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High resolution schemes

• We have seen two notions of stability: Fourier stability and maximum
stability (monotone scheme, positive scheme, LED scheme)

• Fourier stability is always necessary; it determines stability to small
perturbations.

• A scheme which is not Fourier stable is useless since it will cause
blow-up of solution.

• Maximum stability is a stronger notion of stability. It prevents
solution from oscillating. It is required when solution has
discontinuities or steep gradients or is not smooth.

• Maximum stable first order schemes: upwind, Lax-Friedrichs

• Second order scheme: Lax-Wendroff, Fourier stable under CFL
condition, but not stable in maximum norm.

• Basic idea of high order scheme: blend first order and second order
scheme with a switching function, called limiter. If solution is locally
in danger of developing oscillations, switch from second order to first
order scheme. It is second order in smooth regions.

2 / 39



Godunov’s order barrier theorem

vn+1
i =

∑
j

bjv
n
i+j , {bj} are some constants

Taylor series in space for exact solution u

uni+j = uni +

∞∑
m=1

(jh)m

m!

∂mu

∂xm

Taylor series in time for exact solution u

un+1
i = uni +

∞∑
m=1

(∆t)m

m!

∂mu

∂tm

Local truncation error: scheme is p’th order accurate if

τni =
1

∆t

un+1
i −

∑
j

bju
n
i+j

 = O (hp)
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Godunov’s order barrier theorem

Use PDE: ut = −aux, utt = a2uxx, etc. Then

τni ∆t = (1−
∑
j

bj)u
n
i − (σ +

∑
j

jbj)hux

+(σ2 −
∑
j

j2bj)
1

2
h2uxx +O

(
h3
)

For first order accuracy, we need∑
j

bj = 1,
∑
j

jbj = −σ =⇒ τni = O (h)

For second order accuracy, we need∑
j

j2bj = σ2 =⇒ τni = O
(
h2
)
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Godunov’s order barrier theorem
Assume that the scheme is positive, bj ≥ 0 and second order accurate.
Then, by Cauchy-Schwartz inequality

σ2 =

∑
j

jbj

2

=

∑
j

j
√
bj
√
bj

2

≤ (
∑
j

j2bj)(
∑
j

bj) = σ2

This is possible only if equality holds in Cauchy-Schwartz inequality, i.e., if

j
√
bj = c

√
bj , for some constant c

This implies that j = −σ and requires σ to be an integer in which case we
obtain exact solution. But in general, this condition cannot be satisfied.

Any linear, positive scheme for ut + aux = 0 is at most first order accurate.
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Second order upwind scheme

Assume a > 0. The semi-discrete SOU scheme is

dvi
dt

= −a
h

(3vi − 4vi−1 + vi−2) =
2a

h
(vi−1 − vi)−

a

2h
(vi−2 − vi)

Write as first order upwind scheme + correction

dvi
dt

= −a
h

(vi − vi−1)− a

h

[
1

2
(vi − vi−1)− 1

2
(vi−1 − vi−2)

]
Define difference ratios to measure local solution smoothness

ri−1 =
vi − vi−1

vi−1 − vi−2
, ri =

vi+1 − vi
vi − vi−1

Introduce switching functions

dvi
dt

= −a
h

[
(vi − vi−1) +

1

2
Ψ(ri)(vi − vi−1)− 1

2
Ψ(ri−1)(vi−1 − vi−2)

]
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Second order upwind scheme

which can be written as

dvi
dt

= −a
h

[
1 +

1

2
Ψ(ri)−

1

2

Ψ(ri−1)

ri−1

]
(vi − vi−1)

This scheme is positive provided

Ψ(ri−1)

ri−1
−Ψ(ri) ≤ 2

We have lot of freedom in choosing the function Ψ. Let us restrict Ψ to
be a positive function

Ψ(r) ≥ 0, r ≥ 0

When Ψ = 0, the scheme becomes first order accurate. If there is shock
around some grid point, i.e., ri < 0, we want the scheme to become first
order accurate. Hence

Ψ(r) = 0, r ≤ 0
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Second order upwind scheme

These conditions imply that

0 ≤ Ψ(r) ≤ 2r

Symmetry property: Backward and forward differences are treated in the
same manner

Ψ(r)

r
= Ψ

(
1

r

)
This leads to the condition

Ψ(r) ≤ 2

Combining all the above conditions, we get

0 ≤ Ψ(r) ≤ min(2, 2r)
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Second order upwind scheme
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Figure 8.3.2 Monotonicity region for limiter functions, based on relation (8.3.49).

