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High resolution schemes

We have seen two notions of stability: Fourier stability and maximum
stability (monotone scheme, positive scheme, LED scheme)

Fourier stability is always necessary; it determines stability to small
perturbations.

A scheme which is not Fourier stable is useless since it will cause
blow-up of solution.

Maximum stability is a stronger notion of stability. It prevents
solution from oscillating. It is required when solution has
discontinuities or steep gradients or is not smooth.

Maximum stable first order schemes: upwind, Lax-Friedrichs

Second order scheme: Lax-Wendroff, Fourier stable under CFL
condition, but not stable in maximum norm.

Basic idea of high order scheme: blend first order and second order
scheme with a switching function, called limiter. If solution is locally
in danger of developing oscillations, switch from second order to first
order scheme. It is second order in smooth regions.
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Godunov's order barrier theorem

ot = g bjvit {b;} are some constants

Taylor series in space for exact solution u

0 o (jh)m LOT
Uiy = Ui+ Z m!  Ox™
m=1

Taylor series in time for exact solution u

) A m 8777,
RIS

Local truncation error: scheme is p'th order accurate if

Tin_ up - Zb uiyy | = O (P



Godunov's order barrier theorem

Use PDE: u; = —auy, uy = a*uyy, etc. Then

AL = 1—Zb Ju; — U+Z]b hg
(o ijb um+(’)(h3)
For first order accuracy, we need
Y=L Yih=—0 = =00
J J

For second order accuracy, we need

ngb‘j =02 = =0 (hg)
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Godunov's order barrier theorem

Assume that the scheme is positive, b; > 0 and second order accurate.
Then, by Cauchy-Schwartz inequality

2

ol = Zjbj = Zj\/ITj\/Fj
Q7R b)

This is possible only if equality holds in Cauchy-Schwartz inequality, i.e., if

IN

]\/bj = c\/bj, for some constant ¢

This implies that j = —o and requires ¢ to be an integer in which case we
obtain exact solution. But in general, this condition cannot be satisfied.

Any linear, positive scheme for u; + au, = 0 is at most first order accurate.J
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Second order upwind scheme

Assume a > 0. The semi-discrete SOU scheme is

dv; a 2a
e —5(31}1- — 41 +vi—9) = 3 (vieg — V) — oh (Vi — v;)
Write as first order upwind scheme + correction
do; 1 1
ﬁ = _%('Ui — 1) — % 5 (i = vim1) = S (vie1 = vi-2)

Define difference ratios to measure local solution smoothness

Vi — Vi1 Vi1 — Y
Ti-1=——— rp =
Vi—1 — Vi—2 Vi — Vi-1
Introduce switching functions

do; a 1 1
dftl =3 (vi —vi—1) + i\l’(ri)(vi —vi1) — 5‘1’(7’2'71)(%71 — Vi—2)
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Second order upwind scheme
which can be written as

dv;  a N 1(rio)

1
dt — _72/ + 5 (7“1) 2? (Ui — U,‘,l)

This scheme is positive provided

\I/(’I'L',l)

—U(r;,) <2
Ti—1 (rs) <

We have lot of freedom in choosing the function W. Let us restrict ¥ to
be a positive function
U(r) >0, r>0

When ¥ = 0, the scheme becomes first order accurate. If there is shock
around some grid point, i.e., r; < 0, we want the scheme to become first
order accurate. Hence

U(r) =0, r<0
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Second order upwind scheme
These conditions imply that
0<WU(r)<2r
Symmetry property: Backward and forward differences are treated in the

same manner
v(r 1
r r

U(r) <2

This leads to the condition

Combining all the above conditions, we get

0 < ¥(r) < min(2,2r)
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Second order upwind scheme

w(r)=r
LW scheme

W(ry=1
WB scheme

If v is a linear function of x, then the scheme should give exact solution.

In this case r; = 1 and we should have
U(l)=1

This condition is required to achieve second order accuracy in smooth
regions.
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Second order upwind scheme

W(ry=r
LW scheme

w(r) =1
WB scheme
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Limiter functions

W(r) w(r)
¢ 1 (r)=2r|W(r)=r r 1 (r)=2r|W(r)=r
2------ o Ao 2------ fommm e
I I
I I
j j
1 - e 1=~
I I I I
I I I I
I I I I
| | Van Leer limiter , | | Min-mod limiter
i i i i
2 1 2
(a) Van Leer's limiter W= (r+Ir|)/(1+r) (b) Min-mod Limiter ¥(r)=min-mod (r,1)
W(r) W(r)
, }W(r)zZr}‘l/(r):r , v=2r V=r
2-t-———— o 2L
i B
| |
1-- A - 1--- B e it
I I }
I I |
L ; :
L L > r T L . — 1
1 2 B B 2 3
(c) Roe's "Superbee" Limiter (d) General B Limiters
W=Max [0, min(2r,1), min(r,2)] W=Max [0, min(Br,1), min(r,$)]

