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Finite difference method (FDM)
Consider an ODE

−au′′ + bu′ + cu = 0 x ∈ (0, 1)

with some boundary conditions.

Basic idea of finite difference method: Discretize the domain Ω = (0, 1)
with N points known as grid or mesh

0 = x1 < . . . < xN−1 < xN = 1

Usually
xj+1 − xj = h = ∆x

Approximate derivatives with finite differences

Duj ≈ u′(xj) D2uj ≈ u′′(xj)

Satisfy the ODE at the grid points in an approximate sense: Uj ≈ u(xj)

−ajD2Uj + bjDUj + cjUj = 0 2 ≤ j ≤ N − 1

Somehow solve for the unknown values U2, U3, . . . , UN−1.
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Finite difference approximation

Derivatives as limits (we take h > 0 always)

u′(xj) = lim
h→0

u(xj + h)− u(xj)

h
= lim
h→0

u(xj)− u(xj − h)

h

Finite difference approximation: Take finite h; many possibilities

Forward difference (FD) : D+
x uj =

uj+1 − uj
h

Backward difference (BD) : D−x uj =
uj − uj−1

h

Central difference (CD) : D0
xuj =

uj+1 − uj−1
2h

Since they were obtained from the definition of the derivative, they must
provide consistent approximation of the derivative.
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Consistency of forward difference D+
x uj

Taylor formula around x = xj

uj+1 = uj + hu′j +
h2

2
u′′j +O

(
h3
)

uj+1 − uj
h

= u′j +
h

2
u′′j +O

(
h2
)

Error

D+
x uj − u′j =

h

2
u′′j +O

(
h2
)

Or, use Taylor formula with remainder term

D+
x uj − u′j =

h

2
u′′(ξ), ξ ∈ [xj , xj+1]

Typical error estimate

|D+
x uj − u′j | ≤

1

2
h sup

x
|u′′(x)| = O (h)

If u ∈ C2(0, 1): D+
x is consistent and first order accurate
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Consistency of backward difference D−x
Taylor formula around x = xj

uj−1 = uj − hu′j +
h2

2
u′′j +O

(
h3
)

uj − uj−1
h

= u′j +
h

2
u′′j +O

(
h2
)

Error

D−x uj − u′j =
h

2
u′′j +O

(
h2
)

Or, use Taylor formula with remainder term

D−x uj − u′j =
h

2
u′′(ξ), ξ ∈ [xj , xj+1]

Typical error estimate

|D−x uj − u′j | ≤
1

2
h sup

x
|u′′(x)| = O (h)

If u ∈ C2(0, 1): D−x is consistent and first order accurate
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Consistency of central difference D0
x

Taylor formula around x = xj

uj+1 = uj + hu′j +
h2

2
u′′j +

h3

6
u′′′j +O

(
h4
)

uj−1 = uj − hu′j +
h2

2
u′′j −

h3

6
u′′′j +O

(
h4
)

uj+1 − uj−1
2h

= u′j +
h2

6
u′′′j +O

(
h4
)

Error

D0
xuj − u′j =

h2

6
u′′j +O

(
h3
)

Or, using Taylor formula with remainder term

|D0
xuj − u′j | ≤

1

3
h2 sup

x
|u′′′(x)| = O

(
h2
)

If u ∈ C3(0, 1): D0
x is consistent and second order accurate
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Consistency of central difference when u /∈ C3(0, 1)

What if u ∈ C2(0, 1) but u /∈ C3(0, 1)

uj+1 = uj + hu′j +
h2

2
u′′(ξ), ξ ∈ [xj , xj+1]

uj−1 = uj − hu′j +
h2

2
u′′(η), η ∈ [xj−1, xj ]

uj+1 − uj−1
2h

= u′j +
h

4
[u′′(ξ)− u′′(η)]

Error

D0
xuj − u′j =

h

4
[u′′(ξ)− u′′(η)]

Or

|D0
xuj − u′j | ≤

1

2
h sup

x
|u′′(x)| = O (h)

If u ∈ C2(0, 1): D0
x is consistent and first order accurate
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Generation of FD formulae

Suppose we want to approximate

u′(xj) using uj−2, uj−1, uj

Assume a formula with unknown coefficients a, b, c

Duj = auj−2 + buj−1 + cuj ≈ u′j , (non-centered)

Use Taylor formula around x = xj

Duj = a

[
uj − 2hu′j + 2h2u′′j −

4

3
h3u′′′j +O

(
h4
)]

+b

[
uj − hu′j +

1

2
h2u′′j −

1

6
h3u′′′j +O

(
h4
)]

+cuj

= (a+ b+ c)uj − (2a+ b)hu′j + (2a+
1

2
b)h2u′′j

−(
4

3
a+

1

6
b)h3u′′′j +O

(
h3
)
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Generation of FD formulae
Choose a, b, c so that

a+ b+ c = 0

−(2a+ b)h = 1

2a+
1

2
b = 0

Unique solution is

a =
1

2h
, b = − 2

h
, c =

3

2h

Hence the FD formula is

Duj =
uj−2 − 4uj−1 + 3uj

2h

Error estimate

Duj − u′j = −(
4

3
a+

1

6
b)h3u′′′j +O

(
h3
)