Limiters for the second order upwind (SOU) scheme of Warming and Beam
Let us re-apply the methodology to the unique second order upwind (SOU) scheme
of Warming and Beam on the support (i − 2, i − 1, i). We will subsequently apply
it to the centrally discretized Lax–Wendroff scheme on the support (i − 1, i, i + 1),
with an amazing consequence, namely that, after introduction of the limiters, the high-
resolution versions of these two schemes will be viewed as leading to the same results.

We consider the Warming and Beam scheme with the coefficients defined by
equation (8.2.30):

un+1
i = un

i + σ(2 − σ) (un
i−1 − un

i ) + σ

2
(σ − 1) (un

i−2 − un
i ) (8.3.50)

Step 1: rewrite the scheme as a correction to the monotone first order upwind scheme,
with the additional terms under the form of differences between adjacent points

un+1
i = un

i − σ (un
i − un

i−1)
︸ ︷︷ ︸

Monotone scheme

− σ

2
(1 − σ) (un

i − un
i−1) + σ

2
(1 − σ) (un

i−1 − un
i−2)

︸ ︷︷ ︸
Non-monotone terms

(8.3.51)

Step 2: multiply the two non-monotone terms by functions "(ri) and "(ri−1),
leading to

un+1
i = un

i − σ (un
i − un

i−1) − σ

2
(1 − σ)"(ri) (un

i − un
i−1)

+ σ

2
(1 − σ) "(ri−1)(un

i−1 − un
i−2)

= un
i − σ

{
1 + 1

2
(1 − σ)

[
"(ri) − "(ri−1)

ri−1

]}
(un

i − un
i−1) (8.3.52)

If v is a linear function of x, then the scheme should give exact solution.
In this case ri = 1 and we should have

Ψ(1) = 1

This condition is required to achieve second order accuracy in smooth
regions.
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Figure 8.3.3 Region of monotonicity for second order schemes.

The drawback of the limiters is that they reduce the scheme locally to first order
at extrema, when r = 0. This is justified when it serves to suppress oscillations, since
first order schemes are generally monotone, but if the exact solution has extrema, like
a sine wave, then the solution will be locally deformed by the action of the limiters.

This has to be considered as the ‘price’to pay for the achievement of high-resolution
schemes.

It has to be said that the development of high-resolution schemes is one of the
most remarkable achievements of the history of CFD.

Various limiter functions have been defined in the literature and are currently
applied.

Van Leer (1974) proposed initially the formula

!(r) = r + |r|
1 + r

(8.3.61)

shown in Figure 8.3.4a.
A similar limiter, with a smoother behavior, has been applied by Van Albada et al.

(1982),

!(r) = r2 + r
1 + r2 (8.3.62)

It has the property of tending to 1 for large values of r, while the Van Leer limiter
tends to 2 asymptotically.

The lowest boundary of the considered TVD domain is an often applied limiter. It
is shown on Figure 8.3.4b and can be represented by

!(r) =
{

min (r, 1) if r ≥ 0
0 if r ≤ 0

(8.3.63)
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Limiter functions
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Figure 8.3.4 Limiters for high-resolution schemes.

and is a particular case of the min-mod function, defined as the function which selects
the number with the smallest modulus from a series of numbers when they all have
the same sign, and zero otherwise. For two arguments

min mod(x, y) =






x if |x| < |y| and x.y > 0
y if |x| < |y| and x.y > 0
0 if x.y < 0

(8.3.64)

or in compact form

min mod(x, y) = sgn(x). max [0, min (|x|, sgn(x).y)] (8.3.65)
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Lax-Wendroff scheme

vn+1
i =

1

2
σ(1 + σ)vni−1 + (1− σ2)vni −

1

2
σ(1− σ)vni+1

If a > 0 so that σ > 0, then coefficient of vni+1 is negative and the scheme
is not monotone.

