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Boundary value problem

Partial differential equation

Lu=f in Q
Bu=0 on Of)

Weak formulation

Find v € V such that
a(u,v) = £(v) YoeV
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Theorem (Lax-Milgram)

Let V be a Hilbert space with norm |||,

e a:V xV — R be a bilinear form
e (continuity) 3 v > 0 such that

lau, V)| < llully lvlly

o (coercivity) 3 e > 0 such that

Vu,veV

a(u,u) > « ||u||%, YueV

e /:V — R is a linear continuous functional, i.e., £ € V'

Then there exists a unique w € V' that solves (1) and

1
lelly < = ey,




Symmetric case

If in addition, the bilinear form is symmetric, i.e.,
a(u,v) = alv,u) VuveV

then a(-,-) is an inner product on V| and the Riesz representation theorem
suffices to infer existence and uniqueness for the solution of (1). Moreover,
this solution is also the solution to the following minimization problem

find uw € V such that J(u) < J(v) VveV

where 1
J(u) = ia(u,u) —l(u)

This is known as Dirichlet principle.



Galerkin method

We want to approximate V by a finite dimensional subspace V}, C V' where
h > 0 is a small parameter that will go to zero

h—=0 = dim(V})— o0
In the finite element method, h denotes the mesh spacing. Let
{Vh : h >0}
denote a family of finite dimensional subspaces of V. We assume that

YovelV, inf [jv—wpl,, >0 as h—0 (2)
vp €V

Galerkin approximation
Given £ € V/, find uy, € V3, such that

a(uh,vh) = E(vh) Vo, €V (3)




Theorem (Galerkin method)

Under the assumptions of Lax-Milgram theorem, there exists a unique
solution uy, to (3) which is stable since

1
Juslly < = el
Moreover, if u is the solution to (1), it follows that

Yo,
U—Uu < — inf |lu—w 4
|| hHV = Q vneVi || h”v ( )

hence uj, converges to u due to (2).

v

Proof: The existence and uniqueness of uy, follows from Lax-Milgram theorem.
Stability is obtained from coercivity of a and continuity of ¢

1
2
allunlly < alun,un) = Lun) < [y llunlly, = lluslly < - ey



Now w and wy, satisfy
a(u,vp) = L(vp), a(up,vp) = £(vp), Yo €Vy

which implies that
a(u — up,vp) =0, Vo, €V

Then

a||u—uh||‘2/ alu — up,u—up) = alu — up,u) — a(u — up, up)

a(u — up,u) —a(u —up,vp) Yo, €V

(

= a(u—up,u)—0
(
(

a(u — up,u — vp)

IN

Y llw = unlly [lu = wally
which implies that
lu=unlly < 2 lu=vally  VoneVy
This shows property (4) which is known as Cea’s lemma. Convergence of uy,

to u is obtained, i.e., ||u — upll;, = 0 as h — 0 due to the approximation
property (2) of the spaces V,.



Symmetric case: Ritz method

When a(-,-) is symmetric, Galerkin method is also known as Ritz method. In
this case existence and uniqueness still follows from Riesz representation
theorem. As a(-,-) is a inner product, we have the Galerkin orthogonality
property

a(u —up,vp) =0 Voo, €V

the error u — uy, of the Galerkin solution is orthogonal to the space V},. Then
we say that uy is the Ritz projecton of u onto Vj.
Defining the energy norm

lull, = Valu,u)
the error in energy norm is
|lu — uh||(21 = alu—up,u—up) =alu—upu)—alu—up,up)
= a(u—up) — alu— up,vy), Yo, €V

= a(u—up,u—vy) < flu—wupll,[lv—=ovall,

Hence
Ju—unll, <llu—wvnl, VoneW



Symmetric case: Ritz method

which implies that
Ju = unll, = min ffu vl

Thus wuy, is the best approximation to u in the energy norm.
Moreover, uy, also solves the following minimization problem

Jan) = win (o), J) = %a(u,u) — tu)

In the symmetric case, we can also improve the Cea’s lemma.

alu— uh||%/ < a(u—up,u—up)

A

le —unlly < lu—onl;  Von €V

a(u —vp,u —vp) < llu— vy}

which implies

1
2
lu=unlly < (2)* lu=willy  Yonela



Symmetric case: Ritz method

Since
2 2
allully < a(u,u) <7 lully
we get o < v and hence (y/a)? < v/a.

