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Partial Differential Equations

• One space and one time: u(x, t)
I Hyperbolic equation

∂2u

∂t2
= a2

∂2u

∂x2

I Parabolic equation
∂u

∂t
= µ

∂2u

∂x2

I Convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= µ

∂2u

∂x2
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Simplest hyperbolic PDE
• Linear, scalar, convection (advection) equation for u(x, t)

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ R

with initial condition
u(x, 0) = u0(x)

• Exact solution
u(x, t) = u0(x− at)

x

u

t = 0 t = ∆t

a∆t

a > 0

We can even put a
discontinuous initial condition
which is just transported at
speed a by the PDE.
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Hyperbolic PDE

Wave

A phenomenon in which some recognizable feature propagates with a
recognizable speed

Hyperbolic PDE

A PDE which has wave-like solutions

• Waves propagate in specific directions:

• Linear, convection equation

I a > 0 =⇒ wave moves to the right
I a < 0 =⇒ wave moves to the left
I a is the speed at which waves propagate
I Finite speed of propagation
I Preserves shape of initial condition
I Preserves minimum and maximum value
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Hyperbolic PDE
• Scalar, convection equation(

∂

∂t
+ a

∂

∂x

)
u = 0

contains one wave
• Second order wave equation

∂2u

∂t2
= a2

∂2u

∂x2

I can be factored (
∂

∂t
+ a

∂

∂x

)(
∂

∂t
− a ∂

∂x

)
u = 0

I contains two waves, with speed +a and −a
I In fact, general solution is

u(x, t) = f(x− at) + g(x+ at)
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Parabolic PDE

• Example: Heat equation

∂u

∂t
= µ

∂2u

∂x2
, x ∈ R

with initial condition
u(x, 0) = u0(x)

∆ tt+

t

• No waves; initial condition is damped or dissipated
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Convection-diffusion PDE

• Convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= µ

∂2u

∂x2

contains convection and diffusion

∆ tt+
t

• Damped wave-like solutions
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FDM for ut + aux = 0

• Given u(x, 0) = u0(x), find solution for t > 0: Initial Value Problem

• Space-time grid

x

t

i

n

∆x

∆t

• Numerical solution uni
uni ≈ u(xi, t

n)

Numerical solution computed only at grid points
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FDM for ut + aux = 0

• Forward difference in time

∂

∂t
u(xi, t

n) ≈
un+1
i − uni

∆t

• Three choices for ∂
∂x

1 Backward difference

∂

∂x
u(xi, t

n) ≈
uni − uni−1

∆x

2 Forward difference

∂

∂x
u(xi, t

n) ≈
uni+1 − uni

∆x

3 Central difference

∂

∂x
u(xi, t

n) ≈
uni+1 − uni−1

2∆x
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FDM for ut + aux = 0

• Forward-time and backward-space finite difference scheme

∂u

∂t
+ a

∂u

∂x
= 0

approximated as

un+1
i − uni

∆t
+ a

uni − uni−1

∆x
= 0

• Re-arranging

un+1
i = uni −

a∆t

∆x
(uni − uni−1)

• Given initial condition u0i for all i, we march forward in time
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FDM for ut + aux = 0
• Three numerical schemes

1 Backward difference: First order accurate

un+1
i = uni − σ(uni − uni−1) = (1− σ)uni + σuni−1

2 Forward difference: First order accurate

un+1
i = uni − σ(uni+1 − uni ) = (1 + σ)uni − σuni+1

3 Central difference: Second order accurate in space, first order in time

un+1
i = uni −

1

2
σ(uni+1 − uni−1)