Define ratios

Ri =
vi − vi−1

vi+1 − vi
=

backward difference

forward difference

If the solution vi−1, vi, vi+1 is smooth then Ri = O (1). In fact if solution
is linear in x, then Ri = 1.
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Modification of Lax-Wendroff scheme

Step 1: Write high order scheme as low order positive scheme + correction
term

un+1
i = uni − σ(uni − uni−1)

−σ
2

(1− σ)(uni+1 − uni ) +
σ

2
(1− σ)(uni − uni−1)

Step 2: Introduce switching function in correction terms

un+1
i = uni − σ(uni − uni−1)

−σ
2

(1− σ)Ψ(Ri)(u
n
i+1 − uni ) +

σ

2
(1− σ)Ψ(Ri−1)(uni − uni−1)

or, re-arranging

un+1
i = uni − σ

{
1 +

1

2
(1− σ)

[
Ψ(Ri)

Ri
−Ψ(Ri−1)

]}
(uni − uni−1)
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Modification of Lax-Wendroff scheme

Scheme is positive if

Ψ(Ri−1)− Ψ(Ri)

Ri
≤ 2

1− σ

Assuming symmetry property for limiter, this condition is satisfied by
choosing

0 ≤ Ψ(R) ≤ min

(
2R

σ
,

2

1− σ

)
Since by CFL condition 0 ≤ σ ≤ 1, we can take the more restrictive
condition

0 ≤ Ψ(R) ≤ min(2, 2R)

This is the same condition as we obtained for the SOU scheme and the
allowed region for Ψ is as before.
For better accuracy, one should use the condition involving the CFL
number σ, see Hirsch, page 387.
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1 < r < 2, ! = r and again the larger quantity is transferred as contribution to the
updated solution, Finally, for r > 2 the smaller quantity 2(ui − ui−1) is transferred.
The specific effect of the limiters on smooth flows can be seen from a comparison of the
Figures 8.3.5, which display the results of the convection of a low frequency sinusoidal
wave. The linear convection equation is solved with the second order limited upwind
scheme (8.3.52), applying the min-mod and the superbee limiters. Figure 8.3.5a is
obtained with the first order upwind scheme and the excessive dissipation inherent to
all first order schemes is apparent, when compared to the exact solution. Figure 8.3.5b
shows the improvement obtained with the standard second order upwind scheme
(8.3.50), at the expense of oscillations appearing at the slope discontinuities, typical
of all second order schemes. The introduction of the limiters in the second order
upwind scheme removes completely the oscillations, producing monotone profiles.
However, the min-mod limiter reduces locally the accuracy of the solution around
the extrema, as seen on Figure 8.3.5c, bringing it close to first order, because of the
condition (8.3.45). Finally, Figure 8.3.5d shows the behavior of the superbee limiter
where its over-compressive property is clearly seen.

The maxima are flattened and the gradients are made steeper. This is well adapted
for sharp discontinuities but not too adequate for smooth profiles.

CFL!0.5 100 time steps 101 points
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Figure 8.3.5 Effects of limiters on the linear convection of a sinusoidal wave
(a) first order upwind scheme (b) second order upwind scheme (c) second order
upwind scheme with min-mod limiter (d) second order upwind scheme with
superbee limiter.
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The effects of the limiters on discontinuities can also be seen from the convection
of a square wave. Figures 8.3.6 and 8.3.7 compare the linear convection of a square
wave, after 120 and 400 time steps at a Courant number of 0.5. Figure 8.3.6a is
obtained with the first order upwind scheme, showing its excessive diffusion; Fig-
ure 8.3.6b is obtained with the second order upwind scheme, showing the strong
oscillations around the discontinuities. Figures 8.3.6c–e are computed with the min-
mod, Van Leer and superbee limiters, respectively, and generate monotone profiles.
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Figure 8.3.6 Effects of limiters on the linear convection of a square wave after
120 time steps: (a) first order upwind scheme, (b) second order upwind scheme,
(c) second order upwind scheme with min-mod limiter, (d) second order upwind
scheme with Van Leer limiter and (e) second order upwind scheme with superbee
limiter.
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Figure 8.3.7 Effects of limiters on the linear convection of a square wave after
400 time steps: (a) first order upwind scheme, (b) second order upwind scheme, (c)
second order upwind scheme with Van Leer limiter and (d) second order upwind
scheme with superbee limiter.

