A New Upwind Least Squares Finite Difference Scheme (LSFD-U) for Euler Equations
of Gas Dynamies®

N. Balakrishnan' and Praveen. C?
CFD Centre, Department of Aerospace Engineering
Indian Institute of Science, Bangalore — 560 (12

1. Introduction

One of the remarkable progresses made in the area of CFD, in recent years is the
development of Grid Free Method [1-4] for numericaily solving the conservation laws
encountered in fluid dynamics. The fundamental principle underlying this method, is the
representation of the derivatives of the fluxes appearing in the conservation laws, using a
generalised finite difference strategy based on the method of least squares. This method
which can operate upon any kind of grid (structured, unstructured or cartesian) requires only
local connectivity information at any given node. The utility of this method in computing
flow' past complex configurations is extremely promising. The present work draws its
inspiration from the fact that this method has been applied only in the framework of flux
vector splitting schemes and not in the framework of flux difference splitting schemes. Here
we have attempted to extend the applicability of this Grid Free Method to the framework of
flux difference splitting schemes, and in the process arrived at an entirely new methodology
equally applicable to flux vector splitting schemes.

In section 2, we present briefly the details regarding the Least Squares Kinetic
Upwind Method (LSKUM) [1-4]. In section 3, the new least squares scheme is presented
with a brief review of the flux difference splitting schemes. In section 4, we present the
difficulties in extending the methodology to 2D and 3D flows, and also present two
variations of the scheme, which would circumvent this problem. In section 5, we present the
results and discussions. Concluding remarks are made in section 6.

2. Least Squares Kinetic Upwind Method (LSKUM)

The kinetic schemes for solving Euler equations of* gas dynamics are obtained by
exploiting the fact that these equations are moments of the Boltzmann equation of kinetic
theory for gases. Consider the 1D Boltzmann . equation :

fi+vi,=0 (1)

where f is the velocity distribution function which is a Maxwellian and v is the molecular
velocity. The fundamental principle underlying LSKUM is that the discrete approximation to
fy appearing in the Boltzmann equation is obtained using a least squares approximation given
by,
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The moment of the discretized Boltzmann equation will lead to an upwind scheme for the
Euler equation, if the stencil of the grid points to be used in equation (2) is chosen, taking
into account the direction of signal propagation. In other words, discrete approximation to fy
at any given point is obtained by using the grid points on its left if v>0 and vice versa. An
interested reader is referred to the papers cited above for a number of interesting
developments in LSKUM, including higher order schemes and the use of weighted least
squares in equation (2).

This idea when extended to the flux vector split framework of Euler equations, given
by,
Ui+ F+ Fr=0 . 3)
where U is the vector of conserved variables and F is the flux vector, the discrete
approximation to Fy' at any given point will involve grid points to its left, and Fy will
involve grid points to its right.

3. Upwind Least Squares Finite Difference Method (LSFD-U)

Inspired by the fact that the discrete least squares approximation to the derivative Fy
involves the flux difference term AF, it was thought that it would be appropriate to make use
of flux difference splitting in the least squares framework. Before we discuss the details of
the present least squares algorithm, we briefly discuss the flux difference splitting scheme as
applied to finite volume framework. '
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Fig 1. Typical 1D Finite Volume Computational Domain

Fig 1.depicts a typical 1D finite volume computational domain. In the flux difference
splitting scheme[8], the total flux difference AF = Fg- Fy is split into a positive part (AF)*
corresponding to the right running waves and a negative part (AF)" corresponding to the left
running waves, based on a suitable linearization procedure, in such a way that the interfacial
flux F; isgiven by

FI = FL + (AF)—

F =Fg - (AF)"
In a finite volume framework, an interfacial flux obtained as.an average of the above two
expressions is made use of in the state update formula.

Now we describe the present methodology. Equation 4 given above clearly suggests
that the flux difference between any fictitious interface perpendicularly intersecting the line
connecting the two grid points and the points themselves, can be obtained using a suitable
linearization procedure. At the heart of the present methodology is the use of such flux
differences based on upwinding principle in the discrete least squares approximation to Fx
appearing in the Euler equations. This leads to an upwind scheme based on the least squares
principle. It is also not necessary that the present methodology should be used only in
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conjunction with Flux Difference Splitting Schemes. The very fact that an upwind estimate of
the flux at the fictitious interface is all that is required for the determination of flux
differences involved in the present method, suggests the use of this -method in conjunction
with all upwind flux formula. As can be easily seen, the present methodology makes use of a
global stencil of grid points in contrast to the methodology described in section 2, which
requires an upwind stencil of grid points. Also, we make use of an upwind estimate of the
interfacial flux for determining AF's appearing in the least squares formula, in contrast to the
explicit use of the nodal values of the fluxes in the earlier framework.