(e) Chakravarthy and Osher Limiter (f) General o Limiter
W(r)=Max[0, min(r,)] W=Max[0, min(2r,ar+1-0,2)] 11/39



Lax-Wendroff scheme

, 1 ; 1
v = 50(1 + o)l + (1= o)l — 50(1 — 0)viy

If @ > 0 so that o > 0, then coefficient of v}, | is negative and the scheme
is not monotone.

Define ratios )
v; —vj—1  backward difference

R;

Vitl — U; forward difference

If the solution v;_1,v;, v;+1 is smooth then R; = O (1). In fact if solution
is linear in x, then R; = 1.
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Modification of Lax-Wendroff scheme

Step 1: Write high order scheme as low order positive scheme + correction
term

wt =l olul - )
o o
~ 21— o)l — ) + 21— o)l — i)

Step 2: Introduce switching function in correction terms

n+1 _ n

or, re-arranging

1 ,
=i = o {14 0= o) [T ey - ay
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Modification of Lax-Wendroff scheme

Scheme is positive if

U(R;) 2
<
R, T 1—-0

U(Ri—1) —

Assuming symmetry property for limiter, this condition is satisfied by

choosing
2 2
0 < Y(R) < min <R, )
o' 1—-o

Since by CFL condition 0 < o < 1, we can take the more restrictive
condition

0 < ¥Y(R) < min(2,2R)

This is the same condition as we obtained for the SOU scheme and the
allowed region for W is as before.

For better accuracy, one should use the condition involving the CFL
number o, see Hirsch, page 387.
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Figure 8.3.5  Effects of limiters on the linear convection of a sinusoidal wave
(a) first order upwind scheme (b) second order upwind scheme (c) second order
upwind scheme with min-mod limiter (d) second order upwind scheme with

superbee limiter.
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CFL=05 120 time steps

CFL=05 120 time steps

CFL=05 120 time steps

Figure 8.3.6 Effects of limiters on the linear convection of a square wave after
120 time steps: (a) first order upwind scheme, (b) second order upwind scheme,
(c) second order upwind scheme with min-mod limiter, (d) second order upwind
scheme with Van Leer limiter and (e) second order upwind scheme with superbee

limiter.
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Figure 8.3.7 Effects of limiters on the linear convection of a square wave after
400 time steps: (a) first order upwind scheme, (b) second order upwind scheme, (c)
second order upwind scheme with Van Leer limiter and (d) second order upwind
scheme with superbee limiter.
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Figure 8.3.8 Effects of limiters on the linear convection of a square wave after
120 time steps: (a) standard LW scheme, (b) second order high-resolution LW
scheme with min-mod limiter, (c) second order high-resolution LW scheme with Van
Leer limiter and (d) second order high-resolution LW scheme with superbee limiter.
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FVM for Non-linear conservation law

n+l _  n n n . n PR RN ¢}
v; =1 _)‘(gi_;'_%_gi_%>*H("wviflvui7Ui+17"')
Definition: Monotone scheme

The scheme is monotone if H is an increasing function in all its
arguments. If H is differentiable then it is monotone if

0

7H(...,’l)i_1,v/,;,?)i+1,...) >0, k=...,i—1,4,0+1,...
vy,

Remark: A linear scheme, e.g.,

H(vi—1,vi,vi41) = avi_1 + bu; + cviq

is monotone if all coefficients are positive, i.e., a > 0,6 >0, ¢ > 0.
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Theorem

Consider a 3 point scheme with numerical flux g(-,) i.e.,
9ip1 = 9(vi; vi1)

The scheme is monotone if g is an increasing function in the first
argument and a decreasing function in the second argument.

Theorem

A monotone scheme converges to the unique entropy solution.

Remark: The Godunov scheme is a monotone scheme. The
Murman-Roe scheme is not a monotone scheme.

Theorem J

Any differentiable monotone scheme is at most first order accurate.

20/39



Total variation

TV(0) =) |v; — vi1]

TV measures the amount of oscillation in the solution v. If v develops
new wiggles, then its TV increases.