= −1

3
h2u′′′j +O

(
h3
)

If u ∈ C3(0, 1): Consistent and second order accurate
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Some remarks

• Approximate u′(xj) using uj−2, uj−1, uj , uj+1, uj+2

Duj =
1

2h
(uj−2 − 8uj−1 + 8uj+1 − uj+2) = u′(xj) +O

(
h4
)

I central difference approximation
I Note the anti-symmetric structure of the formula

• To obtain higher order accuracy, we need to increase the stencil size

• Higher order accuracy requires higher regularity/smoothness of the
function

• Central difference formulae give more accuracy with compact stencil as
compared to one-sided or non-centered stencil
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Differentiation via interpolation

Construct approximation to u′(xj) using

{uj−k, . . . , uj−1, uj , uj+1, . . . , uj+l} k + l + 1 points

Write an interpolating polynomial

pj(x) =

j+l∑
r=j−k

Lr(x)ur, Lr(xs) = δrs

Lr(x) =
(x− xj−k) . . . (x− xr−1)(x− xr+1) . . . (x− xj+l)

(xr − xj−k) . . . (xr − xr−1)(xr − xr+1) . . . (xr − xj+l)
Approximation of derivative

u′(xj) ≈ p′j(xj) =

j+l∑
r=j−k

L′r(xj)ur

Can be used on non-uniform grids also.
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Approximation of second derivative

u′′(xj) = lim
h→0

u′(xj + h/2)− u′(xj − h/2)

h

Finite difference

u′′(xj) ≈
u′(xj + h/2)− u′(xj − h/2)

h
≈

uj+1−uj

h − uj−uj−1

h

h

D2uj =
uj−1 − 2uj + uj+1

h2
= u′′(xj) +O

(
h2
)

• Note the symmetric structure of the formula

• Other methods
I Generate formulae by matching Taylor series
I Or, use the method of interpolating polynomial
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Non-uniform grids
Non-uniform grids essential to capture rapid variations, e.g., boundary layers

x1 < x2 < . . . < xN , xj+1 − xj = hj 6= constant

Finite difference

uj − uj−1
xj − xj−1

= u′(xj) +O (xj − xj−1) ,
uj+1 − uj
xj+1 − xj

= u′(xj) +O (xj+1 − xj)

uj+1 − uj−1
xj+1 − xj−1

= u′(xj) +O (xj+1 − xj−1)

In general, all of these are first order accurate. Central difference does not give
high accuracy as in case of uniform grids.
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Figure 4.3.1 Representative grid in a boundary layer region above a solid wall.
The velocity profile is superposed on the grid, which is selected to be uniform in the
x-direction and non-uniform in the y-direction.

We refer you to the grid examples shown in the general introduction to this book,
where you can observe a selected cross-section of realistic grids.

A very representative example is provided by the grids in boundary layer regions
around solid surfaces (see Figure 4.3.1). In a laminar boundary layer, it is known from
Prandtl’s analysis that the boundary layer thickness δ over a flat plate scales with x
like the inverse of the square root of the Reynolds number. We refer you to your basic
course of Fluid Mechanics for the background behind the boundary layer properties.

That is

δ ∼
√

νx
U∞

= x√
Rex

with Rex = U∞x
ν

where ν is the kinematic viscosity (in m2/s) and U∞ is the velocity outside the bound-
ary layer. It is also known that the ratio of the velocity gradients in the normal and
streamwise directions is of the order of the square root of this same Reynolds number:

∂u
∂y

/
∂u
∂x

∼
√

Rex

After having generated a grid, if we wish to ensure that the velocity variations in
the x- and y-directions are of the same order over the mesh distances $x and $y,
respectively, we should generate a grid with an aspect ratio $x/$y of the order of

$y
$x

∼ 1√
Rex

For a realistic Reynolds number of say, 1 million, this ratio is of the order of 1000!
Hence, we would need to generate cells where $y is thousand times smaller than

$x. In practical terms, for a plate of unit length and 101 mesh points in the x-direction,
that is $x = 0.01, $y should be of the order of 10−5!

