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Finite difference method (FDM)
Consider an ODE

—au" +bu'+cu=0  z€(0,1)
with some boundary conditions.
Basic idea of finite difference method: Discretize the domain = (0,1)
with N points known as grid or mesh
0= <...<ay1<zy=1

Usually
Tjy1 — Xy =h=Ax

Approximate derivatives with finite differences
Duj =~ u/(z;) D?u; ~ ()
Satisfy the ODE at the grid points in an approximate sense: U; =~ u(x;)
—a;D*U; + b;DU; +¢;U; =0 2<j<N-1

Somehow solve for the unknown values Uy, Us, ..., Un_1.

N



Finite difference approximation

Derivatives as limits (we take h > 0 always)

. u(x; +h) —u(zy) u(z;) —u(x; — h)
e = oy M) <y )

Finite difference approximation: Take finite h; many possibilities

Forward difference (FD) : Diuj = w
Backward difference (BD) : D uj = %
Central difference (CD) : Duj; = %

Since they were obtained from the definition of the derivative, they must
provide consistent approximation of the derivative.



Consistency of forward difference D u;

Taylor formula around = = x;

h2
Ui = uj + huly + —uff + O (h?)

2
Uj+1 —U; h 7 2
BHELZH g S+ 0 ()

Error

h
Djuj — u; = iu;/ + O (h2)

Or, use Taylor formula with remainder term

h
D;’u]‘ — u; = §u”(§), f € [Z[Ij,l‘j+1]

Typical error estimate
+ ! ]- 1
[DFu; =] < Shswp (@) = O (1)

If uw € C3(0,1): D is consistent and first order accurate



Consistency of backward difference D

Taylor formula around = = x;

h2
wj_y = uj — huly + —uf + O (h®)

2
Uj —Uj—1 h " o) h2

Error

Dy u; — u; gu;/ + 0O (h2)

Or, use Taylor formula with remainder term
D;;uj_u;': u (5)7 §€ [mjvxj-i-l]
Typical error estimate
— ! 1 "
|Dy uj — uj| < 5hsup|u (x)] = O (h)
T

If w € C3(0,1): D, is consistent and first order accurate



Consistency of central difference D?

Taylor formula around x = x;

’ h? 1 h? 1 4
h? h3
Uj—1 = Uj — hu; + ?Ug — FU;{/ +0 (h4)

2

= u; + %u}” +0 (h4)

Ujp1 — Uj1
2h

Error
2

Diu; —uy = %u;’ + 0 (h*)

Or, using Taylor formula with remainder term
1
|DYu; — uj| < ghz sup [u"'(z)| = O (h?)

If w € C3(0,1): DY is consistent and second order accurate

x



Consistency of central difference when u ¢ C3(0,1)

What if u € C2(0,1) but u ¢ C3(0,1)

wjpr =uj +huy+ - u"(€), €€ [z, 2541]
Uj—1 *ujfhu;"i’i“”( /)a 77€ [xj—laxj]
Ujr1 — Uj—1 h , ,
J+ o J — + 4[ H(i)f /l”(l/”
Error 3
Du; iy = 2 1u(€) ()
Or

1
DYy — ] < Shsup|u” (@) = O (h)

If u € C%(0,1): DY is consistent and first order accurate



Generation of FD formulae
Suppose we want to approximate
/ .
u'(x;) using  uj_o,Uj_1,U;j
Assume a formula with unknown coefficients a, b, ¢

o
D’ILj =auj_s+ buj,l +cu; &~ u;

i (non-centered)

Use Taylor formula around = = z;
Du: = . 2h / 2}2 " 4}3 " 10} }4
u; = a|uj —2hu; 4 2h uy — 3 ViU 4 (7/ )

1 1
+b [uj — huy + Sh*uf — ohPuj 4+ O (h4)}

+cu;
1
= (a+b+c)u; — (2a+ b)huj; 4 (2a + §b)h2u;’
4

1
—(z0+ 6b)h?’u;” + 0 (h?)



Generation of FD formulae
Choose a, b, ¢ so that

at+b+c = 0
—(2a+bh =
1
2 -b
a+ 3 0
Unique solution is
e L2 3
2K B - 2h
Hence the FD formula is
Ui_g —4u;i_1 + 3u;
Du, — J J
i 2h
Error estimate
/ 4 1 3. m 3 1 2 11 3

If u € C3(0,1): Consistent and second order accurate



Some remarks

o Approximate u'(x;) using w;_o, U;j—1, Wj, Wjt1, Wjt2

1

» central difference approximation
» Note the anti-symmetric structure of the formula

To obtain higher order accuracy, we need to increase the stencil size

Higher order accuracy requires higher regularity /smoothness of the
function

Central difference formulae give more accuracy with compact stencil as
compared to one-sided or non-centered stencil
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Differentiation via interpolation
Construct approximation to u/(z;) using
{uj_k, ey U1 Uy Ujg 1y e e ey uj-l-l} k+ 14 1 points

Write an interpolating polynomial

G+
pi@)= Y Le(@ur,  Li(ws) =6
r=j—k
L(z) = (x—zj_g)...(x —zr_1)(@ —zpg1) ... (T — 2j41)

(xr —2j—p) o (@p — 1) (@ — Zpg1) - (@ — Tjga)
Approximation of derivative
J+l

u'(z5) = py(ay) = D Li(zs)ur

r=j—k

Can be used on non-uniform grids also.
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Approximation of second derivative

o+ h)2) — ' (z; — h/2
u”(xj) — lim u'(z; 4+ h/2) —u'(z; — h/2)
h—0 h

Finite difference

W (w5) ~ u'(zj +h/2) - (z; —h/2) S R

h h

Uj—1 — 2’LL]' + Uj41

D27.Lj = h,2

=" (z;) + O (h?)