Definition: Total Variation Diminishing (TVD) scheme
The scheme H is said to be TVD if

TV (") < TV(v")

Theorem

Monotone scheme = TVD scheme < Monotonicity preserving scheme
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Harten's incremental form

i =0 + Gy (v — o) = DLy (0] —vily)

CiJr% - C(...,Ui,vi+1,...), szé :D(...,vi_l,vi, )
v
+1
vi' = v?—A(ng% —gf_%)
= W = Mgl — =gl )
n o __ fn n o _ fn
,Un )\gz_% fl ( n n ) )\gH'% fz ( n n)
[ ’U? _ Uf_l % i—1 ’U;'n+1 _ U;ﬂ i+1 i
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Theorem
The scheme H is TVD if

C!

120, D,

NI
e
NI
IV
=

Proof:
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Reconstruction approach

e First order FV: piecewise constant solution

n+l _ n n .n n n
v =0l = Mg, vihg) — g(vitg, v7)]
or semi-discrete scheme

dv;  g(vi, vig1) — g(vie1,v4)
dt h

=0

e Higher order scheme: Reconstruct solution inside each cell by a

polynomial p;(x)
L[ i
v; = — i(z)dx
h /. P

1
=3

Evaluate p;(z) at the cell faces z; 1, 7,1
2 2
_ L _
A —pL(J]_%) Vit —])Z(TH_%)
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Reconstruction approach

1 we have reconstructed states

e At any cell face z, 1
2

ol — R _ L R
UH’% _p2<xi+%)v U’H’% _pl+1(xi+$)7 UH*% 7& U’H’%

e Semi-discrete scheme

do; g(viié,vi%) - 9(”5,17”?,1)

dt * h

e Discretise in time using high order time integration scheme, e.g., RK
scheme.
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Solution Reconstruction

Given the cell average values {v;}, we want to reconstruct the solution in z
Simplest approach: piecewise linear reconstruction

T — T
pi(x) :/Ui+si7< . Z>, T 1 <<

Note that this already satisfies
1 [Tir]
’ / pi(z) = v;
v . :Ez',l
2
How to estimate the slope s; 7 Several possible choices

1
b Slf C

S; = UV — Uj—1, = Vj4+1 — Uy, S, = 5(/I)i+1 — ’l,'ifl)

If v is smooth, then central difference s{ is the most accurate. But if there
is a discontinuity in v around ¢ then we should take the smoothest possible
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Solution Reconstruction
data/stencil. One possibility is to choose the estimate with smallest
absolute value of slope.

minmod(a, b, ¢) = . )
otherwise

{sign(a) min(|al, |b], |c[) if sign(a) = sign(b) = sign(c)
Linear reconstruction with minmod limiter

s; = minmod(s?, s¢, sf)
The reconstructed solution has TVD property
TV(p) = TV(v)

This scheme can still lead to diffusion of shocks and clipping of local
extrema. A slightly relaxed version of slope which gives more accurate
shocks, but may create some small oscillations is

s; = minmod(fs?, s¢, 95{), 1<0<2
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MUSCL scheme of Van Leer

From Taylor formula
1 ‘
v(z) = v(z)) + (2 — xj)ve () + §(T — 1) 25 (z;) + O (Az?)

But v(z;) # v; while we want conservation, so ignoring terms O (Az)?
and above

1 T, A 2
N /x]tg v(z)de =v; = v(xj)=vj— %vm(xj)
i

2

Hence

1 5 Az? 3
v(z) = v + (v — xj)ve(zy) + 5 (x — ;)" — STR Vg (2) + O (Az”)
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MUSCL scheme of Van Leer

Degree two polynomial in cell (xj_%,xﬂ%)

Ujyl —Uj-1 | 3K (@ —a;)? — Az?] vjo1 — 20 + v
2Ax 2 J 12 Az?

pj(x) = vj+(z—z;)
where we have introduced a parameter k. If k = % then we obtain third
order accuracy in the reconstruction. Using this approximation we can get

the states at the cell faces

1
vy = pilayy) = v — g1+ R)Av s + (1 - k) Au, ]

N[

_ 1
Vo :pj(:L’jJré) =vj + Z[(l —k)Av; 1+ (1+ K,)A’U].Jr%}

1
2

which can be used to compute the flux

S1)

1 =qg(v. ,,v]
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MUSCL scheme of Van Leer

In order to make the scheme TVD we limit the reconstructed states v=

it3
We first write
n 1 Avj_% Av. 1
To=v— =1 ; A 1-— A
vj_é v; 4[( +K>Avj+% TS| +(1—r) 0 vj_%]
1 Av;_1 Avji1
Vi1 = +—[(1— K>Avj+% AUH% +(1+k) Avk% Avji%]
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MUSCL scheme of Van Leer

to measure the local smoothness of the function. Then we introduce a
limiter function ¢ into the reconstruction scheme