This simple analysis shows that a uniform mesh would require unrealistic small cell
sizes, to be equal to the smallest cell size of 10−5, leading to millions of mesh points.
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Smooth non-uniform grids
Example: Suppose x ∈ [0, 1]. Do a change of variable, e.g.,

x = f(ξ) =
1

2
[1− cos(πξ)], ξ ∈ [0, 1]

Make a uniform grid in ξ-space, also called computational space

ξ1 < ξ2 < . . . < ξN , ξj − ξj−1 = ∆ξ =
1

N − 1

Associated grid in physical space

xj = f(ξj), 1 ≤ j ≤ N

x

ξ

du

dx
=

du

dξ

dξ

dx

Finite difference approximation

du

dx
(xj) ≈

uj+1 − uj−1
2∆ξ

dξ

dx
(xj)
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Spectral analysis

f : [0, 1]→ R a periodic function. Discrete Fourier series approximation

f =

N/2∑
k=−N/2

f̂kei2πkx, f̂−k = f̂∗k

How does the finite difference approximate derivatives of Fourier modes

f(x) = ei2πkx, 0 ≤ k ≤ N/2

Exact derivative
df

dx
(xj) = i2πkei2πkxj

Central difference

D0
xfj =

fj+1 − fj−1
2h

=
ei2πk(xj+h) − ei2πk(xj−h)

2h
= i

sin(2πkh)

h
ei2πkxj

D0
xfj =

sin(2πkh)

2πkh
i2πkei2πkxj =

sin(2πkh)

2πkh

df

dx
(xj)
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Spectral analysis
Ratio of numerical to exact amplitude (Note: h = 1/N)

w = 2πkh, εd =
sin(2πkh)

2πkh
=

sin(w)

w
=
w′(w)

w
, 0 ≤ w ≤ π

εd

wπ

1

0

εd =
sinw
w

• Central finite difference is able to resolve only small wavenumbers k, i.e.,
w � π, i.e., very smooth functions

• For large k, i.e., w ≈ π, the functions are rapidly varying. Finite
difference damps these high frequency modes excessively.

• Desirable to have εd ≈ 1 over a larger range of w
Very important for convection problems
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Compact schemes (Lele)

COMPACT FINITE DIFFERENCE SCHEMES 17 

stepping restrictions for stability are also described in this 
section. General remaks on the application of the schemes 
are made in Section 5 and some example applications from 
fluid mechanics are presented. 

2 

2.1. Approximation of First Derivative 

Given the values of a function on a set of nodes the finite 
difference approximation to the derivative of the function is 
expressed as a linear combination of the given function 
values. For simplicity consider a uniformly spaced mesh 
where the nodes are indexed by i. The independent variable 
at the nodes is x, = h( i - 1) for 1 < i < N and the function 
values at the nodes f, = f (x,) are given. The finite difference 
approximation fl to the first derivative (df/dx)(xi) at the 
node i depends on the function values at nodes near i. 
For second- and fourth-order central differences the 
approximation f i depends on the sets (h.-, , f,, i) and 
( fifi 2, fjfi i, L+ , , fi, J, respectively. In the spectral 
methods, however, the value off I depends on all the nodal 
values. The Pade or compact finite difference schemes 
[ 15-191 mimic this global dependence. The schemes 
presented here are generalizations of the Pade scheme. 

These generalizations are derived by writing approxima- 
tions of the form: 

Pf:-*+cI +fl+olfi+1 +Bfi+2 

=c~+~-~-~+bf,+2-.f;~2+afi+I-~-I 

6h 4h 2h ’ 

(2.1) 

The relations between the coefficients a, b, c and a, B are 
derived by matching the Taylor series coefficients of various 
orders. The first unmatched coefficient determines the 
formal truncation error of the approximation (2.1). These 
constraints are: 

a+b+c=1+2a+2p (second order) 

a + 22b + 32c = 2 G (a + 2’p) (fourth order) 

a + 24b + 34c = 2 z (a + 24/?) (sixth order) 

a+26b+3”c=2~(a+2”B) (eighthorder) 

a + 28b + 38c = 2 E (a + 28/?) (tenth order). 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

(2.1.5) 

If the dependent variables are periodic in x, then the 
system of relations (2.1) written for each node can be solved 

together as a linear system of equations for the unknown 
derivative values. This linear system is a cyclic penta- 
diagonal (tridiagonal) when fl is nonzero (zero). The 
general non-periodic case requires additional relations 
appropriate for the near boundary nodes. These are 
described in Sections 4.1 and 4.2. The resulting linear 
system is amenable to efficient numerical solution. 

The relation (2.1), along with a mathematically defined 
mapping between a non-uniform physical mesh and a 
uniform computational mesh, provides derivatives on a 
non-uniform mesh. It is also possible to derive relations 
analogous to (2.1) for a non-uniform mesh directly (e.g., 
relations corresponding to the traditional Pad& scheme were 
derived in [19-211). We now consider the various special 
cases of (2.1). In the discussion below at least the first two 
of the constraints (2.1.1)-(2.1.5) are imposed. Thus all the 
schemes described have at least a fourth-order formal 
accuracy. 

In Section 3.1 an analysis of the dispersive errors of 
schemes (2.1) is presented. This analysis shows the 
improved representation of the shorter length scales (i.e., 
spectral-like resolution) of the schemes presented here. The 
analysis also leads to schemes with very small dispersive 
errors (almost spectral). These are also presented in Sec- 
tion 3.1. In the present section we proceed in the traditional 
way to classify the differencing schemes generated by (2.1) 
in terms of the formal truncation error and the computa- 
tional stencil required. 