e Note the symmetric structure of the formula
e Other methods

» Generate formulae by matching Taylor series
» Or, use the method of interpolating polynomial



Non-uniform grids

Non-uniform grids essential to capture rapid variations, e.g., boundary layers

r1 <T2 < ...<2xN, Zj+1 — x; = h; # constant

Finite difference
U; — Uj—1 Ujqp1 — Uy
j =1 _ j g
=u'(z;) + O (x; —xj-1), =u'(z;) + O (Tjt1 — x;)

Ly~ L1 Tjp1 — T

Ujp1 — Uje

j+1 j—1 ’

= u'(x;) + O (zj11 — 1)
Tjpl — Tj-1
In general, all of these are first order accurate. Central difference does not give
high accuracy as in case of uniform grids.

j+1 [

Xi Xi+1



Smooth non-uniform grids
Example: Suppose z € [0,1]. Do a change of variable, e.g.,
1

x=f(&) = 5[1 — cos(7¢)], ¢e€]o,1]

Make a uniform grid in -space, also called computational space
1
§1 <& <... <&, §j—§j71=A§=ﬁ

Associated grid in physical space

xj:f(gj)v 1§]§N

X
du  du d€
dr ~ dédz
Finite difference approximation
du N Uj41 — Uj—1 g )
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Spectral analysis
f:]0,1] — R a periodic function. Discrete Fourier series approximation

N/2

Z fkei%rka:’ fAfk _ f'];k

=—N/2

How does the finite difference approximate derivatives of Fourier modes
f(x):eizﬂkz, 0<k<N/2

Exact derivative

df

1z (z;) = i2mkel?™ke)

Central difference

2h 2 T

sin(2rkh) . ionp,, _ sin(2mkh) df
onkh 2 = ok e

DOfJ firn—fia ei2mk(z;+h) _ i2mk(z;—h) _.sin(2mkh) siznha,

DY) f; =



Spectral analysis
Ratio of numerical to exact amplitude (Note: h = 1/N)

. . /
w = 2mkh, ey = sin(27kh) _ sin(w) _w (w)’ 0<w<n

2wkh w w

cdh

gY

e Central finite difference is able to resolve only small wavenumbers k, i.e.,
w K 7, i.e., very smooth functions

e For large k, i.e., w = 7, the functions are rapidly varying. Finite
difference damps these high frequency modes excessively.

e Desirable to have ¢4 ~ 1 over a larger range of w
Very important for convection problems
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Compact schemes (Lele)

Bfixtafi  +fitafi  +Bfiss

chi+3_fi—3_+_bfi+2_fi—2_+_afi+l_fi—1'
64 4h 2h
Match terms in Taylor series about x; on both sides

a+b+c=1+2a+28 (second order) (2.1.1)
3!

a+22b+32c=25 (¢ +2°8) (fourthorder) (2.1.2)
51

a+2“b+3“c=2m(a+2“[3) (sixth order) (2.1.3)
7!

a+ 2%+ 366=2a (x+2%8) (eighth order) (2.1.4)
9!

a+2%+3%=2 a1 (x+2%B) (tenth order). (2.1.5)



Compact schemes (Lele)

Exzample: Three point stencil, 5 =b=c=0

f2+1 fz 1

afi 4+ fitafi, = oh

Two unknowns a, o, we need two equations 2.1.1 and 2.1.2

3! 3 1
a=1+42aq, a,—22‘0¢—601 == a:§, azz

e Need some boundary condition: periodic or one-sided formulae
Stencil is {i — 1,4,7 + 1}

Implicit; solve for {f/} by solving tri-diagonal matrix problem
Can be done very efficiently using Thomas Tridiagonal Algorithm

The approximation is fourth order accurate.

Classical Pade scheme



Compact schemes (Lele)

Tridiagonal schemes: =0
Fourth order, one parameter «
B=0, a=3(@+2), b=%1(4a—1), c=0. (2.1.6)

Sixth order

Sixth order, one parameter «

B=0, a=L(a+9),

(2.1.8)
b=1(320—9), c=%(=3a+1).



Compact schemes (Lele)

Truncation Error for the First Derivative Schemes

Scheme

Max. Lhs. Max. rhs.
stencil size stencil size

Truncation error in (2.1)

(2.16)
@17
(2.18)
(2.!.8)&a=%
(2.19)
(2.1.10)
(2.1.11)
(21.12)
(2.1.13)

(2.1.14)

3 5
3 5
3 7
3 7
5 7
5 7
5 5
5 5
5 7
5 7

4
RIETNA
4
Sy
%(—8m+3)h°f‘7'
—36 5.0
TR
4
3 (=143 126+ 100) A7
12 67(7)
7 (3 =82+ 208) H'f
;—'(Qa—v‘t)h“f"'
16 .0
—g
19;4'4 Qa—1) RO

144 o0
ll!h 4




Compact schemes: Spectral analysis

Modified Wavenumber
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w'(w)

_asin(w) + (b/2) sin(2w) + (¢/3) sin(3w)

1 + 20 cos(w) + 28 cos(2w)

(3.1.4)

FIG. 1. Plot of modified wavenumber vs wavenumber for first
derivative approximations: (a) d-order central differences; (b) fourth-
order central differences; (c) sixth-order central differences; (d) standard
Padé scheme (B=0=c, a=}); (e) sixth-order tridiagonal scheme
(B=0=c, a=}); (f) eighth-order tridiagonal scheme (8 = 0); (g) eighth-
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order p scheme (c=0); (h) tenth-order pentadiagonal
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia-
tion.



