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Abstract

Numerical schemes for fluid flows must preserve the positivity of density and pressure.
This is a weak stability condition and is the first step towards establishing an entropy in-
equality. It also allows us to derive a rigorous CFL condition. Positivity of finite volume
methods based on Kinetic Theory has been established in [2] and some general results have
been given for finite volume methods in [6]. It must be remarked that very few numerical
methods for Euler equations are positivity preserving. In the present work, the positivity
and stability of first order LSKUM [3, 4] in one- and two-dimensions is established under a
CFL-like condition, though the stability results are not very strong. The analysis leads to
the discovery of many length scales which are integral averages of the node spacings, and
are used in the definition of the CFL number. In 2-D, the concept of a genuine connectivity
is defined which can be used to obtain a good connectivity for LSKUM.

1 Some Terminalogy in 1-D

Consider a one dimensional grid G, the coordinates of the points being {z; | i € G}. For each

i € G, there exist a set of points C; = {j | j € G} which are said to be in the connectivity of

point i. Further, each C; is divided into £; and R;, so that C; = £; UR;, and
£z={J€Cz|A.’IIJ,SO}

Ri={j€eCi| Azj; >0}

where

We also define the following terms!.

Dy =Y Az}, D= Az (1.1)
JEL; JER:

S, = — Z Azji, Sp; = Z Azj; (1.2)
JEL; JER;:

With these terms, we define two lengths which will be useful in the analysis.

_Du  _ Dy
S, s,

i

L;

L All summations are over j unless indicated otherwise
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Note that /; and r; are convex combinations of the Az;; so that the following inequalities
are valid:

min |Azj;| <I; <max|Axj;
jeL;l sl slis JEL: Al
min |Az;;| <7 < max |Azj;
jeRi| il S jem' il
Finally, we define another length as follows.

lﬂ'i

hi =
Li+mri

Since h; is the harmonic mean of /;,r;, we have the following inequalities,

hi <l  hi <

2 First Order LSKUM in One-Dimension
Consider the Boltzmann equation in one-dimension without the collision term,

0 0
of + U—f =0
ot Ox

The above equation can be rewritten after splitting the velocity v into positive and negative
parts,

0 v+ |v|d v—|v|d

_f + A_f + A_f — 0

ot 2 Oz 2 Oz
Using least squares for the z-derivatives we obtain the first order update formula for the
velocity distribution function,

v+ |U| Z A"EJZA JT; + v = |U| Z A'Z.J’Af;; (2 1)
2 > Az . 2 > Az 2, ’

and the appropriate stencil is indicated in figure (1). The conserved variables are obtained

= g - A

Figure 1: Split stencil for 1-D

by taking 1)-moments of f/"t",

n+1
Pi

Uptt = / Gfftdvdl = | (pu)ptt
R xR+

n+1
¢
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where

1

b=
I+02/2

The update equation for U is

+\ " -\ "

Uﬁ+1::LﬂL—wAt E:zﬁxjﬂﬁlﬁi n }:zﬁwjyﬁlgi
i i > Am?i . > A:c?i -

The split fluxes F* are given by [5]
F* = / YfvEdedl, where v = (v=+|v|)/2
RxRt+

Let us define the following quantities,

|F| = F+ — F~
and
w=|"*
e
_ | Ep
o= | 7]

with obvious definitions for ®*, and
] = max{®*+,~3"}

where the maximum is to be taken in terms of each component, i,e,

max{F,f, —F}

|®| =

max{FE"‘, _Fe_}
3 Solution Space
We assume that the solution space YW C R™ satisfies the following hypothesis.
H1. W is an open subset of R™.
H2. Vp,q e W, Va,8 € R™, ap + g € W.
H3. peW= —pé¢ W.

For the case of Euler equations in 1-D, the solution space is

W={UeR:U, >0,Us >Us/(2U1)}

and it can be verified that it satisfies all the above three hypotheses.

(2.2)

(2.6)
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4 A partial-order relation on R™

Let p,q € R™. p is said to be lower than ¢ if and only if g — p € W or p = ¢q. It is denoted
as p = ¢. Conversley, p is said to be greater than ¢ if and only if p — ¢ € W or p = ¢q. This
is denoted as p > q.

Using hypothesis H1, H2, H3, we can easily prove that,
Pl. Vp,q,r,s € R, Vo,B € R*, p<rand q < s = ap+ Bq < ar + Bs.
P2.Vp,geR",pRqg<= —p= —q.
P3. VpeR", pe W< p> 0.

