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Partial Differential Equations

e One space and one time: u(z,t)
» Hyperbolic equation
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» Convection-diffusion equation
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Simplest hyperbolic PDE

e Linear, scalar, convection (advection) equation for u(z,t)
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with initial condition
u(z,0) = up(z)

e Exact solution

u(x,t) = up(x — at)

A t=0 t= At
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/\ ‘ We can even put a
/’ \\ discontinuous initial condition
Lo a>0 which is just transported at
I speed a by the PDE.
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Hyperbolic PDE

Wave

A phenomenon in which some recognizable feature propagates with a
recognizable speed

Hyperbolic PDE

A PDE which has wave-like solutions

e Waves propagate in specific directions:
e Linear, convection equation

a > 0 = wave moves to the right

a < 0 = wave moves to the left

a is the speed at which waves propagate
Finite speed of propagation

Preserves shape of initial condition
Preserves minimum and maximum value
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Hyperbolic PDE

e Scalar, convection equation
0 0
_ i =0
<8t N a8m> N

e Second order wave equation
0*u 5 0%
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» contains two waves, with speed +a and —a

» In fact, general solution is

u(z,t) = f(x — at) + g(a + at)

contains one wave

» can be factored
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Parabolic PDE

e Example: Heat equation

ou 0%u
T2l zeR
Ot MOJ:Q’ re
with initial condition
u(x,0) = ug(z)

t+At

e No waves; initial condition is damped or dissipated
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Convection-diffusion PDE

e Convection-diffusion equation

ou ou 0%
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contains convection and diffusion

¢ t+At
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e Damped wave-like solutions
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FDM for u; + au,

e Given u(x,0) = ug(x), find solution for ¢t > 0: Initial Value Problem
e Space-time grid

Vo

e Numerical solution u}'
n . P—T
ul ~ u(w;,t")

Numerical solution computed only at grid points



FDM for u, + au, = 0

e Forward difference in time

9 oty m

e Three choices for (%

@ Backward difference

§<f> ~ U .

@® Forward difference
%“(%,t”) ~ ufbﬂA; ul?

© Central difference
%“(“’ivt") “5412 ;;’;‘_



FDM for u; + au, =0

e Forward-time and backward-space finite difference scheme

ou . ou 0
e
ot Oz
approximated as
n+1 2T
u " —up N au;f —ul 0
At Ax
e Re-arranging
ol alt o
u " =y AL (ui —ui )

e Given initial condition u? for all 7, we march forward in time
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FDM for u; + au, =0

e Three numerical schemes
@ Backward difference: First order accurate

n—+1 _

Ui uit —o(uf —uily) = (1= o) +oul,

(2

@® Forward difference: First order accurate
n+l _  n ( n o n) o (1 4 ) n __ n
Ui = 71»,14, g “H—l U”i, = ag 71,,[ O-U’i,+1

© Central difference: Second order accurate in space, first order in time

n+l _  n T 2T
i =Uu; — §U(Ui+l —u; )

u
e Courant-Friedrich-Levy number or CFL number
alAt

T Ar
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Lax-Wendroff scheme
Taylor's formula

1
) = (g, t7) + Atug(z, ") + §At2utt<l‘j; ") + O (At?)
Use the PDE

u(zj,

Ut = — AUy Ut = O,QUMU

to get

tn+1)

u(z;, u(xj, t") — alAtug(z;,t") + 2a2At Uy (2, 1") + O (AF)

Approximate u, and u,, by central differences

ul  —ull 1 ui_y —2uf +uj
u?“ — " — qAp I Il 2 a2 0 1 +0 (Atg)

j 2% 2 h2
LW scheme
1 1
u;b+1 — u? 5 (“j+1 )+ 2 ( ; 1 224? + u;—z+1)