The min-mod limiter however is still too diffusive, while the superbee limiter pro-
duces excellent results, with extremely sharp discontinuities. The Van Leer limiter
has properties between the previous two. Superbee maintains the sharpness of the
profile indefinitely, as can be seen by comparing with a similar calculation after 400
time steps, shown on Figure 8.3.7c. The points in the transition region are practi-
cally unchanged from time step 120 to step 400, while it is seen that the Van Leer
limiter still continues to generate a small, but continuous, diffusion of the transition
profiles.

Figure 8.3.8 shows results obtained with the high-resolution LW scheme (8.3.57)
on the same test case as the previous figures for the linear convection equation. Here
again the superbee limiter leads to very sharp, non-diffusive transition profiles, while
the other limiters, the min-mod and the Van Leer limiters, still have some diffusive
components. Note in particular the symmetrical shape of the profiles, compared to the
similar profiles obtained with the upwind method, which show traces of the upwind
discretizations.
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1.0

!0.5

0.0

0.5

1.0

1.5
u

2.0 3.0

x

2.51.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
u

2.0 3.0

x

2.51.5

1.0

0.0

0.4

0.2

0.6

0.8

1.0

1.2
u

2.0 3.0

x

2.51.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
u

2.0 3.0

x

2.51.5

(a) (b)

(c) (d)

CFL"0.5 120 time steps 101 points CFL"0.5 120 time steps 101 points

CFL"0.5 120 time steps 101 points CFL"0.5 120 time steps 101 points

Figure 8.3.8 Effects of limiters on the linear convection of a square wave after
120 time steps: (a) standard LW scheme, (b) second order high-resolution LW
scheme with min-mod limiter, (c) second order high-resolution LW scheme with Van
Leer limiter and (d) second order high-resolution LW scheme with superbee limiter.

HANDS-ON TASK 4

Extend the program you have written under the Hands-On Task 2 (Chapter 7),
introducing the limiters to obtain high-resolution schemes. Obtain the various
results displayed in Figures 8.3.5–8.3.9.

Introduce also other limiters and test various cases. In particular, apply the
high-resolution schemes to the test cases of the propagating waves of 7.3.7 and
7.3.8. Observe the positive effect of the limiters on the reduction of the dispersion
errors, in particular with the LW and WB schemes.

Limiters for time-dependent problems
Time-dependent problems, in particular moving discontinuities such as moving
shocks, or free surface problems between two fluids such as surface waves in ship
hydrodynamics or sloshing problems in tanks, put very severe constraints on the
numerical schemes, in order to be able to follow the motion of the discontinuity over
longer times. The main challenge is to avoid the effects of the numerical diffusion of
the interface.
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FVM for Non-linear conservation law

vn+1
i = vni − λ(gn

i+ 1
2

− gn
i− 1

2

) = H(. . . , vni−1, v
n
i , v

n
i+1, . . .)

Definition: Monotone scheme

The scheme is monotone if H is an increasing function in all its
arguments. If H is differentiable then it is monotone if

∂

∂vk
H(. . . , vi−1, vi, vi+1, . . .) ≥ 0, k = . . . , i− 1, i, i+ 1, . . .

Remark: A linear scheme, e.g.,

H(vi−1, vi, vi+1) = avi−1 + bvi + cvi+1

is monotone if all coefficients are positive, i.e., a ≥ 0, b ≥ 0, c ≥ 0.
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Theorem

Consider a 3 point scheme with numerical flux g(·, ·) i.e.,

gi+ 1
2

= g(vi, vi+1)

The scheme is monotone if g is an increasing function in the first
argument and a decreasing function in the second argument.