Lemma 1 If p>0 and T > 0, then
Ft=0 (4.1)
for1 <y <3.
Proof: By definition
oo oo
+
F, _/0 dI/0 dv(vf) >0

Consider

W o= 2FFF - (F))?

2 ( / v fdvdI) ( / o(I +v%/2) fdvdI) - ( / u:’ fdvdI)2
< / (v f)dvdI) ( / v? fdvdI) - ( / v? fdvd])

0, by Cauchy-Schwarz inequality

A%

Y

This proves that F'+ > 0.

Lemma 2 Under the conditions of lemma (4) and |F| as defined by equation (2.8), we have,
for a,B €10,1]
aFt — BF~ < |F| (4.2)

Proof: We note that

aFt < F*
_BF~ < —F~

so that
aFt —BF~ X Ft —F~ = |F|

and hence the lemma is proved.

Lemma 3 [Estivalezes and Villedieu] Let d represent the number of space dimensions and
F represent one component of the flur. Then, for 1 <y <3

|F| 2 AMU)U (4.3)
where
AU =2 <|a‘| + 2 - ! §—Z> (4.4)
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Proof: Let F denote the z-component of the flux, and (p, m, €) represent the components of
|F|. Then for 7 € RT,

p—Tp = p—T/ |vy | fdodT
RIxR+

> p<1—r<|a|+\/—2RT>>
™
[2RT -

> OifT<<|ﬂ|+ T)

Next, let

1
(e—Té)(p—Tﬁ)—i(m—Tm)2 =A+B-7C+7°D

A =(p—1p) (/ IfdﬁdI—T/ |v1|IFd1‘)’dI)
RexR+ RIxR+
2RT
S (R
SRT\
>0 if r< <|ﬂ’|+\/—>
™
d

2 2
D = / |v1|fd1')’dI/ for |2 fagdr — £ 57 (/ |v1|v,-fdﬁd1)
RexR+ RexR+ 2 2 R4xR+

i=1
>0
d

v? 1 2
B = / fdadI / — fdvdl — = ( / v; fdﬁ’dI)
RexR+ RexR+ 2 2 z:zl RexR+

d2
— _ T

2 2
c = / Y rdwdr / v | fAFAI + / Y v | fdFdI / fdgar
RAxR+ 2 RxR+ RAxR+ 2 RaxR+
d

By ( / v |os fdTdT / v; fdﬁ‘dI)
i RIxR+ RIxXR+

1
— )2 a2
_ / (v 2“) fdgdI / |vy | fATAT + / v 2“) vy | fdTdT / fdgdI
RexR+ RexR+ RIxR+ RexR+

2 1 /2RT
SgszT 2|g|+d_+ i
2 d ™

Putting all these together, we obtain,
d 2d+1 [2RT
A+B-71C+71D > §p2RT (1 -7 <2|ﬁ| + T-'_\/ —))
™

2d+1 |RT
=9 |lagl+ 22—/~
A(U) <|u| + P o )

and hence
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Definition [CFL Number]
The CFL number ¢ is defined as

o= Ilrélél %(sz) (4.5)

Theorem 1 If pi! >0, T]* >0, i € G, then under the CFL condition
" <1 (4.6)
the first order LSKUM is positivity preserving for 1 < v < 3, i.e.,
PPt >0 and T >0

Proof: Equation (2.2) is the first order update formula for LSKUM. given by,

+ . i Az j;
Uin+1 — Un_At<Fz _Fz )_{_HZF"‘M_}_E Z(—Ff) Lji

7 . . . . J
ki Ti bz S i jeRrs S
+ —
- opoae (D)
- Li
n At TiF;ﬂ_ + li|Fz~_|
= ppo 22 (D% T
h; ri +1;
At
> n— —|F;
AT
- pn_ 2%ipn
> up- 22y,
= 0

and hence the theorem is proved.

Definition: [Stability]
The numerical scheme
UMttt =FUM U, jEC

is said to be stable in the norm || - || if
|~ < K|

for some constant K, 0 < K < oo.

Definition: [Norm)]
The norm that will be used in the stability analysis is defined as

llglle = Z hi| | (4.7

Definition: [Connectivity Number, w]
Let

wi=21

all j
i€C;
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Then, the connectivity number w is defined as
w = m?x w;
Lemma 4 If p> 0 and T > 0, then
T >0 and & <0 (4.8)
for —oo < M < oo and1 <~y <3.