4. LSFD-U in 2D

Here we present some of the interesting problems we face when extending the
algorithm just described for solving 2D flows. Fig.2 gives a typical 2D stencil of grid points.

Let I; represent the fictitious interface drawn across the line connecting the point under
'

consideration '0', and its j™ neighbour, and R j represent the unit vector along ‘o'

Representing the flux along oj by
FTj =F - nyj+ G-ny;

we have

AFp; =Epp —Fpy %)
AEp; = (vF, 'Aflj)ﬂxj +(VG, 'Aflj)nyj

(6)

where F and G are fluxes in x and y directions respectively. Now our job reduces to
recovering the information regarding the gradients of the 2D fluxes namely VF,and ¥G from

the many 1D flux difference terms given in equation 6. The derivatives F, and Gy thus
recovered would eventually be used in the state update formula. Equation 6 represents an
over determined system of equations and it appears that the straight forward way to obtain

the gradients of the fluxes is to minimise ZE? with respect to the derivatives of the fluxes,

where,

Bj=AFy; — (VE, - Aoy - (VG,, - A n, @
Unfortunately, simple algebra would demonstrate that such a procedure leads to a singular
system. To circumvent this problem we suggest the following two methodologies.

4.1 Method 1

In this method we locally rotate the co-ordinate system from (x,y)—>(&,n), in such
a way that 'ﬁn +G§ =0, where ¥ and G represent the fluxes along the new co-ordinate
directions & and m respectively. Note that the second and third components of the flux vectors

Fand G still represent the x and y momentum conservation. It can easily be demonstrated
that a co-ordinate system rotated at an angle o, given by,

F.+G :
oc=ltan—1 X ®)
2 Fy -Gy



would satisfy the condition that Fn +G £ =0. This leaves us with a non singular system with
two unknowns, ﬁ& and Gn' The derivatives thus determined are used in the state update

formula, The gradients of the fluxes used in the estimation of o are obtained using the least
squares procedure [3] making use of a global stencil of points.

4.2 Method 2

Method 2 draws its inspiration from the work of Ghosh and Deshpande [2]. Here the
local co-ordinates are rotated in such a way that one of the axes coincides with the
streamwise direction. It is a well known fact that the fluxes normal to the streamwise co-
ordinate direction involve only pressure terms and a global stencil can be used for
approximating the derivatives of such fluxes without loss in stability. The streamwise
rotation of the co-ordinate system leaves us-with a non singular system involving ﬁﬁ and El .

Similar to the previous method ﬁé and Gnare substituted in the state update formula. It

should be remembered that in method 2, the second and third components of the fluxes F and
Grepresent £ and | momentum conservation, unlike method 1 in which they represent x and

y momentum conservation.

5. Results and Discussions

The new least squares upwind finite difference method (LSFD-U) is validated using
standard 1D and 2D test problems. In the computations higher order accuracy is achieved
using the method of reconstruction[5]. Non physical oscillations in the solution are
suppressed using Venkatakrishnan limiter [6]. In all the computations presented in this work
the fictitious interface is placed at the mid point of the line segment under consideration.

Figure 3 gives the resuits obtained for the 1D shock tube problem of Sod [7]. The
results are obtained on a non-uniform grid generated using cosine spacing for grid points.
One hundred grid points have been used in the computation. Roe [8] flux has been used in
these calculations.

The results obtained for subsonic and transonic flows past NACA 0012 airfoil are
presented in Figures 4,5,6,7. The results are obtained on an unstructured mesh with 2779
mesh points (80 points are distributed on the wall). The 2D calculations have been made
using KFVS [9] flux formula. The results obtained using LSFD-U are compared with those
obtained using a cell vertex finite volume code. From the results it is evident that the new
LSFD-U framework is capable of capturing all features expected out of inviscid compressible
flows.

6. Conclusions

A new upwind least squares finite difference method has been developed. The new
~ scheme by the virtue of using a least squares framework can be considered as a Grid Free
Method. It has an added advantage of making use of a global stencil. The way the interfacial
fluxes are calculated in the new scheme resembles that of finite volume method and therefore
all the developments that have taken place in finite volume method, like the method of
reconstruction for achieving higher order accuracy [5] can be directly adopted. The use of
LSFD - U in the computation of flows past complex configurations is extremely promising.
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