Remark: The problem of estimating the error in the Galerkin solution is
reduced to estimating the approximation error

inf [lu—wv
inf | rllv

Remark: If a < v then the Galerkin solution will have large error. This
usually happens in convection-dominated situation. A very fine mesh h < 0
will be required to reduce the error to acceptable levels.
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Galerkin method summary

Write the weak formulation of the problem: find u € V such that
a(u,v) = £(v) for all v € V. Existence, uniqueness and stability follow
from Lax-Milgram theorem.

Choose a family of finite dimensional spaces V}, C V such that for

YoveV, lv—wvnll, =0 as h—0

inf
v EVY
Find the Galerkin approximation: wup, € V3, such that a(up,vp) = €(vy) for

all v, € V3. Again use Lax-Milgram theorem.
Convergence follows from Cea’s lemma

lu—unlly <+ inf [u—valy -0 as h—0
€
Let Iy, : V — V}, be the interpolation operator and show an error estimate
YuelV, lu — Ihully, < C(u)h? for some p > 0
Then

lu = unlly < g lu — Inul)y, < %C(u)h” 50 as h—0
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Laplace equation: Homogeneous BC

Let Q C R? for d = 2 or 3 and given f € L?(Q), consider

—Au = f in Q
u = 0 on O

The weak formulation of this problem is:
find w€ Hy(Q) suchthat a(u,v)={(v) Vue HY Q)
where
a(u,v) = / Vu - Vude, (v) = / fodz
Q Q

By Poincare inequality, we have

lully < e(@uly ¥V ue Hy(Q)



Laplace equation: Homogeneous BC

so that ||-||; and |- |; are equivalent norms. We verify the conditions of
Lax-Milgram theorem in the norm | - |;. Continuity follows from
Cauchy-Schwarz inequality

la(u, v)| < fuli|v]:

while coercivity is trivial

a(u,w) :/ |Vu|?dz = |ul?
Q

Also
@) < 1 fllo vllg < () [1fllo v

Thus existence and uniqueness of solution follows from Lax-Milgram theorem.

Galerkin method:
For k > 1, the approximating space is taken to be

Vi = X}]f = {Uh S CO(Q) : 'Uh|K S Pk, Uh|39 = O} C H&(Q)



Laplace equation: Homogeneous BC
From Cea’s lemma, we get the error estimate for the Galerkin solution wuy,

o —unly < f Ju—wvaly < fu— Ihuly
The interpolation error estimate tells us that
ue€ H(Q), s>2 = |u—IFuly <Chuliy1, 1 <! < min(k,s—1)
which implies convergence of the Galerkin method

lu —up|y < |u— IFuly < ChYu)iyr — 0 as h—0

Regularity theorem

Let a be an H{ () elliptic bilinear form with sufficiently smooth coefficient
functions.
® If Q is convex, then the Dirichlet problem is H?2-regular.

® If Q has a C® boundary with s > 2, then the Dirichlet problem is
H?-regular.
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Laplace equation: Homogeneous BC
Theorem (Error in H'-norm)
Suppose Tp, is a regular family of triangulations of Q2 which is a convex

polygonal domain, then the finite element approximation u; € X ’,j (k>1)
satisfies

[l = unlly < Chljully, < CRIfllo

Proof: Since € is convex, we have v € H*(Q2) and |Jull, < C||f]|,- Since the
semi-norm | - |1 is an equivalent norm on H}(Q) we have

lu = unlly < Clu—uply < Clu— Ijuly < Chluly < Chllull, < Ch | fll

Remark: We would also like to obtain error estimates in L?-norm
corresponding to interpolation error estimate ||u — I;’fu”o < Ch?|uly. Consider
the weak formulation

find weV suchthat a(u,v)=4(v) YVveV
and its Galerkin approximation

find wup € V3, such that a(up,v) = £(vp) Yo, €V



Aubin-Nitsche lemma

Let H be a Hilbert space with norm ||-||; and inner product (-,-)z. Let V be
a subspace which is also a Hilbert space with norm ||-||;,. In addition let
V — H be continuous. Then the finite element solution u; € V}, satisfies

wg1mw} 5)