Proof: The proof follows obviously from the definition of the kinetic split fluxes.

Lemma 5 Under the conditions of lemma (4) and |®| as defined by equation (2.6), we have,
18 = &%, u>0
= =%, u<0
Proof: We note that

e+p

so that

ot —(—®7) > 0, u>0

< 0, <0
and hence the lemma is proved.
Lemma 6 Forl <~y <2
@] < MU)W (4.9)

Proof: Consider the case u > 0. Then, by lemma (5),

|Fp| = F,

N
= /Ooodl/ooodv(vf)
= /Ooodl/ooodv(Cf)+u/ooodf/ooodv(f)

/ ar [ acop + 2
0 —u 2

/OoodI/OOOdC(Cf)+/OOOdI ’ dC(C’f)+%

—u

IA IN
S— —
3 8
[oN [oh
~ ~
\80\8
(o8 o
2008
Q Q
= =
+ o+
) )
IS IS

= / dI/ dC(Cf) + pu
0 0

_ (. JRT

N “ 27 P



Similarly,
o< / dI/ dC(I+|C+u|2/2)(Cf)+u/ dI/ do(I +*/2)(f)
0 0 0 0
_ RT [ v+1 pu? pu  eu
- Vor [2(7—1)p+ 2 | T2 T
y+1 [RT [ p pu? .
RN Scho P SRR el < >
< 5 - 7_1+ 5 +ue, sincep<eand (y+1)/2>1
- y+1 [RT
- <“+ 2 Vor)°©
< A{D)e
If u <0, then
1 [RT
=P =T (=)< | = l -
12| = - <I>(u)_<u+ 5 2W>W

and hence the lemma is proved.
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Theorem 2 Under the conditions of theorem (1), the first order LSKUM is stable in the

norm || - ||z and
m(?,X hiW{H—l S Qm(?x h,W,"
Proof:
o 7 At |Azj;| At Az
Wit = WP —Ar - )+ = ) e — Y (=%
' ' (li Tz‘>+liZJ St +7'i.z( ])Sr
JEL; JER;
At [(r;®F +1;|®; | At _
< wr_Z22 (05 ThEIF) 20 o + — -®
- Wz hz( ri +1; >+l, ?éa[q J+7'z ?El%}f( ‘7)
A A
< Wi+ —tmaxtifr + at max(—®;)
l; jec; 7 r; JER; J
At At -
= Wi+ 0+ (-9,
(2 K]
At At
< Wi+ 1%l + ||
K2 K3
n At
< W +F|(I)i|
K]

+ _ + -\ — -
and
|®F | = max{|®;, |, [®s, [}
From this we have,
RWIH < RWP + At
AtA(U}
< hWI+ 7}1(* L )h:‘ wr
i

< WP+ R

(4.10)
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We immediately obtain,
mga.x h,-Wi""'1 <2 mga.x hW

Also,

1
WL

ZhiWin+l
< D RWP A W
Wi + wz h;WP

(2

(1+=) Wiz

IA

Finally, we have

(p(pu®)) "
(2pe)'/?
lp| + le]

|pul

IA A

so that
llpull < llollz + llellz

and hence the theorem is proved.

Remark: [Weighted Least Squares]
All the above results are valid for weighted least squares with positive weights, except that
equations (1.1)-(1.2) must be modified as follows.

Dy, = Z wjiAm_?z’: D,, = Z wjiAl‘?i (4.11)
JEL; JER:

Sy, = — Z wjiAzji, Sp, = Z wj; Az j; (4.12)
JEL; JER:

5 Some Terminalogy in 2-D

Consider a two dimensional grid G, the coordinates of the points being {(z;,y;) | i € G}. For
each i € G, there exist a set of points C; = {j | j € G} which are said to be in the connectivity
of point i. Further, each C; is divided into £;, R;,U; and D;, so that C; = L; UR; = U; UD;,
and

Eiz{jeci|Aa:j,~§0}

Ri:{jeCi|Amﬁ20}
D; ={j €Ci| Ay;; <0}
Uy =1{j €Ci| Ay;; > 0}

Let S; denote one of these half-stencils. We also define the following quantities.