This scheme is second order accurate in space and time.
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Leapfrog and Lax-Friedrich scheme

e Forward time, central space (FTCS): unstable scheme

n+1 ) , .,
u; uj —&—au%l uj_q 0
At 2h
e Lax-Friedrich (LxF) scheme
1 ] ]
u;H — %(u?_l +uj ) N au;’L+1 —ul L,
At 2h
't = }(1 +o)ul_ + 1(1 —o)u”
o Leapfrog scheme
+1 -1 )
uit =y CLLL?_H—LLJ_I 0
2At 2h
!t = o (ul —ul )
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Fourier Stability Analysis
Take k'th Fourier mode, i.e., mode with wavenumber k

n __ »~n ikx;
LLj = uie J

How does the scheme change this mode ? FTBS scheme:

on+l - T
u;" = (1—o)uj +ouj_,

ﬂz+1elk;:l;j _ (1 O')UZBII“J +O’An ik(x;—h)

Amplitude changes as

it =il —o+oe¥],  E=kh

For stability, the amplitude must not increase with time
UZ+1

ATY

:‘1—0+aefiE <1 V&

If a > 0 (i.e., o > 0) then above condition is satisied iff .
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Fourier Stability Analysis

a FTBS FTFS FTCS LW LF
>0 Stable Unstable Unstable Stable Stable
0<o<1 0<o<1 0<o<1
< 0 | Unstable Stable Unstable Stable Stable
—1<0o<0 —1<0o<0]| -1<0<0
Unstable Unstable Unstable Stable Stable
lo| <1 lo| <1

Upwind scheme: Switch between backward difference and forward
difference depending on whether a > 0 or a < 0.

Hyperbolic problems
Finite difference scheme must be chosen based on the sign/direction of
waves present in the problem
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Fourier Stability Analysis

Remark: Stable central schemes can be constructed. For example, the
implicit Euler scheme

n+1
71/]-

n u[r_LJrl o ur_1+1
J Jj+1 j—1 _
+a =0
At 2h

u

is unconditionally Fourier stable. The semi-discrete scheme

du; aujH — Uj_1

=0
dt 2h

can be integrated with RK4 scheme in which case it is conditionally stable
(under a CFL condition).
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FDM for u; + au, =0

e Consider the case ¢ > 0, 0 = 0.8

e Initial condition with a step
U

4—0—0—0—0
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FDM for u; + au, =0

L
=

Backward Forward Central
Monotone Non-monotone Non-monotone
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FDM for u; + au, =0

FOU-CFL=0.8 80 time steps LAX-F scheme CFL=0.8 80 time steps
1.2 7 1.2 4

1

0.8
Ulinitial

06+ U calculated

0.4 |

0.2 +

LW Scheme CFL = 0.8 80 time steps
1.2

1
0.8
0.6
0.4

0.2
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FDM for u; + au, =0

First order upwind scheme Lax—Friedrich scheme
1 14
0.6 - U calculated 0.6 U calculated
0.4 — 0.4 —
0.2 0.2 -
0 ‘ 0
-02—0 2 —0.2
—0.4+ —0.4 -
~0.6 | ~0.6
—0.8 —0.8
-1 -1 -
Lax—Wendroff scheme
14
0.6 U calculated
0.4 —
0.2
0 Y T\ T T T T
-02—7 0.5 w5 2
—0.4
—0.8
1
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FDM for u; + au,

=0

Monotone property

a FTBS | FTFS | FTCS | LW | LxF
a>0 Yes No No No | Yes
a<0 No Yes No No | Yes
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FDM for u; + au, = 0: Backward difference

u u

A A /\

° » 1 \A o—o » 1

*——0—o |

v =038 v=12

e Scheme is monotone or maximum stable only if o < 1
e This is called CFL condition
e Restriction on time step: conditional stability

A mesh size
At < 28 - MENEZE AL < Az
la]  wave speed
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Positive scheme

Semi-discrete scheme

du;
T 2}: aij(uj — uq)
Local extremum diminishing (LED) if

Qi >0

Maxima do not increase and minima do not decrease. Suppose u; is a
local maximum, i.e., u; > u;

(11L¢
<

wi —u; <0 -
J b dt —

== u; will not increase
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Positive scheme

Fully discrete scheme: forward Euler scheme in time

n+1

u . 7
7— E a;j (2 —u/-

ultt = (1- Atz aij)ug + Atz aiju;
J J

= ayup + Z oziju;‘
J
If CFL condition is satisfied

At <

: a;; >0
§ Qig
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Positive scheme

then all coefficients are positive and sum to one

Qi + Z Qjj = 1
J

Hence
minu”? < ! < maxu”
Sy i e
J J
Solution remains bounded between minimum and maximum values. J