The general relation (2.1) with (2.1.1), (2.1.2) can be 
regarded as a three-parameter family of fourth-order 
schemes. If the schemes are restricted to /I = 0 a variety of 
tridiagonal systems are obtained. For /I # 0 pentadiagonal 
schemes are generated. If the additional constraint of sixth- 
order formal accuracy is imposed, a two-parameter family 
of sixth-order pentadiagonal schemes is obtained. These 
may be further specialized into a one-parameter family of 
eighth-order pentadiagonal schemes or a single tenth-order 
scheme. 

First the tridiagonal schemes are described. These are 
generated by p = 0. If a further choice of c = 0 is made, a 
one-parameter (a) family of fourth-order tridiagonal 
schemes is obtained. For these schemes 

B=O, a=f(a+2), b=f(4a-1), c=O. (2.1.6) 

The truncation error on the r.h.s. of (2.1) (unless stated 
otherwise the term truncation error will be used in this sense 
from here on) for this scheme and for other schemes to be 
described below are listed in Table I. The stencil sizes 
indicated in the table are the maximum stencil sizes needed 
within a class of schemes. 

As a -+ 0 this family merges into the well-known fourth- 
order central difference scheme. Similarly for a = $ the 
classical Padt scheme is recovered. Furthermore, for a = f 

Match terms in Taylor series about xi on both sides
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scheme. 

First the tridiagonal schemes are described. These are 
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one-parameter (a) family of fourth-order tridiagonal 
schemes is obtained. For these schemes 
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As a -+ 0 this family merges into the well-known fourth- 
order central difference scheme. Similarly for a = $ the 
classical Padt scheme is recovered. Furthermore, for a = f 
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Compact schemes (Lele)

Example: Three point stencil, β = b = c = 0

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 − fi−1

2h

Two unknowns a, α, we need two equations 2.1.1 and 2.1.2

a = 1 + 2α, a = 2
3!

2!
α = 6α =⇒ a =

3

2
, α =

1

4

• Need some boundary condition: periodic or one-sided formulae

• Stencil is {i− 1, i, i+ 1}
• Implicit; solve for {f ′i} by solving tri-diagonal matrix problem

Can be done very efficiently using Thomas Tridiagonal Algorithm

• The approximation is fourth order accurate.

• Classical Pade scheme
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Compact schemes (Lele)

Tridiagonal schemes: β = 0

Fourth order, one parameter α
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derived in [19-211). We now consider the various special 
cases of (2.1). In the discussion below at least the first two 
of the constraints (2.1.1)-(2.1.5) are imposed. Thus all the 
schemes described have at least a fourth-order formal 
accuracy. 

In Section 3.1 an analysis of the dispersive errors of 
schemes (2.1) is presented. This analysis shows the 
improved representation of the shorter length scales (i.e., 
spectral-like resolution) of the schemes presented here. The 
analysis also leads to schemes with very small dispersive 
errors (almost spectral). These are also presented in Sec- 
tion 3.1. In the present section we proceed in the traditional 
way to classify the differencing schemes generated by (2.1) 
in terms of the formal truncation error and the computa- 
tional stencil required. 

The general relation (2.1) with (2.1.1), (2.1.2) can be 
regarded as a three-parameter family of fourth-order 
schemes. If the schemes are restricted to /I = 0 a variety of 
tridiagonal systems are obtained. For /I # 0 pentadiagonal 
schemes are generated. If the additional constraint of sixth- 
order formal accuracy is imposed, a two-parameter family 
of sixth-order pentadiagonal schemes is obtained. These 
may be further specialized into a one-parameter family of 
eighth-order pentadiagonal schemes or a single tenth-order 
scheme. 

First the tridiagonal schemes are described. These are 
generated by p = 0. If a further choice of c = 0 is made, a 
one-parameter (a) family of fourth-order tridiagonal 
schemes is obtained. For these schemes 

B=O, a=f(a+2), b=f(4a-1), c=O. (2.1.6) 

The truncation error on the r.h.s. of (2.1) (unless stated 
otherwise the term truncation error will be used in this sense 
from here on) for this scheme and for other schemes to be 
described below are listed in Table I. The stencil sizes 
indicated in the table are the maximum stencil sizes needed 
within a class of schemes. 

As a -+ 0 this family merges into the well-known fourth- 
order central difference scheme. Similarly for a = $ the 
classical Padt scheme is recovered. Furthermore, for a = f 
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TABLE I 

Truncation Error for the First Derivative Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (2.1) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.8)&a =; 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2.1.14) 

3 

3 

3 

3 

5 

5 

5 

5 

5 

5 

5 $ (3a - 1) h4f”’ 

5 $ h6fc7’ 

7 F(-8a+3)hlf”’ 

7 $haf’P’ 

7 ~(-1+3a-l2/?+10c)h~“’ 

7 

5 i (9a - 4) hqf”’ 

5 -;,(,I 

7 g (2a - 1) h*f ‘9) 

7 ;hlOfilK 

the leading order truncation error coefficient vanishes and 
the scheme is formally sixth-order accurate. Its coefficients 
are 

a=$, j?=o, a+, b+, c=Q (2.1.7) 

The specific tridiagonal schemes obtained for a = $ and a = i 
were given by Collatz [22, p. 5381. 