X;(Si) = (Z Ayiz) Azj; — (Z A-Tkz'Ayki> Ayji, J,k €S
k ¥
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Figure 2: Typical stencil for 2-D LSKUM

Y;(Si) = (Z Aﬂ?ﬁ) Ayjs — (Z AwkiA:l/ki) Az, J keSS
& &
D(S;) = (Z Aw?;) (Z Ayf‘i) - (Z ijiiji)za JES;

By Cauchy-Schwarz inequality,
D(Si) >0

6 First order LSKUM in Two-Dimensions

Consider the Boltzmann equation in two-dimension without the collision term,

The above equation can be rewritten after splitting the molecular velocities v; and vy into
positive and negative parts,

Of ,witinldf v lmldf vt ildf w-lmldf _
ot 2 Oz 2 Oz 2 0Oy 2 Oy

Using least squares for the derivatives, we obtain the first order update formula for f as,

Sf\" _(6fi\" Sfi\" _(of:\"
ntl _ pn _ + (0Ji 9Ji + (9Ji 9Ji
ot =g ot () v (), vt (2), +us (),

fi _ (ZAy) (2 Azl i) — ( Azsilysi) (X AysilAfi)
0z (E Am?z) (Z Ay?z) - Amjz'A?/jz')2

where
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fi _ (CAG) (C Ayildfii) — (2 AzjiAys) (2 AzjiAfyi)
oy (X Az%) (X Ay3) — (X Azjildy;:)’”

The conserved variables are obtained by taking -moments of fz-"“,

p
Un-‘rl — / "+1d17d1 — pu1
R2xR+ vf pu2
e
where
1
_ U1
Y= .
I+d%/2

The update equation for U is

Urtt =Up — At

(), (), ()5
or L or R dy D; oy us )

F* = / v fAvdl

where

G* = / v fAvdI

Similar to the 1-D case, we define the following quantities.

o=[ ]
v-[& ]

with obvious definitions for ®* and ¥*. Finally,
|®| = max{®t,-®"}, |¥|=max{T,-T"}
The solution space is
W={UeR:U, >0,Us > UZ+U)/2U1)} C R

Definition [Genuine Connectivity]
The connectivity C; is said to be genuine if, Vj € C;,

(L
(Ri
(D;
i (U

< b e

J
J
J

(6.2)

..<
N e e
oSO OO

IVIAIVIA

and strict inequality holds for atleast one j in each of the four stencils?

2This implies that D(S;) > 0 for each of the four stencils.
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Definition [Genuine Grid]

A grid, all of whose nodes have genuine connectivity is said to be a genuine grid.

Definition
For a genuine connectivity, we define the following lengths.

Praveen

(6.3)

(6.4)

D(L:)
L(L) = —=o5~
AN 55 917
D(R:)
LR;) = ="~
R)= sxm)
D(D;)
L(D;) = —=—*
P= ~sv,m)
D)
L(U;) = R TR TRy
W= sy
Note that all the above quantities are positive. We define three more lengths based on the
above.
_ L(£)L(Ry)
" L(Li) + L(Ry)
L(D;)L(Us)

Vi= L(D;) + L(U;)

hi = min{H;, V;}

(6.5)

(6.6)

Theorem 3 For a genuine grid and 1 < v < 3, the first order LSKUM is positivity preserv-

ing under the CFL condition,

o" <

DN | =

Proof: The first order update formula for U can be written as,

Urtt = Ur- At (% - %) - At <% - LC(Z))

Y EX (L) | E(-F)X;(Ri) +ZGfIYj(Di)|

j
il BT D(Ry) D(D,) D)
it F- Gt G-

> n _ —t .t ) _A 1 _ 1
= U At(L(ﬁi) L(R») t(L(Di) L(m))

At At
= U — +I|Fi| — |G
= Ur - IR - 3HGH

AATUP) . AU
- Ur— g _ i) pn
> up - Sty - Sy,
o pn_ 28RO

h;

= 0
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Lemma 7 Ifp>0,T >0, then for 1 <y <3,
dt >0, & <0

and
Tt >0, ¥ <0

Proof: The proof follows obviously from the definition of the kinetic split fluxes.