• Courant-Friedrich-Levy number or CFL number

σ =
a∆t

∆x
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Lax-Wendroff scheme
Taylor’s formula

u(xj , t
n+1) = u(xj , t

n) + ∆tut(xj , t
n) +

1

2
∆t2utt(xj , t

n) +O
(
∆t3

)
Use the PDE

ut = −aux utt = a2uxx

to get

u(xj , t
n+1) = u(xj , t

n)− a∆tux(xj , t
n) +

1

2
a2∆t2uxx(xj , t

n) +O
(
∆t3

)
Approximate ux and uxx by central differences

un+1
j = unj − a∆t

unj+1 − unj−1

2h
+

1

2
a2∆t2

unj−1 − 2unj + unj+1

h2
+O

(
∆t3

)
LW scheme

un+1
j = unj −

1

2
σ(unj+1 − unj−1) +

1

2
σ2(unj−1 − 2unj + unj+1)

This scheme is second order accurate in space and time.
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Leapfrog and Lax-Friedrich scheme
• Forward time, central space (FTCS): unstable scheme

un+1
j − unj

∆t
+ a

unj+1 − unj−1

2h
= 0

• Lax-Friedrich (LxF) scheme

un+1
j − 1

2(unj−1 + unj+1)

∆t
+ a

unj+1 − unj−1

2h
= 0

un+1
j =

1

2
(1 + σ)unj−1 +

1

2
(1− σ)unj+1

• Leapfrog scheme

un+1
j − un−1

i

2∆t
+ a

unj+1 − unj−1

2h
= 0

un+1
i = un−1

i + σ(uni+1 − uni−1)
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Fourier Stability Analysis
Take k’th Fourier mode, i.e., mode with wavenumber k

unj = ûnkeikxj

How does the scheme change this mode ? FTBS scheme:

un+1
j = (1− σ)unj + σunj−1

ûn+1
k eikxj = (1− σ)ûnkeikxj + σûnkeik(xj−h)

Amplitude changes as

ûn+1
k = ûnk [1− σ + σe−iξ], ξ = kh

For stability, the amplitude must not increase with time∣∣∣∣∣ ûn+1
k

ûnk

∣∣∣∣∣ =
∣∣∣1− σ + σe−iξ

∣∣∣ ≤ 1 ∀ ξ

If a > 0 (i.e., σ > 0) then above condition is satisied iff 0 ≤ σ ≤ 1 .
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Fourier Stability Analysis

a FTBS FTFS FTCS LW LF

> 0 Stable Unstable Unstable Stable Stable
0 ≤ σ ≤ 1 0 ≤ σ ≤ 1 0 ≤ σ ≤ 1

< 0 Unstable Stable Unstable Stable Stable
−1 ≤ σ ≤ 0 −1 ≤ σ ≤ 0 −1 ≤ σ ≤ 0

Unstable Unstable Unstable Stable Stable
|σ| ≤ 1 |σ| ≤ 1

Upwind scheme: Switch between backward difference and forward
difference depending on whether a > 0 or a < 0.

Hyperbolic problems

Finite difference scheme must be chosen based on the sign/direction of
waves present in the problem

15 / 34



Fourier Stability Analysis

Remark: Stable central schemes can be constructed. For example, the
implicit Euler scheme

un+1
j − unj

∆t
+ a

un+1
j+1 − u

n+1
j−1

2h
= 0

is unconditionally Fourier stable. The semi-discrete scheme

duj
dt

+ a
uj+1 − uj−1

2h
= 0

can be integrated with RK4 scheme in which case it is conditionally stable
(under a CFL condition).
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FDM for ut + aux = 0

• Consider the case a > 0, σ = 0.8

• Initial condition with a step

x

u

t = 0
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FDM for ut + aux = 0

x

u

x

u

x

u

Backward Forward Central
Monotone Non-monotone Non-monotone
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FDM for ut + aux = 0
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Figure 7.3.6 Comparison of four schemes on the linear convection equation for a
propagating discontinuity.

The lesson to be learned form these results is that due to the excessive numerical
dissipation of first order schemes, they become totally useless for time-dependent
propagation problems of this kind and should be avoided .