This is known as maximum stability or stability in maximum norm. This is
a more stronger condition than Fourier stability.
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Upwind scheme for u; + au, = 0

Write

a=xla
a=at+a", at = 5 |, at >0, a <0

CIR (Courant-Isaacson-Rees) splitting
u+atug, +a u, =0

Semi-discrete scheme: automatic switching b/w backward and forward
difference

du‘7 — Ui_1 Ujr] — Uj
Gt il Y i_p
dt h h
du Uj—1 — U Ujp1 — Uj
d—f] =at - 1h I 4 (—a")-FL 9 Positive coefficients

h )
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Upwind scheme for u; + au, = 0

Fully discrete scheme (forward Euler time integration)

n+l ' n on ) ) _an
Y Y 1T Y Y Yy
R e i S NI e i B
At h h

L atAt

11,;"“ =ou] 4+ (1 —|o))u] + (=07 )uly, oF = —

All coefficients are positive if CFL condition is satisfied

la| At -

ol == — =

Upwind scheme is also Fourier stable under same CFL condition.

FTCS and Lax-Wendroff schemes are not positive. Lax-Friedrich scheme is
positive under CFL condition |o| < 1. J
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FDM for u; + au, = 0: Backward difference

u
A =0 t>0

- T

e Numerical solution behaves like solution of convection-diffusion
equation

e Numerical scheme has artificial dissipation or numerical dissipation

e Numerical dissipation = stable scheme
But we must not have too much numerical dissipation
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Second order upwind scheme u; + au, =0, a > 0

Since a > 0, we should use back ward difference scheme. We can
construct second order accurate approximation to u, using upwind points
Wi—2, Ui—2, U;

Ui— — 4ui—1 + 3u; ou

= —(x;) + O (h?
h ax(Tl) + ( )
SOU scheme
+1 ) ) o .
" =l N auf_Q —4u? | + 3ul )
At h
or N
W = —ouly Aol (130, o= 50

T

This scheme is not positive. It is Fourier stable under CFL condition
0<o<1.

29 /34



FDM for Parabolic equation
e Parabolic PDE
ou_ o
ot~ Hou2

e No waves = no directional dependance
Hence use central differencing for spatial derivatives

n—+1 n n n n
i = 2u +ug g
At

—H Ax?

u

or re-arranging
uftt = Pul | + (1 - 2P)ul + Pul,,
with A
p.— 2t
Az?

e Stability condition (same for Fourier and maximum stability)

Az
— At< T

P <
= 2

| =
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FDM for convection-diffusion equation

o Convection-diffusion equation

(‘)7u n ou 0%u
ot a@x_

e Combine appropriate scheme for hyperbolic and elliptic operators

u?“ —u? N au;’ —ul B ,U 1~ 2ul +udl
At Az Ax?
Backward difference for convection term ag“ (upwind scheme)
9? u

Central difference for diffusion term 133

e Exercise: Find condition for this scheme to be LED
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Consistency and accuracy

e FTBS for u; +au, =0

u T ul =l
3 3 T 1
+a =0
At Az

Plug in exact solution u(x,t)

u(zi, t" + At) — u(x;, t") . u(x, t") — u(x; — Az, t")
At ‘ Az :

e 7' = local truncation error

e Numerical scheme consistent with PDE if

" —=0, as Az —0, At—0

2

32/34



Consistency and accuracy

e Upwind scheme: truncation error

1 2
= SlalAx(1 - \a\)d S 1 O(A?)

We say that this scheme is first order accurate
e For a second order accurate scheme
™ = O(Ax?)

Higher order accurate scheme = more accurate solution
u

A t=0

33/34



Convergence

Does the numerical solution converge to the exact solution as the grid is
refined ?
Ar —0, At—0 = u} — u(z;,t")

Lax-Richtmyer Equivalence theorem

A consistent finite difference scheme for a PDE for which the initial value
problem is well-posed is convergent if and only if it is stable

consistency + stability = convergence
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