides satisfactory results (figures 12 and 13).
This choice is adopted for the next computations. Table 2
compiles the statistics obtained for the different cases.
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Figure 10: Five-point fitting using RBFs.
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Figure 11: Probability density function for the drag coeffi-
cient: reference result compared to RBFs (5 points).
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Figure 12: Seven-point fitting using RBFs.

Case Mean Variance
Reference 0.013154 1.5658E-05

Linear fit (5 pts) 0.017229 1.7953E-05
Quadratic fit (5 pts) 0.013262 1.9482E-05

RBFs (5 pts) 0.013029 1.7229E-05
RBFs (7 pts) 0.013068 1.5899E-05

Table 2: Statistics for the drag obtained with the different
methods.
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Figure 13: Probability density function for the drag coeffi-
cient: reference result compared to RBFs (7 points).

Robust design
Once uncertainty propagation relies on a safe basis, the ro-

bust optimization problem (9) can be solved. In the present
study, the two-objective problem is addressed using a com-
posite cost function, which is the weighted sum of the mean
and variance. The optimization algorithm consists in a
multi-level Particle Swarm Optimization (PSO) algorithm
described in depth in [5]. Five optimization exercises are
solved using different weights to draw the Pareto front (see
figure 14). The results corresponding to these five optimiza-
tion exercises are summarized in table 3.
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Figure 14: Pareto front for the two-objective robust design
problem.

One can notice that the optimum design at nominal Mach
number has a lower drag than the design found minimizing
the mean drag. It is due to the fact that the optimum design
at nominal Mach number does not respect the lift constraint
in the probabilistic sense. For this design, the probability to
reach the prescribed lift value is only 0.5057.

The evolution of the drag coefficient as the Mach num-
ber varies can be seen in figure 15 for three points on
the Pareto front. These results are obtained by perform-
ing a posteriori twenty-one CFD analyses in the interval
[µM−3σM , µM +3σM ] for the three designs under consider-
ation. The corresponding PDFs are depicted on figure 16. As
can be seen, a design is found, for which the drag is almost
constant over the interval [µM −3σM , µM +3σM ]. However,



Weight for the mean Weight for the variance Mean Variance Constraint probability
1.0 0.0 0.0144 1.001E-05 0.9504

0.75 0.25 0.0146 6.607E-06 0.9501
0.5 0.5 0.0155 3.316E-06 0.9504

0.25 0.75 0.0172 2.085E-06 0.9512
0.0 1.0 0.0248 3.355E-07 0.9576

Table 3: Statistics for the different robust optimization exercises.

its mean drag is poor, since it is not taken into account during
the optimization. On the contrary, a second design optimizes
the mean drag, but exhibits a significant drag increase for
high Mach numbers. Finaly, a trade-off design is shown, for
which the mean is slightly degraded but the drag fluctuations
are moderate. The comparison of the PDFs clearly shows the
characteristics of these different designs.
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Figure 15: Drag variation for fluctuating Mach number: ro-
bust designs from the Pareto front.
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Figure 16: Probability density functions for the drag coeffi-
cient: robust designs from the Pareto front.

A comparison of the wing shapes at the root section is de-
picted in figure 17, for the optimum design at nominal Mach
number and the robust design (trade-off between mean and
variance). One can notice that the pressure side of the robust
design is particularly flat.
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Figure 17: Comparison of the wing shape at the root section:
optimum design at nominal Mach number and robust design.

CONCLUSION

To overcome the difficulty related to the high computa-
tional cost required by evolutionary computations or robust
design, a two-level modeling strategy is proposed, that relies
on the use of meta-models, such as radial basis functions.

This methodology is demonstrated for a realistic wing de-
sign in transonic regime. A genetic algorithm is accelerated
using an inexact pre-evaluation approach and a robust design
problem with uncertain Mach number is solved using an ap-
proximate statistics evaluation.

The proposed approach has been found particularly effec-
tive to reduce the computational cost without degrading the
results.
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[16] É. Turgeon, D. Pelletier, and J. Borggaard. Sensitiv-
ity and uncertainty analysis for variable property flows.
In 39th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, Jan. 2001. AIAA Paper 2001-0139.

[17] R.W. Walter and L. Huyse. Uncertainty analysis for
fluid mechanics with applications. Technical Report
2002–1, ICASE, February 2002.