Lemma 8 Forl <~y <2,
|| <AUYW, [T < ANU)W
Proof: Consider the case u; > 0. Then,

|Fp| =

Fy
= / dI/ d’l)l/ d’UQ(’Ulf)
0 0 —00
= / dI/ d’l)l/ d’UQ(le)+‘LL1/ dI/ d’Ul/ d'U2(f)
0 0 —00 0 0 —co
- / dI/ dCl/ dCs(Cy f) + %
0
[e's} [e's} [e's} 0o 0 [e's} puy
- / dI / dcs / dCs(CLf) + / dI / dcy / dca(Cif) + B
0 0 - 0 —uy —00
< [Tar [ ae [ acen+ 5
0 0 - 2

(oW

Similarly,

|
+
A

(o] (o] o0 . o
< /0 dI/O dCl/_oodCz(I+|C+u| /2)(C1f)

+u1/ dI/ dvl/ duo (I +171/2)(f)
0 0 —o00

B RT [ v+1 p|i|? pur  eug

- %[2(7—1)1“r 2 | T2 T2
7+1 ﬂ[ p_ plaf

s Var [5-17 2 ]+e“1

= (g 4 2L /BT
- ! 2 27

< AO)e

13
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If uy <0, then
|F|=—-F~ = Ft(—up) < NOW

The proof for ¥ is also similar and hence the lemma is proved.

Theorem 4 Under the conditions of theorem (3), the first order LSKUM is stable in the
norm || - ||z and

max W <2 max h;W! (6.7)
Proof:

At OTIX;(L)| | Aty (=9;)X;(Ri)

W< Wi D(L;) * D(R;)
At UFY;(D:)] ALY (—97)Y;(U:)
D(D) * D(U;)

_ oy A Y OFIXG(L)] At Y(—8)X;(Ri)
CLL) X Xe(L)l LR X Xk(Ri)
At SUFIY;(D) At S (=T)Y;(U)
L(Di) >0 Yu(Di)| — LUs) 325 Yr(Us)

< Wi+ % Erézzdb;" + %%%(—QJ—) + %%g vr
gy )

= Wi+ L(Aﬁti)@;j + L(Aéz_)(—%) + %tp; + %(—%)

< Wi”+%l%l+%|¢igl+%|mi3l+%l%l

< wre e+ S

< W e+ e

In the above, we have defined,

+ _ + -y = -
;. = Eréai)f e, (_(I)z'z) = max(—Qj )

+ + -\ = -
Vi, =max U7, (-¥;,) = max(—¥;)

|®7] = max{[®;, [, [®i, |}, [V77| = max{|Pi, |, [®s[}
From this we obtain,

hi W-"+1

IA

hi W+ At|®F| + At| P}

IA

1
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so that

1
Wiz

Z h; Win-i-l

n 1 * * *k *k
< oW+ (ZhW +;hi W; )
n 1 n
< WL + 5 CwlWIIZ)
= (1+=)WlZ
Finally, we have
1/2
pur| = (plpu))
< (200)'?
< ol + el

so that

lloullz < llollz + [lellz
and similarly

llouzlle < llpllz + [lellz
Condition (6.7) follows similar to theorem (1).

7 Numerical Results

The higher order version of LSKUM known as ¢-LSKUM [1] has the same structure as
LSKUM and hence is expected to inherit the positivity and stability properties of LSKUM.
This method is applied to a problem with a large expansion which was suggested by Sjo-
green [7]. The initial conditions of the problem are given in table (1).

Pl Y4/ uj Pr Dr Uy
1.0(04|-20]10|04 1|20

Table 1: Initial conditions for the one-dimensional problem.

A uniform grid of 1001 points was used. The g¢-derivatives used in the algorithm were
limited by a min-max limiter. For all the derivatives, a weight of »~2 was used. Based on the
CFL number (4.5), we were able to use a CFL of upto 1.5, beyond which the program gave
negative pressures. The density and pressure obtained at ¢ = 0.15 are shown in figures (3)
and (4) in a semilog plot. Figure (5) shows negative pressure obtained for CFL=1.6

8 Summary

The positivity property of first order LSKUM has been established under a CFL-like con-
dition. Based on the positivity condition, some stability bounds have been derived. New
length scales are obtained in the definition of the CFL number which are less restrictive than
Azx;. Numerical experiments using ¢-LSKUM on a problem involving a large expansion show
that the same CFL condition works well.

15
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Figure 3: One-dimensional problem using ¢-LSKUM and CFL=1.5
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Figure 4: One-dimensional problem using ¢-LSKUM and CFL=1.5
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Figure 5: One-dimensional problem using ¢-LSKUM and CFL=1.6; loss of positivity.