The second order schemes, leapfrog and LW, look much better, particularly at
the lowest frequency, where the numerical solutions are excellent. A small problem
however is the appearance of oscillations in the numerical solution at the front of the
propagating wave. This is due to the discontinuity in the slope of the initial solution at
the points x = 0.25 and x = 1.5. This behavior is similar to the case of the propagating
discontinuity of Figure 7.3.6.

The same computations performed at a higher frequency, corresponding to a phase
angle of φ = π/6.25, shown in Figure 7.3.8 indicate larger deviations compared to the
exact solution. The Lax–Wendroff scheme has an error in the amplitude as well as a
phase shift of the numerical solution. The leapfrog scheme has a better behavior with
regard to the amplitude of the wave, which is correctly reproduced by the scheme, but
here also we observe an increased level of numerical oscillations generated at the ini-
tial slope discontinuity. A phase error is also to be observed with the leapfrog scheme.
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FDM for ut + aux = 0
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First order upwind scheme
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Figure 7.3.7 Comparison of four schemes on the linear convection equation for a
propagating wave packet for φ = π/12.5.

So, summarizing our observations, we note that:

• The first order schemes are of very poor accuracy.
• The second order schemes provide a significant better accuracy, particularly at

the lower frequencies.
• The second order schemes generate numerical oscillations as soon as function or

slope discontinuities in the solution are present. These oscillations being stronger
with the leapfrog scheme, compared to LW.

• The generated numerical errors are very sensitive to the frequency, i.e. to the
phase angle.

• These results, although obtained on a simple one-dimensional linear convection
equation, are very representative of real flow simulations. You will encounter
these same effects also with the full 3D Navier–Stokes simulations.

The main questions arising from these representative examples are:

• How can we explain and predict the differences between these four schemes and
their dependence with frequency?

• Why do numerical oscillations appear with the second order schemes and not
with the first order schemes?
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FDM for ut + aux = 0

Monotone property
a FTBS FTFS FTCS LW LxF

a > 0 Yes No No No Yes

a < 0 No Yes No No Yes

21 / 34



FDM for ut + aux = 0: Backward difference

x

u

x

u

ν = 0.8 ν = 1.2

• Scheme is monotone or maximum stable only if σ ≤ 1
• This is called CFL condition
• Restriction on time step: conditional stability

∆t ≤ ∆x

|a|
=

mesh size

wave speed
, a∆t ≤ ∆x
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Positive scheme

Semi-discrete scheme

dui
dt

=
∑
j

aij(uj − ui)

Local extremum diminishing (LED) if

aij ≥ 0

Maxima do not increase and minima do not decrease. Suppose ui is a
local maximum, i.e., ui ≥ uj

uj − ui ≤ 0 =⇒ dui
dt
≤ 0 =⇒ ui will not increase
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Positive scheme

Fully discrete scheme: forward Euler scheme in time

un+1
i − uni

∆t
=
∑
j

aij(u
n
j − unj )

un+1
i = (1−∆t

∑
j

aij)u
n
i + ∆t

∑
j

aiju
n
j

= αiiu
n
i +

∑
j

αiju
n
j

If CFL condition is satisfied

∆t ≤ 1∑
j aij

, αii ≥ 0
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Positive scheme

then all coefficients are positive and sum to one

αii +
∑
j

αij = 1

Hence

min
j
unj ≤ un+1

i ≤ max
j
unj

Solution remains bounded between minimum and maximum values.

