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Godunov scheme

e At any time t", FV solution is constant in each cell
Uz, t") =U]", i1/ <x <Tif1)2

e Riemann problem at every cell interface

e Godunov's idea
@ Solve Riemann problem for U™ at every cell interface exactly
@ Evolve the Riemann solution upto next time level "1 =™ + At
© Average the solution at t"*! to get cell average values U !

e Solution of Riemann problem at ;. /,

T = Tjy1/2
Uit1/2 <t—t”>

waves moving to left and right
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Godunov scheme

Waves from successive Riemann problems must not intersect

h
At < —o
= 25n

S™ = maximum wave speed of all Riemann problems

Average solution at new time level

2h ¢ 0 ¢
/0 Ui—1/2 <At> d¢ +/_ . Uiy1/2 (At) d¢

1
2

1
U?l+1 _
' h

Difficult to implement numerically when expansion waves are present

CFL condition is more restrictive
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Godunov scheme

e Exact solution of Riemann problem

= L — Tit1/2
U(z,t) = Ui1/2 (t_H

m ) i <x<ap, th<t<t

e Satisfies integral conservation law

Tit1/2 1 Tiy1/2 _ At ~
/ Oz, " )de = / Oe,t)dz + [ Fl0(@iry, t)]dt

Ti—1/2 Ti—1/2 0

At
/ F JLL+1/2, ]d

But
At

At
/0 FlU (410, t)]dt = i FlUi11/9(0)]dt = F[U41/2(0)] At

etc., so that we finally have

At

urtt =up - 5 [F(Uig1/2(0)) = F(Ui_1/2(0))]

4/16



Godunov scheme

Godunov flux

Fiy1/2 = F(Ui, Uiy1) = F(Uiy1/2(0))

right moving waves from U;_; 5 should not reach x; /5 and vice
versa: CFL condition

h
At < —
Sn

Accurate but expensive - not used for practical computations

Recall: Linear system of equations F' = AU, A constant matrix
F(Ui12(0)) = AU + A" Uis

Here, Godunov scheme is identical to upwind scheme
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Roe scheme

e Roe's idea: Solve Riemann problem approximately

e Linearize the non-linear problem - then solve Riemann problem

oUu oU ou - oU
— 4+ AU)—=0 = —+A—=0
ot T AU 5 ot o
e Matrix A = A(U;, U,.) must satisfy certain consistency conditions
@ Consistency: A(U,U) = A(U)
® Hyperbolicty: A has all real eigenvalues and linearly independent
eigenvectors. B
© Conservation: F(U,) — F(U,) = A(U;,U,)(U, — Uy)
This is known as a Roe-type linearization of the non-linear
hyperbolic PDE.

6

16



Roe scheme

e Parameter vector

Al 1
7 = ZQ :\/ﬁ u
Zs H

e Define
Z(a) =Z1+ a(Z, — Z), Z(0) = 2, Z(1) =2,
e U and F' are homogeneous of degree two in the parameter vector Z
AU = U, -U =U(Z(1))-U(Z(0))
1
d
= —U(Z d
| devz@na

1
- / U(Z(0))(Z, — Z)da
0 \IW—/

= D(Z)AZ, 7 = %(Zl + Z)
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Roe scheme

e Similarly, we can show for the flux difference
AF =C(Z)AZ

e Matrices C, D are given by

271 0 0 Z Z1 0
DZ)=|2 Zi 0|, C2)=|Etz Hz Hz
%Z:% 77_122 %Zl 0 Z3 7o

e Hence we have
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Roe scheme
e Explicit computation gives
0 1 0
i=| (%) G-v% -
s (B) -4 h-o-0(3) %
e Define Roe averages

22 ul\/ﬁl + ur\/ﬁT f_[ % _ Hl\/ﬁl + Hr\/ﬁr

mnN= === =

Z1 ﬁl + \/ﬁr ’ Zl ﬁl + ﬁr

In terms of these average quantities, the matrix Ais

) 0 1 0
A= 3(y = 3)u? CB-ma -1

uly(y=1u* - H) H—(y-1)ua* ~a
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Roe scheme

e U = Conserved vector corresponding to i, H

e Then R
A= A(U)

Hence if we take A = A all three conditions satisfied

Ugr(z/t) be the solution of the Riemann problem for the
Roe-linearized equation

The flux is given by F(Ur(0)) and we know from linear systems

F(UR(0) = 3 (Fr+ ) — 3 [A, U)|(U; ~ V)

Has upwind property
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Roe scheme: entropy violation

e Roe scheme — derived from linearized problem — has only contact

discontinuities — no expansion wave

e sonic expansion wave — Roe scheme can give rise to entropy violating

shocks
e Eigenvalue of A becomes zero — loss of numerical dissipation

M =u—a, N =41, A3 =u+a

e Entropy fix — do not allow eigenvalue to become zero

4dea

2 _ ey _
5| = L +ea if [N\| < 2ea
' |\ otherwise

This fix is applied to Ay = u — a and A3 = u + a.
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Roe scheme formulae

1 _
F(Ul, Ur) = i(ﬂ + Fr) - §‘A(Ul, Ur)’(Ur - Ul)

Eigenvectors of A

1 1 1
ry = _ﬂ a |, mr= U , Trz3= _I_L +a
H — ua 22 H + ua
where .
@ = (v~ DA ~ )

Write jump in terms of eigenvectors

AU =U, —U; = ayr1 + agrg + asrs
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Roe scheme formulae

or
ar+art+az = AU
(i —a) + i+ az(i+a) = AU
oy (H — aa) + OZQU; +a3(H +ua) = AU
Solution is
= L — @)Au, + aau, — AU
o = %[(a + a)AU; — AU, — aas)
a3 = AUy —a; —az
Then the flux is
F(U,U,) = ;FI+F Zajm |r;

13 /16



Roe scheme for general system

e General system of conservation law

oUu OF
—+— = FeR"
Ot + oz 0, U, Fe
e Entropy-entropy flux pair (n,0) : U — R, 1 convex
0'(U) =n'(U)F'(U)
Theorem of Harten and Lax

If the hyperbolic system has an entropy-entropy flux pair, then it admits a
Roe-type linearization.
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Fig. 11.4. Godunov’s method with Roe’s Riemann solver (no entropy fix) for Test
1, zo = 0.3. Numerical (symbol) and exact (line) solutions compared at time 0.2
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Fig. 11.5. Godunov’s method with Roe’s Riemann solver applied to Test 1, with
zo = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2
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