With /3 = 0 and c #O the family of schemes (2.1.6) is 
extended to a two-parameter family of fourth-order 
tridiagonal schemes. Contained within these is a one- 
parameter family of sixth-order tridiagonal schemes. For 
this (sixth-order) family 

P=O, a=$(a+9), 

b=h(32a-9), c=&(-3a+l). 
(2.1.8) 

The sixth-order tridiagonal scheme (2.1.7) is a member of 
this family (with c = 0, a = f). This sixth-order family can be 
further specialized into an eighth-order scheme by choosing 
a = $. This is the tridiagonal scheme (p = 0) with the highest 
formal accuracy within (2.1). 

K. LELE 

Pentadiagonal schemes are generated with j? ~0. In 
general this fourth-order three-parameter (a, j?, and c) 
family is given by 

a=f(4+2a-168+5c), 

b=$(-1+4a+228-8c). 
(2.1.9) 

Schemes of sixth-order formal accuracy contain two 
parameters a and p. They are given by 

a=i(9+a-208), b=&(-9+32a+62/?), 

c=h(1-3a+12j). 
(2.1.10) 

The tridiagonal sixth-order family of (2.1.8) is a subclass 
within (2.1.10). Another subclass is obtained with B # 0 and 
c = 0. This sixth-order pentadiagonal family has 

B=h(-1+3a), a=$(8-3a), 

b=&(-17+57a), c=O. 
(2.1.11) 

This family limits to the sixth-order tridiagonal scheme 
(2.1.7) as fi -+ 0 or a = $. The leading truncation error coef- 
ficient for (2.1.11) vanishes for a = $ yielding an eighth-order 
scheme. This eighth-order scheme has 

a=$, p=$, a=%, b=g, c=O. (2.1.12) 

This particular scheme is also given by Collatz [22, p. 5381 
and analyzed by Swartz and Wendroff [l&13]. 

By choosing p = $ ( - 3 + 8a) in (2.1.10) a one-parameter 
family of eighth-order pentadiagonal schemes is generated. 
This eighth-order family has 

/I?=$(-3+8a), a=i(12-7a), 

b=&(568a-183), c=&(9a-4). 
(2.1.13) 

The specific eighth-order schemes obtained earlier viz., (a) 
scheme (2.1.8) with a = 2 and (b) scheme (2.1.12), belong to 
this one-parameter family. 

By choosing a = i in (2.1.13) a tenth-order scheme is 
generated. This is the scheme with the highest formal 
accuracy amongst the schemes defined by (2.1). The 
coefficients of this scheme are 

a=;, j?=$j, a=+$ b=s, c=&. (2.1.14) 

Among the class of derivative approximations repre- 
sented by (2.1) those which achieve the highest possible 
formal accuracy within each subclass of schemes (denoted 
by a specified computational stencil on both the 1.h.s. and 
r.h.s. of (2.1)) are precisely the schemes obtained by a 
rational (or Padt) approximation of the first derivative 
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TABLE I 

Truncation Error for the First Derivative Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (2.1) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.8)&a =; 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2.1.14) 

3 
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3 

5 

5 

5 

5 
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5 

5 $ (3a - 1) h4f”’ 
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5 i (9a - 4) hqf”’ 

5 -;,(,I 

7 g (2a - 1) h*f ‘9) 

7 ;hlOfilK 

the leading order truncation error coefficient vanishes and 
the scheme is formally sixth-order accurate. Its coefficients 
are 

a=$, j?=o, a+, b+, c=Q (2.1.7) 

The specific tridiagonal schemes obtained for a = $ and a = i 
were given by Collatz [22, p. 5381. 

With /3 = 0 and c #O the family of schemes (2.1.6) is 
extended to a two-parameter family of fourth-order 
tridiagonal schemes. Contained within these is a one- 
parameter family of sixth-order tridiagonal schemes. For 
this (sixth-order) family 

P=O, a=$(a+9), 

b=h(32a-9), c=&(-3a+l). 
(2.1.8) 

The sixth-order tridiagonal scheme (2.1.7) is a member of 
this family (with c = 0, a = f). This sixth-order family can be 
further specialized into an eighth-order scheme by choosing 
a = $. This is the tridiagonal scheme (p = 0) with the highest 
formal accuracy within (2.1). 