This is known as maximum stability or stability in maximum norm. This is
a more stronger condition than Fourier stability.
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Upwind scheme for ut + aux = 0

Write

a = a+ + a−, a± =
a± |a|

2
, a+ ≥ 0, a− ≤ 0

CIR (Courant-Isaacson-Rees) splitting

ut + a+ux + a−ux = 0

Semi-discrete scheme: automatic switching b/w backward and forward
difference

duj
dt

+ a+
uj − uj−1

h
+ a−

uj+1 − uj
h

= 0

duj
dt

= a+
uj−1 − uj

h
+ (−a−)

uj+1 − uj
h

, Positive coefficients
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Upwind scheme for ut + aux = 0

Fully discrete scheme (forward Euler time integration)

un+1
j − unj

∆t
= a+

unj−1 − unj
h

+ (−a−)
unj+1 − unj

h

un+1
j = σ+unj−1 + (1− |σ|)unj + (−σ−)unj+1, σ± =

a±∆t

h

All coefficients are positive if CFL condition is satisfied

|σ| = |a|∆t
h
≤ 1

Upwind scheme is also Fourier stable under same CFL condition.

FTCS and Lax-Wendroff schemes are not positive. Lax-Friedrich scheme is
positive under CFL condition |σ| ≤ 1.
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FDM for ut + aux = 0: Backward difference

x

u

t = 0 t > 0

• Numerical solution behaves like solution of convection-diffusion
equation

• Numerical scheme has artificial dissipation or numerical dissipation

• Numerical dissipation =⇒ stable scheme
But we must not have too much numerical dissipation
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Second order upwind scheme ut + aux = 0, a > 0

Since a > 0, we should use back ward difference scheme. We can
construct second order accurate approximation to ux using upwind points
ui−2, ui−2, ui

ui−2 − 4ui−1 + 3ui
h

=
∂u

∂x
(xi) +O

(
h2
)

SOU scheme

un+1
i − uni

∆t
+ a

uni−2 − 4uni−1 + 3uni
h

= 0

or

un+1
i = −σuni−2 + 4σuni−1 + (1− 3σ)uni , σ =

a∆t

∆x
> 0

This scheme is not positive. It is Fourier stable under CFL condition
0 ≤ σ ≤ 1.
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FDM for Parabolic equation
• Parabolic PDE

∂u

∂t
= µ

∂2u

∂x2

• No waves =⇒ no directional dependance
Hence use central differencing for spatial derivatives

un+1
i − uni

∆t
= µ

uni−1 − 2uni + uni+1

∆x2

or re-arranging

un+1
i = Puni−1 + (1− 2P )uni + Puni+1

with

P :=
µ∆t

∆x2

• Stability condition (same for Fourier and maximum stability)

P ≤ 1

2
=⇒ ∆t ≤ ∆x2

2µ
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FDM for convection-diffusion equation

• Convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= µ

∂2u

∂x2
, a > 0

• Combine appropriate scheme for hyperbolic and elliptic operators

un+1
i − uni

∆t
+ a

uni − uni−1

∆x
= µ

uni−1 − 2uni + uni+1

∆x2

Backward difference for convection term a∂u∂x (upwind scheme)

Central difference for diffusion term µ∂
2u
∂x2

• Exercise: Find condition for this scheme to be LED

31 / 34



Consistency and accuracy

• FTBS for ut + aux = 0

un+1
i − uni

∆t
+ a

uni − uni−1

∆x
= 0

Plug in exact solution u(x, t)

u(xi, t
n + ∆t)− u(xi, t

n)

∆t
+ a

u(xi, t
n)− u(xi −∆x, tn)

∆x
= τni

• τni = local truncation error

• Numerical scheme consistent with PDE if

τni → 0, as ∆x→ 0, ∆t→ 0
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Consistency and accuracy
• Upwind scheme: truncation error

τni =
1

2
|a|∆x(1− |σ|)∂

2u

∂x2
+O(∆x2)

We say that this scheme is first order accurate
• For a second order accurate scheme

τni = O(∆x2)

Higher order accurate scheme =⇒ more accurate solution

x

u

t = 0
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Convergence

Does the numerical solution converge to the exact solution as the grid is
refined ?

∆x→ 0, ∆t→ 0 =⇒ uni → u(xi, t
n)

Lax-Richtmyer Equivalence theorem

A consistent finite difference scheme for a PDE for which the initial value
problem is well-posed is convergent if and only if it is stable

consistency + stability = convergence
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