= unllyg < 7l = umva{
ol o

where for every g € H, ¢4, € V denotes the corresponding unique weak
solution of the dual problem

a(w, pg) = (g,w)r YweV (6)

Proof: Due to continuity of V < H, we have for any g,w € H

(g, w)a| <lgll e llwllg < Cliglly llwlly

By Lax-Milgram lemma, problem (6) has a unique solution. The Galerkin
solution satisfies
a(u — up,vp) =0 Vo, €V




Take w = u — uy, in (6)

(9, u —un) = alu —un, pg) = alu — up, pg = vn) <7 lu—unlly [l¢g

Since this is true for any v, € V;, we obtain
(9w —un) = alu —un, 0g) < vllu—unlly inf ey —vally
VR EVh

Now the error in H is given by

_ (g,U—Uh)
lu—unlly = sup ~———
ger  lglly

IN

=l sup { e int ey =l |

_Uth



Laplace equation: Homogeneous BC

L? error for Dirichlet problem

Under the conditions of previous theorem, we have

lu = unlly < Ch* |1 £y

Proof: Take V = H}(Q2) and H = L?(2). Then H}(Q2) — L?*(Q) is continuous
since ||-[lo < [|]l;- Let ¢g.n € Vi, be the Galerkin solution of problem (6). Then

H‘Pg - ‘Pg,hHl <Ch HgHo

and

v;jrelg'h H‘Pg - Uh||1 < ”‘Pg - ‘Pg,hH1 <Ch ”gllo

and the Aubin-Nitsche lemma yields

lu = unlly < Chllu = unll, < CR?|f]],



Laplace equation: Homogeneous BC

Numerical implementation:
Arrange the dofs so that all interior dofs are in the range ¢ = 1,2,..., M}
while the boundary dofs are ¢« = M}, + 1,..., Nj,. Note that

pi(r) =0, z€dQ, i=1,2,...,Mp

and
Vi, = span{p1, ..., om, }

Then the Galerkin solution uj, € V;, can be written as

The Galerkin formulation is

a(“hv%):a%) izl,Q,...,Mh
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Trace theorem

The space C>(€2) is dense in H'(Q2) for domains with Lipschitz continuous
boundary.

Consequently we have the trace operator

v HY Q) = L*(09)
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Trace theorem

Let Q be a bounded open set of R? with Lipschitz continuous boundary 99
and let s > %

© There exists a unique linear continuous map v : H°(Q) — H s=3 (09)
such that yov = v|gq for each v € H*(Q) N C°(Q).
® There exists a linear continuous map R : H¥2 (9Q) — H*(f2) such that
YoRop = ¢ for each ¢ € H*™ 2 (99).
Analogous results also hold true if we consider the trace 7s; over a Lipschitz
continuous subset ¥ of the boundary 0.

Remark: Any ¢ € H* 2 (X) is the trace on 3 of a function in H*(1).

Remark: The above theorem also yields the existence of a constant C' such
that

/ (vov)? < C/ (v? + |Vo]?), Yove HY(Q)
a9 Q
Remark: The map Ry is said to provide a lifting of the boundary values.
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Variant of Lax-Milgram Lemma (Necas)

Let V and W be Hilbert spaces with norms ||-||;, and ||-||};, respectively.

e a:V xW — R be a bilinear form
e 3 v > 0 such that

la(v,w)| <yllolly wlly YoeV,weWw

e 3 a > 0 such that

a(v, w)

>aly|l, YveV
w€E W, w#0 ||w||W

e sup,cy a(v,w) >0,Vwe W, w#0
e /: W — R is a linear continuous functional, i.e., £ € W'

Then there exists a unique u € V' that solves:
find weV suchthat a(u,w)=~0w) YweW

and

1
= 1€/l
lully < —11€llw




Laplace equation: Non-homogeneous BC
Let Q C R for d = 2 or 3 and given f € L%(Q) and g € H2 (%), consider

—Au = f in Q
u = g on 0f)

Define the spaces
V={ve B (Q):ov=g}, W={veH(Q):v=0} = H(Q)
Then the weak formulation
find weV suchthat a(u,v)=4(v) VoeW

has a unique solution due to Lax-Milgram lemma.

