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Linear hyperbolic system

∂U

∂t
+
∂F

∂x
= 0, U =


U1

U2
...
Um

 , F (U) = AU, A ∈ Rm×m

∂U

∂t
+A

∂U

∂x
= 0, U(x, 0) = U0(x)

System Ut +AUx = 0 is said to be hyperbolic provided

• A has m real eigenvalues

λ1 < λ2 < . . . < λm

• The eigenvectors form a basis for Rm.
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General solution

Eigenvalues and eigenvectors

Ark = λkrk, rk ∈ Rm, R = [r1, r2, . . . , rm] ∈ Rm×m

Λ = diag(λ1, λ2, . . . , λm), AR = RΛ, A = RΛR−1

∂U

∂t
+RΛR−1∂U

∂x
= 0 =⇒ R−1∂U

∂t
+ ΛR−1∂U

∂x
= 0

Define the characteristic variables by

W = R−1U =⇒ ∂W

∂t
+ Λ

∂W

∂x
= 0

These equations become decoupled

∂Wi

∂t
+ λi

∂Wi

∂x
= 0, i = 1, 2, . . . ,m
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General solution

Initial condition for W

W (x, 0) = W 0(x) = R−1U0(x)

Solution is

Wi(x, t) = W 0
i (x− λit) = [R−1U0(x− λit)]i

Solution U is obtained

U(x, t) = RW (x, t) =

m∑
i=1

Wi(x, t)ri =

m∑
i=1

W 0
i (x− λit)ri
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Riemann problem

Consider initial condition

U0(x) =

{
Ul x < 0

Ur x > 0

Initial condition for W

W 0(x) = R−1U0(x) =

{
R−1Ul x < 0

R−1Ur x > 0
=

{
Wl x < 0

Wr x > 0

Solution for Wi, i = 1, 2, . . . ,m

Wi(x, t) = W 0
i (x− λit) =

{
Wl,i x/t < λi

Wr,i x/t > λi
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Riemann problem

Solution U

U(x, t) =
∑
i

W 0
i (x− λit)ri

=
∑

i:x/t<λi

Wl,iri +
∑

i:x/t>λi

Wr,iri

Example: System of 3 equations (m = 3)

U(x, t) =


Ul x/t < λ1

U∗
1 λ1 < x/t < λ2

U∗
2 λ2 < x/t < λ3

Ur x/t > λ3

6 / 13



Riemann problem

x

t

λ1 λ2 λ3

Ul

Ur

U∗
1 U∗

2

The intermediate states are given by

U∗
1 = Wr,1r1 +Wl,2r2 +Wl,3r3

U∗
2 = Wr,1r1 +Wr,2r2 +Wl,3r3

It is easy to check that the jump in the intermediate states is

U∗
m − U∗

m−1 = (Wr,m −Wl,m)rm
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Riemann problem
with the convention that U∗

0 = Ul and U∗
n = Ur. Hence the initial

discontinuity breaks into n discontinuity waves which propagate at speeds
λi, i = 1, . . . , n.

Solution on x/t = 0:
For future use, we compute the solution along x/t = 0. It is given by

UR(0) =
∑
i:λi>0

Wl,iri +
∑
i:λi<0

Wr,iri

and the corresponding flux is

F (UR(0)) = AUR(0) =
∑
i:λi>0

λiWl,iri +
∑
i:λi<0

λiWr,iri

This can be re-written as

F (UR(0)) =
∑
i

λ+i Wl,iri +
∑
i

λ−i Wr,iri
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Riemann problem
where we have defined

λ+ = max(0, λ) =
1

2
(λ+ |λ|) ≥ 0

λ− = min(0, λ) =
1

2
(λ− |λ|) ≤ 0

The above flux can also be written as

F (UR(0)) = A+Ul +A−Ur, A± = RΛ±R−1

with Λ± = diag(λ±1 , . . . , λ
±
n ). Another formula is obtained using the

second definition of λ±;

F (UR(0)) =
1

2
(Fl + Fr)−

1

2

∑
i

|λi|(Wr,i −Wl,i)ri

=
1

2
(Fl + Fr)−

1

2
|A|(Ur − Ul), |A| = R|Λ|R−1
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Upwind scheme

The system of conservation laws can be transformed to a set of decoupled
linear advection equations

∂Wi

∂t
+ λi

∂Wi

∂x
= 0, 1 ≤ i ≤ n

which represent waves moving with velocity λi. We can try to build a
scheme for the system of conservation laws by applying the upwind scheme
to the above advection equations. For the grid point j we have

Wn+1
i,j −Wn

i,j

∆t
+ λ+i

Wn
i,j −Wn

i,j−1

∆x
+ λ−i

Wn
i,j+1 −Wn

i,j

∆x
= 0

or using matrices

Wn+1
j −Wn

j

∆t
+ Λ+

Wn
j −Wn

j−1

∆x
+ Λ−W

n
j+1 −Wn

j

∆x
= 0
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Upwind scheme
Transforming back to the conserved variables U , the above scheme
becomes

Un+1
j − Unj

∆t
+A+

Unj − Unj−1

∆x
+A−U

n
j+1 − Unj

∆x
= 0

We could have obtained this scheme using the CIR splitting technique;
separating the Jacobian A into positive and negative parts

A = A+ +A−,
∂U

∂t
+A+∂U

∂x
+A−∂U

∂x
= 0

and using backward and forward differencing for the A+ and A− terms
respectively,

Un+1
j − Unj

∆t
+A+

Unj − Unj−1

h
+A−U

n
j+1 − Unj

h
= 0

we obtain exactly the same scheme.
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Upwind scheme

Finite difference flux splitting
Another way to arrive at this scheme is to start with flux splitting. The
eigenvalue splitting leads to the flux splitting

F = A+U +A−U = F+ + F−

so that conservation law can be written as

∂U

∂t
+
∂F+

∂x
+
∂F−

∂x
= 0

and we use backward and forward differencing for the F+ and F− terms
respectively.

Un+1
j − Unj

∆t
+
F+
j − F

+
j−1

h
+
F−
j+1 − F

−
j

h
= 0
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Upwind scheme
We can write this as a finite volume scheme

Un+1
j − Unj

∆t
+

(F+
j + F−

j+1)− (F+
j−1 + F−

j )

h
= 0

with the numerical flux

Fj+ 1
2

= F+
j + F−

j+1

This has upwind property in the following sense: If all eigenvalues are
positive, i.e., all the waves are moving to the right, then

F+
j = Fj , F−

j+1 = 0, Fj+ 1
2

= Fj

The flux is entirely determined from the left state Uj which is physically
meaningful. Conversely if all eigenvalues are negative, then

F+
j = 0, F−

j+1 = Fj+1, Fj+ 1
2

= Fj+1

the flux is now entirely determined from the right state Uj+1.
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