K. LELE 

Pentadiagonal schemes are generated with j? ~0. In 
general this fourth-order three-parameter (a, j?, and c) 
family is given by 

a=f(4+2a-168+5c), 

b=$(-1+4a+228-8c). 
(2.1.9) 

Schemes of sixth-order formal accuracy contain two 
parameters a and p. They are given by 

a=i(9+a-208), b=&(-9+32a+62/?), 

c=h(1-3a+12j). 
(2.1.10) 

The tridiagonal sixth-order family of (2.1.8) is a subclass 
within (2.1.10). Another subclass is obtained with B # 0 and 
c = 0. This sixth-order pentadiagonal family has 

B=h(-1+3a), a=$(8-3a), 

b=&(-17+57a), c=O. 
(2.1.11) 

This family limits to the sixth-order tridiagonal scheme 
(2.1.7) as fi -+ 0 or a = $. The leading truncation error coef- 
ficient for (2.1.11) vanishes for a = $ yielding an eighth-order 
scheme. This eighth-order scheme has 

a=$, p=$, a=%, b=g, c=O. (2.1.12) 

This particular scheme is also given by Collatz [22, p. 5381 
and analyzed by Swartz and Wendroff [l&13]. 

By choosing p = $ ( - 3 + 8a) in (2.1.10) a one-parameter 
family of eighth-order pentadiagonal schemes is generated. 
This eighth-order family has 

/I?=$(-3+8a), a=i(12-7a), 

b=&(568a-183), c=&(9a-4). 
(2.1.13) 

The specific eighth-order schemes obtained earlier viz., (a) 
scheme (2.1.8) with a = 2 and (b) scheme (2.1.12), belong to 
this one-parameter family. 

By choosing a = i in (2.1.13) a tenth-order scheme is 
generated. This is the scheme with the highest formal 
accuracy amongst the schemes defined by (2.1). The 
coefficients of this scheme are 

a=;, j?=$j, a=+$ b=s, c=&. (2.1.14) 

Among the class of derivative approximations repre- 
sented by (2.1) those which achieve the highest possible 
formal accuracy within each subclass of schemes (denoted 
by a specified computational stencil on both the 1.h.s. and 
r.h.s. of (2.1)) are precisely the schemes obtained by a 
rational (or Padt) approximation of the first derivative 
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TABLE I 

Truncation Error for the First Derivative Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (2.1) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.8)&a =; 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2.1.14) 

3 

3 

3 

3 
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5 

5 

5 

5 $ (3a - 1) h4f”’ 

5 $ h6fc7’ 

7 F(-8a+3)hlf”’ 

7 $haf’P’ 

7 ~(-1+3a-l2/?+10c)h~“’ 
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5 i (9a - 4) hqf”’ 
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the leading order truncation error coefficient vanishes and 
the scheme is formally sixth-order accurate. Its coefficients 
are 

a=$, j?=o, a+, b+, c=Q (2.1.7) 

The specific tridiagonal schemes obtained for a = $ and a = i 
were given by Collatz [22, p. 5381. 

With /3 = 0 and c #O the family of schemes (2.1.6) is 
extended to a two-parameter family of fourth-order 
tridiagonal schemes. Contained within these is a one- 
parameter family of sixth-order tridiagonal schemes. For 
this (sixth-order) family 

P=O, a=$(a+9), 

b=h(32a-9), c=&(-3a+l). 
(2.1.8) 

The sixth-order tridiagonal scheme (2.1.7) is a member of 
this family (with c = 0, a = f). This sixth-order family can be 
further specialized into an eighth-order scheme by choosing 
a = $. This is the tridiagonal scheme (p = 0) with the highest 
formal accuracy within (2.1). 

K. LELE 

Pentadiagonal schemes are generated with j? ~0. In 
general this fourth-order three-parameter (a, j?, and c) 
family is given by 

a=f(4+2a-168+5c), 

b=$(-1+4a+228-8c). 
(2.1.9) 

Schemes of sixth-order formal accuracy contain two 
parameters a and p. They are given by 

a=i(9+a-208), b=&(-9+32a+62/?), 

c=h(1-3a+12j). 
(2.1.10) 

The tridiagonal sixth-order family of (2.1.8) is a subclass 
within (2.1.10). Another subclass is obtained with B # 0 and 
c = 0. This sixth-order pentadiagonal family has 

B=h(-1+3a), a=$(8-3a), 

b=&(-17+57a), c=O. 
(2.1.11) 

This family limits to the sixth-order tridiagonal scheme 
(2.1.7) as fi -+ 0 or a = $. The leading truncation error coef- 
ficient for (2.1.11) vanishes for a = $ yielding an eighth-order 
scheme. This eighth-order scheme has 

a=$, p=$, a=%, b=g, c=O. (2.1.12) 

This particular scheme is also given by Collatz [22, p. 5381 
and analyzed by Swartz and Wendroff [l&13]. 

By choosing p = $ ( - 3 + 8a) in (2.1.10) a one-parameter 
family of eighth-order pentadiagonal schemes is generated. 
This eighth-order family has 

/I?=$(-3+8a), a=i(12-7a), 

b=&(568a-183), c=&(9a-4). 
(2.1.13) 

The specific eighth-order schemes obtained earlier viz., (a) 
scheme (2.1.8) with a = 2 and (b) scheme (2.1.12), belong to 
this one-parameter family. 