=v;——[(1+ hz)w(l/Rj)Avj+% + (1 - h?)?ﬁ(Rj)A?}ji%}

=

(1)
1,';_% =vj + Z[(l - H?)?/J(l/Rj)A?}j+% + (1+ h?)@b(Rj)A?}ji%}

In smooth regions we expect R; ~ 1 and we should have ¥)(R;) ~ R;. In

particular, we need (1) = 1 in order to obtain second order accuracy in

smooth regions.
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Theorem
The finite volume scheme with monotone Lipschitz continuous numerical
flux

n+1 __ n __ . —
vi = = AMgi1 =95 1), gy =90 v

where the states v]j,E . are obtained by the x parameter MUSCL scheme

(1) is TVD if ¢ satisfies

—(1+a) 0< <2+a

OSd)(R)Ss_H 1—{—/4/7 1/)(RF)

1—& 1—&

where av € [-2,2(1 — k) /(1 + k)] under the CFL time step restriction

(2— (24 a)k) dg dg
)\—C’ <1, C; = max u,vt )= =Z(vT |,
1—k j u,v ()u(’JJF%) dv(J 5 )
where the maximum is taken over all u between U;_y vjjrl and all v
2 2
between v |, vT .
J=3 I3
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Some limiters

The limiter function

v (R) = max(0, min(R, 3)), gell,3—kr)/(1—r)

satisfies the conditions of the theorem. Let us choose kK = —1 and 5 = 1.
Then we obtain the minmod limiter

Y (R) = max(0, min(R, 1))

Van Leer limiter

R+ |R|
YR =R
Van Albada limiter )
R+ R
V(R) = 1+ R2
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Unfortunately TVD schemes lose their accuracy near smooth local
extrema. This leads to clipping of local extrema.

Theorem (Osher)

The TVD discretizations all reduce to at most first order accuracy at
non-sonic critical points, i.e., points u* at which f’(u*) # 0 and u} =0

We have to relax the strict TVD condition to develop uniformly high order
accurate schemes.
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Method of lines

Integrate over space only

dv;  9j1(t) —g; 1 (1) - .
a + Ar =0, 9j+1 (t) = 9(1’j+1 (t), U.H% ()

2

The two states are obtained by some piecewise polynomial reconstruction
TV,

7);+2<) p,( L t), Uj++§() pj+1(: J+lat)

The space discretization is second order accurate. We need atleast a

second order discretization in time so that the overall scheme is second
order accurate.

Let us write the system of ODE as

dv

= L(v
5 = L)
Let us also assume that the first order in time discretization is stable, i.e.,

At <A — W)l < [lv]l]
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First order time integration scheme

First order scheme: Forward Euler
"t ="+ ALL(v")

Let us apply this scheme to the ODE

E = A\u

which yields
" = 14 AAt"

while the exact solution is

u Tl = ABtyn — 14+ At+ O (At)Q]U”

The numerical scheme agrees with the exact solution upto O (At).

36 /39



Second order time integration scheme
Second order scheme (2-stage)

v =

o = O L AtL(0©)

v® = %v(0>+%[v(1)+AtL(v(1>)]
L — ,U(2)

Applying this scheme to the ODE % = Au yields
VT = [1 4+ NAL + = ()\Af) Jo™

which agrees with the exact solution upto @ (At)?. Since the scheme is a
convex combination, we obtain stability for At < Aty
ol < 5 [0+ 5
2 2
Such time integration schemes are known as Strong Stability Preserving
RK schemes.

<0>H+ o 4 AtL(v H “ o+ = Hv“)()gwu
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SSP RK schemes
Third order scheme (3-stage)

@ =

o = O 4 AtL( ©))

0@ = i <o>+4[ o® 4 AtL(W)]
3 év(o>+§[v<2>+muv<2>)}
n+l 1)(3)

v

A general m-stage RK scheme is of the form

n

<

-1

.

{aikv(k) + AtﬁikL(v(k))] , i=1,...

k=0
()
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By consistency (take L(v) = 0), we must have

i—1

E i =1, 1=1,...,m

k=0

Lemma (Stability of SSP RK scheme)

If At<At; = |v+AtL()| < |||
then the m-stage RK scheme is stable under CFL condition

e
At < cAty, ¢ = min ik
ik Bik

provided that a;p > 0, B;r > 0.

Remark: If the first order time scheme is TVD, then the high order
SSPRK scheme is also TVD under a suitable time step condition.
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