Theorem

A monotone scheme converges to the unique entropy solution.

Remark: The Godunov scheme is a monotone scheme. The
Murman-Roe scheme is not a monotone scheme.

Theorem

Any differentiable monotone scheme is at most first order accurate.
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Total variation

TV(v) =
∑
i

|vi − vi−1|

TV measures the amount of oscillation in the solution v. If v develops
new wiggles, then its TV increases.

Definition: Total Variation Diminishing (TVD) scheme

The scheme H is said to be TVD if

TV(vn+1) ≤ TV(vn)

Theorem

Monotone scheme⇒ TVD scheme⇔ Monotonicity preserving scheme
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Harten’s incremental form

vn+1
i = vni + Cn

i+ 1
2

(vni+1 − vni )−Dn
i− 1

2

(vni − vni−1)

Ci+ 1
2

= C(. . . , vi, vi+1, . . .), Di− 1
2

= D(. . . , vi−1, vi, . . .)

vn+1
i = vni − λ(gn

i+ 1
2

− gn
i− 1

2

)

= vni − λ(gn
i+ 1

2

− fni + fni − gni− 1
2

)

= vni − λ
gn
i− 1

2

− fni
vni − vni−1

(vni − vni−1)− λ
gn
i+ 1

2

− fni
vni+1 − vni

(vni+1 − vni )
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Theorem

The scheme H is TVD if

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, Ci+ 1

2
+Di+ 1

2
≤ 1

Proof:
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Reconstruction approach

• First order FV: piecewise constant solution

vn+1
i = vni − λ[g(vni , v

n
i+1)− g(vni−1, v

n
i )]

or semi-discrete scheme

dvi
dt

+
g(vi, vi+1)− g(vi−1, vi)

h
= 0

• Higher order scheme: Reconstruct solution inside each cell by a
polynomial pi(x)

vi =
1

h

∫ x
i+1

2

x
i− 1

2

pi(x)dx

Evaluate pi(x) at the cell faces xi− 1
2

, xi+ 1
2

vR
i− 1

2

= pi(xi− 1
2
), vL

i+ 1
2

= pi(xi+ 1
2
)
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Reconstruction approach

• At any cell face xi+ 1
2

we have reconstructed states

vL
i+ 1

2

= pi(xi+ 1
2
), vR

i+ 1
2

= pi+1(xi+ 1
2
), vL

i+ 1
2

6= vR
i+ 1

2

• Semi-discrete scheme

dvi
dt

+
g(vL

i+ 1
2

, vR
i+ 1

2

)− g(vL
i− 1

2

, vR
i− 1

2

)

h
= 0

• Discretise in time using high order time integration scheme, e.g., RK
scheme.
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Solution Reconstruction

Given the cell average values {vi}, we want to reconstruct the solution in x
Simplest approach: piecewise linear reconstruction

pi(x) = vi + si
(x− xi)

h
, xi− 1

2
< x < xi+ 1

2

Note that this already satisfies

1

h

∫ x
i+1

2

x
i− 1

2

pi(x) = vi

How to estimate the slope si ? Several possible choices

sbi = vi − vi−1, sfi = vi+1 − vi, sci =
1

2
(vi+1 − vi−1)

If v is smooth, then central difference sci is the most accurate. But if there
is a discontinuity in v around i then we should take the smoothest possible
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Solution Reconstruction
data/stencil. One possibility is to choose the estimate with smallest
absolute value of slope.

minmod(a, b, c) =

{
sign(a) min(|a|, |b|, |c|) if sign(a) = sign(b) = sign(c)

0 otherwise

Linear reconstruction with minmod limiter

si = minmod(sbi , s
c
i , s

f
i )

The reconstructed solution has TVD property

TV(p) = TV(v)

This scheme can still lead to diffusion of shocks and clipping of local
extrema. A slightly relaxed version of slope which gives more accurate
shocks, but may create some small oscillations is

si = minmod(θsbi , s
c
i , θs

f
i ), 1 ≤ θ ≤ 2
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MUSCL scheme of Van Leer