By choosing a = i in (2.1.13) a tenth-order scheme is 
generated. This is the scheme with the highest formal 
accuracy amongst the schemes defined by (2.1). The 
coefficients of this scheme are 

a=;, j?=$j, a=+$ b=s, c=&. (2.1.14) 

Among the class of derivative approximations repre- 
sented by (2.1) those which achieve the highest possible 
formal accuracy within each subclass of schemes (denoted 
by a specified computational stencil on both the 1.h.s. and 
r.h.s. of (2.1)) are precisely the schemes obtained by a 
rational (or Padt) approximation of the first derivative 
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tion with Fourier coefficients -& = iwfk. The differencing 
error of the first derivative scheme may be assessed by com- 
paring the Fourier coefficients of the derivative obtained 
from the differencing scheme (fb)rd with the exact Fourier 
coefficients &. For central difference schemes it may be 
shown that (f;),, = iw’fk, where the modified wavenumber 
w’ is real-valued. Each finite difference scheme corresponds 
to a particular function w’(w). Exact differentiation 
corresponds to the straight line w’ = w. Spectral methods 
provide w’ = w  for w  # x (and w’ = 0 for w  = x). The range 
of wavenumbers [27r/N, wr] over which the modified 
wavenumber w’(w) approximates the exact differentiation 
w’(w) = w  within a specified error tolerance defines the set of 
well-resolved waves. While, the value wr, i.e., the shortest 
well resolved wave, certainly depends on the specific error 
tolerance it is quite reasonable to keep this error tolerance 
fixed when different finite difference schemes are compared. 
It should also be noted that wf depends only on the scheme 
and not on the number of points N used in the descretiza- 
tion. In the following the error tolerance is defined as: 

Iw’(w)-WI <E 
1, 

W 
(3.1.3) 

0 
d 

0.0 0.5 I.0 1.5 2.0 2.5 ‘3.0 

Wovenumber 

FIG. 1. Plot of modified wavenumher vs wavenumher for first 
derivative approximations: (a) second-order central differences; (b) fourth- 
order central differences; (c) sixth-order central differences; (d) standard 
Padt scheme (p=O = c, x= f); (e) sixth-order &diagonal scheme 
(/? = 0 = c, a = f); (f) eighth-order tridiagonal scheme (8 = 0); (g) eighth- 
order pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal 
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia- 
tion. 

The fraction I-, = 1 - wf/7c represents the fraction of 
poorly resolved waves for the first derivative scheme. This 
fraction is also independent of the number of points N. The 
fraction e, = w,/rc = 1 - rl may be regarded as a measure of 
the resolving efficiency of a scheme. We note that the com- 
putational efficiency of a scheme is proportional to the 
resolving efficiency but also depends on the operation count 
of the numerical algorithm and its implementation. The 
leading order operation count for the spectral-like scheme 
described later in this section is 7N multiplies, N divides, 
and 7N addition or subtraction operations when sparse 
matrix techniques are used [46] and the Cholesky decom- 
position of the symmetric portion of the associated matrix is 
computed (in LDLT form) and saved for future use. For the 
tridiagonal schemes the operation count is SN, N, and 5N 
for multiply, divide, and add/subtract operations, respec- 
tively. For reference, a radix 2 FFT [47] requires 2N log, N 
multiplies and 3N log, N adds. 

The difference schemes (2.1) correspond to 

Plots of the modified wavenumber w’ against wave- 
number w  are presented in Fig. 1 for a variety of schemes. 
In this manner the resolution characteristics of different 
schemes can be compared. From this plot the fraction r,, 
representing the fraction of poorly resolved waves and the 

w,(w) = a sin(w) + (b/2) sin(2w) + (c/3) sin(3w) 
1 + 2cr cos(w) + 28 cos(2w) . (3.1.4) 

resolving efficiency e, = 1 - ri is determined. This is done 

for three different values of the error tolerance E, viz., 
E = 0.1 0.01, and 0.001. The results quantify the resolution 
characteristics of the schemes and are tabulated in 
Table. III. 

It is evident that compared to the standard second- and 
fourth-order central differences the compact schemes stay 
close to the exact differentiation over a wider range of 
wavenumbers. The tridiagonal sixth-order scheme (2.1.7) is 
better than the standard PadC scheme. Similarly, the eighth- 

TABLE III 
Resolving Efficiency e,(s) of the First Derivative Schemes 

Shown in Fig. 1 

Scheme 

iti 
1:; 
(e) 
(f) 
(g) 
(h) 
6) 