Another formulation:
Due to trace theorem, there exists a lifting u, € H*(2) of g such that
Youg = g. Define

a(ﬂ,v)z/ﬂVﬂ-Vu, é(v)z/gf’u—/ﬂVug-Vv



Laplace equation: Non-homogeneous BC
Find @ € H}(Q) such that
a(t,v) = £(v), Ve H Q)
Then
U=1U+ ug
solves our problem.

Galerkin formulation:
Write uj, = 4y, + ug,, where the lifting can be taken as

Np, My,
Ug,h = Z g;¥; and up = Zuj%- S HS(Q)
Jj=Mp+1 Jj=1

and the Galerkin formulation is

a(in, i) = h(p:)) i=1,2,..., My,

Eh(v):/ﬂfvf/QVu%hon

where
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Poincare-Friedrich’s type inequality

Let Q C R? be a bounded, Lipschitz domain. Then there exists a constant
C = C(f2) such that

lvlly < C(|0] + |v1) Yve HY(Q)
where

v = ﬁ/ﬂv(aj)dx

Proof: Suppose that the result is not true. Then we can find a sequence v,
such that

_ 1
an”o =1, [Tn] + |on]1 < o

Since the imbedding H*(2) < L?(Q) is compact, we can find a subsequence,
still denoted wv,,, which converges in L?(€2). This is a Cauchy sequence in
L?(Q). By triangle inequality

1 1
v, = Um|1 < |vnl1t +|oml1 < —+— =0, as n,m— ©
no m




Hence v, is also a Cauchy sequence in H' () and hence converges to some
v € H'(Q) such that

v]ly = lim [jv, ||, =1 and v =0, v =0 = wv=0

which leads to a contradiction.

Remark: For any v € V where
V={veHY(Q): 0 =0}
we have the Poincare-Friedrich’s inequality

lvllp < Cloh
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Laplace equation: Neumann BC

Let Q C R? for d = 2 or 3 and given f € L?(Q) and g € L%(9), consider

—Au = f in Q
Ju

m =Y on 0f)

Multiply by v € H'(Q) and integrate by parts to get

/Vu-sz/fv—i—/ qgu
Q Q a0

If we take v = 1 then we get the compatibility condition for the data

Jut+ o=t

a(u,v):/QVu-Vv7 E(U):/va—i—/fmgv

Define



Laplace equation: Neumann BC
But a(-,-) is not coercive on H!(); moreover if u is a solution, then u + ¢ is
also a solution for any ¢ € R. Hence we can look for solutions in

V:{UEHl(Q):/Uzo}

Now a(-,-) is coercive on V since we have Poincare inequality for any v € V.
The problem

find €V suchthat a(u,v)=4(v) VveV

has a unique solution. Because of the compatibility condition, the above
equation is satisfied for v = constant also, and hence for all v € H' ().

Remark: The above formulation is not used in the Galerkin method since it
is not possible to construct a finite dimensional space V}, C V. Instead we fix
the value of the Galerkin solution at any point in {2 to some arbitray value,
say zero. Suppose we fix the value of the last dof to zero; then

Np—1
up = Z uj;  and a(un, @i) =L(ei), i=1,2,...,Np—1
=1



Another example

Let Q C R? for d = 2 or 3 and given f € L?(Q) and g € L%(95), consider

—Au+u = f in Q
% =g on 0N
The weak formulation is:
find we€ H'(Q) such that a(u,v)=£(v) Yove HY(Q)

where
a(u,v) = /(uv+Vu-Vv), L(v) = / fv+/ gu
Q Q o0

Remark: Dirichlet boundary conditions are built into the approximation
spaces; hence they are called essential boundary condition. Neumann
boundary condition is implemented through the weak formulation and are
called natural boundary condition.
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Another example

Galerkin formulation: There is no Dirichlet boundary condition and hence
all dofs have to be determined from the Galerkin method. Find

Np,
Up = E ’U,j(pj
j=1

such that
aup, ;) = £(p;), 1=1,2,...,Np
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