From Taylor formula

v(x) = v(xj) + (x− xj)vx(xj) +
1

2
(x− xj)2vxx(xj) +O

(
∆x3

)
But v(xj) 6= vj while we want conservation, so ignoring terms O (∆x)3

and above

1

∆x

∫ x
j+1

2

x
j− 1

2

v(x)dx = vj =⇒ v(xj) = vj −
∆x2

24
vxx(xj)

Hence

v(x) = vj + (x− xj)vx(xj) +
1

2

[
(x− xj)2 − ∆x2

12

]
vxx(xj) +O

(
∆x3

)
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MUSCL scheme of Van Leer

Degree two polynomial in cell (xj− 1
2
, xj+ 1

2
)

pj(x) = vj+(x−xj)
vj+1 − vj−1

2∆x
+

3κ

2

[
(x− xj)2 − ∆x2

12

]
vj−1 − 2vj + vj+1

∆x2

where we have introduced a parameter κ. If κ = 1
3 then we obtain third

order accuracy in the reconstruction. Using this approximation we can get
the states at the cell faces

v+
j− 1

2

= pj(xj− 1
2
) = vj −

1

4
[(1 + κ)∆vj− 1

2
+ (1− κ)∆vj+ 1

2
]

v−
j+ 1

2

= pj(xj+ 1
2
) = vj +

1

4
[(1− κ)∆vj− 1

2
+ (1 + κ)∆vj+ 1

2
]

which can be used to compute the flux

gj+ 1
2

= g(v−
j+ 1

2

, v+
j+ 1

2

)
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MUSCL scheme of Van Leer

In order to make the scheme TVD we limit the reconstructed states v±
j+ 1

2

.

We first write

v+
j− 1

2

= vj −
1

4
[(1 + κ)

∆vj− 1
2

∆vj+ 1
2

∆vj+ 1
2

+ (1− κ)
∆vj+ 1

2

∆vj− 1
2

∆vj− 1
2
]

v−
j+ 1

2

= vj +
1

4
[(1− κ)

∆vj− 1
2

∆vj+ 1
2

∆vj+ 1
2

+ (1 + κ)
∆vj+ 1

2

∆vj− 1
2

∆vj− 1
2
]

Let us introduce the parameter

Rj =
∆vj+ 1

2

∆vj− 1
2
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MUSCL scheme of Van Leer

to measure the local smoothness of the function. Then we introduce a
limiter function ψ into the reconstruction scheme

v+
j− 1

2

= vj −
1

4
[(1 + κ)ψ(1/Rj)∆vj+ 1

2
+ (1− κ)ψ(Rj)∆vj− 1

2
]

v−
j+ 1

2

= vj +
1

4
[(1− κ)ψ(1/Rj)∆vj+ 1

2
+ (1 + κ)ψ(Rj)∆vj− 1

2
]

(1)

In smooth regions we expect Rj ≈ 1 and we should have ψ(Rj) ≈ Rj . In
particular, we need ψ(1) = 1 in order to obtain second order accuracy in
smooth regions.
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Theorem

The finite volume scheme with monotone Lipschitz continuous numerical
flux

vn+1
j = vnj − λ(gn

j+ 1
2

− gn
j− 1

2

), gj+ 1
2

= g(v−
j+ 1

2

, v+
j+ 1

2

)

where the states v±
j+ 1

2

are obtained by the κ parameter MUSCL scheme

(1) is TVD if ψ satisfies

0 ≤ ψ(R) ≤ 3− κ
1− κ

− (1 + α)
1 + κ

1− κ
, 0 ≤ ψ(R)

R
≤ 2 + α

where α ∈ [−2, 2(1− κ)/(1 + κ)] under the CFL time step restriction

λ
(2− (2 + α)κ)

1− κ
Cj ≤ 1, Cj = max

u,v

∣∣∣∣∂g∂u(u, v+
j+ 1

2

)− ∂g

∂v
(v−
j− 1

2

, v)

∣∣∣∣
where the maximum is taken over all u between v−

j− 1
2

, v−
j+ 1

2

and all v

between v+
j− 1

2

, v+
j+ 1

2

.
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Some limiters

The limiter function

ψMM (R) = max(0,min(R, β)), β ∈ [1, (3− κ)/(1− κ)]

satisfies the conditions of the theorem. Let us choose κ = −1 and β = 1.
Then we obtain the minmod limiter

ψMM (R) = max(0,min(R, 1))

Van Leer limiter

ψ(R) =
R+ |R|
1 + |R|

Van Albada limiter

ψ(R) =
R2 +R

1 +R2
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Unfortunately TVD schemes lose their accuracy near smooth local
extrema. This leads to clipping of local extrema.

Theorem (Osher)

The TVD discretizations all reduce to at most first order accuracy at
non-sonic critical points, i.e., points u∗ at which f ′(u∗) 6= 0 and u∗x = 0

We have to relax the strict TVD condition to develop uniformly high order
accurate schemes.

34 / 39



Method of lines
Integrate over space only

dvj
dt

+
gj+ 1

2
(t)− gj− 1

2
(t)

∆x
= 0, gj+ 1

2
(t) = g(v−

j+ 1
2

(t), v+
j+ 1

2

(t))

The two states are obtained by some piecewise polynomial reconstruction
TV,

v−
j+ 1

2

(t) = pj(xj+ 1
2
, t), v+

j+ 1
2

(t) = pj+1(xj+ 1
2
, t)

The space discretization is second order accurate. We need atleast a
second order discretization in time so that the overall scheme is second
order accurate.
Let us write the system of ODE as

dv

dt
= L(v)

Let us also assume that the first order in time discretization is stable, i.e.,

∆t ≤ ∆t1 =⇒ ‖v + ∆tL(v)‖ ≤ ‖v‖
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First order time integration scheme

First order scheme: Forward Euler

vn+1 = vn + ∆tL(vn)

Let us apply this scheme to the ODE

du

dt
= λu

which yields
vn+1 = [1 + λ∆t]vn

while the exact solution is

un+1 = eλ∆tvn = [1 + λ∆t+O (∆t)2]vn

The numerical scheme agrees with the exact solution upto O (∆t).
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Second order time integration scheme
Second order scheme (2-stage)

v(0) = vn

v(1) = v(0) + ∆tL(v(0))

v(2) =
1

2
v(0) +

1

2
[v(1) + ∆tL(v(1))]

vn+1 = v(2)

Applying this scheme to the ODE du
dt = λu yields

vn+1 = [1 + λ∆t+
1

2
(λ∆t)2]vn

which agrees with the exact solution upto O (∆t)2. Since the scheme is a
convex combination, we obtain stability for ∆t ≤ ∆t1∥∥vn+1

∥∥ ≤ 1

2

∥∥∥v(0)
∥∥∥+

1

2

∥∥∥v(1) + ∆tL(v(1))
∥∥∥ ≤ 1

2
‖vn‖+

1

2

∥∥∥v(1)
∥∥∥ ≤ ‖vn‖

Such time integration schemes are known as Strong Stability Preserving
RK schemes.

37 / 39



SSP RK schemes
Third order scheme (3-stage)

v(0) = vn

v(1) = v(0) + ∆tL(v(0))

v(2) =
3

4
v(0) +

1

4
[v(1) + ∆tL(v(1))]

v(3) =
1

3
v(0) +

2

3
[v(2) + ∆tL(v(2))]

vn+1 = v(3)

A general m-stage RK scheme is of the form

v(0) = vn

v(i) =

i−1∑
k=0

[
αikv

(k) + ∆tβikL(v(k))
]
, i = 1, . . . ,m

vn+1 = v(m)
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By consistency (take L(v) ≡ 0), we must have

i−1∑
k=0

αik = 1, i = 1, . . . ,m

Lemma (Stability of SSP RK scheme)

If ∆t ≤ ∆t1 =⇒ ‖v + ∆tL(v)‖ ≤ ‖v‖

then the m-stage RK scheme is stable under CFL condition

∆t ≤ c∆t1, c = min
i,k

αik
βik

provided that αik ≥ 0, βik ≥ 0.

Remark: If the first order time scheme is TVD, then the high order
SSPRK scheme is also TVD under a suitable time step condition.
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