&=o.l E = 0.01 .s=O.OOl 

0.25 0.08 0.02 
0.44 0.23 0.13 
0.54 0.35 0.23 
0.59 0.35 0.20 
0.70 0.50 0.35 
0.75 0.58 0.44 
0.77 0.61 0.48 
0.81 0.68 0.56 
0.90 0.83 0.79 
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tion with Fourier coefficients -& = iwfk. The differencing 
error of the first derivative scheme may be assessed by com- 
paring the Fourier coefficients of the derivative obtained 
from the differencing scheme (fb)rd with the exact Fourier 
coefficients &. For central difference schemes it may be 
shown that (f;),, = iw’fk, where the modified wavenumber 
w’ is real-valued. Each finite difference scheme corresponds 
to a particular function w’(w). Exact differentiation 
corresponds to the straight line w’ = w. Spectral methods 
provide w’ = w  for w  # x (and w’ = 0 for w  = x). The range 
of wavenumbers [27r/N, wr] over which the modified 
wavenumber w’(w) approximates the exact differentiation 
w’(w) = w  within a specified error tolerance defines the set of 
well-resolved waves. While, the value wr, i.e., the shortest 
well resolved wave, certainly depends on the specific error 
tolerance it is quite reasonable to keep this error tolerance 
fixed when different finite difference schemes are compared. 
It should also be noted that wf depends only on the scheme 
and not on the number of points N used in the descretiza- 
tion. In the following the error tolerance is defined as: 

Iw’(w)-WI <E 
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FIG. 1. Plot of modified wavenumher vs wavenumher for first 
derivative approximations: (a) second-order central differences; (b) fourth- 
order central differences; (c) sixth-order central differences; (d) standard 
Padt scheme (p=O = c, x= f); (e) sixth-order &diagonal scheme 
(/? = 0 = c, a = f); (f) eighth-order tridiagonal scheme (8 = 0); (g) eighth- 
order pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal 
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia- 
tion. 

The fraction I-, = 1 - wf/7c represents the fraction of 
poorly resolved waves for the first derivative scheme. This 
fraction is also independent of the number of points N. The 
fraction e, = w,/rc = 1 - rl may be regarded as a measure of 
the resolving efficiency of a scheme. We note that the com- 
putational efficiency of a scheme is proportional to the 
resolving efficiency but also depends on the operation count 
of the numerical algorithm and its implementation. The 
leading order operation count for the spectral-like scheme 
described later in this section is 7N multiplies, N divides, 
and 7N addition or subtraction operations when sparse 
matrix techniques are used [46] and the Cholesky decom- 
position of the symmetric portion of the associated matrix is 
computed (in LDLT form) and saved for future use. For the 
tridiagonal schemes the operation count is SN, N, and 5N 
for multiply, divide, and add/subtract operations, respec- 
tively. For reference, a radix 2 FFT [47] requires 2N log, N 
multiplies and 3N log, N adds. 

The difference schemes (2.1) correspond to 

Plots of the modified wavenumber w’ against wave- 
number w  are presented in Fig. 1 for a variety of schemes. 
In this manner the resolution characteristics of different 
schemes can be compared. From this plot the fraction r,, 
representing the fraction of poorly resolved waves and the 

w,(w) = a sin(w) + (b/2) sin(2w) + (c/3) sin(3w) 
1 + 2cr cos(w) + 28 cos(2w) . (3.1.4) 

resolving efficiency e, = 1 - ri is determined. This is done 

for three different values of the error tolerance E, viz., 
E = 0.1 0.01, and 0.001. The results quantify the resolution 
characteristics of the schemes and are tabulated in 
Table. III. 

It is evident that compared to the standard second- and 
fourth-order central differences the compact schemes stay 
close to the exact differentiation over a wider range of 
wavenumbers. The tridiagonal sixth-order scheme (2.1.7) is 
better than the standard PadC scheme. Similarly, the eighth- 
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Resolving Efficiency e,(s) of the First Derivative Schemes 
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tion with Fourier coefficients -& = iwfk. The differencing 
error of the first derivative scheme may be assessed by com- 
paring the Fourier coefficients of the derivative obtained 
from the differencing scheme (fb)rd with the exact Fourier 
coefficients &. For central difference schemes it may be 
shown that (f;),, = iw’fk, where the modified wavenumber 
w’ is real-valued. Each finite difference scheme corresponds 
to a particular function w’(w). Exact differentiation 
corresponds to the straight line w’ = w. Spectral methods 
provide w’ = w  for w  # x (and w’ = 0 for w  = x). The range 
of wavenumbers [27r/N, wr] over which the modified 
wavenumber w’(w) approximates the exact differentiation 
w’(w) = w  within a specified error tolerance defines the set of 
well-resolved waves. While, the value wr, i.e., the shortest 
well resolved wave, certainly depends on the specific error 
tolerance it is quite reasonable to keep this error tolerance 
fixed when different finite difference schemes are compared. 
It should also be noted that wf depends only on the scheme 
and not on the number of points N used in the descretiza- 
tion. In the following the error tolerance is defined as: 

Iw’(w)-WI <E 
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FIG. 1. Plot of modified wavenumher vs wavenumher for first 
derivative approximations: (a) second-order central differences; (b) fourth- 
order central differences; (c) sixth-order central differences; (d) standard 
Padt scheme (p=O = c, x= f); (e) sixth-order &diagonal scheme 
(/? = 0 = c, a = f); (f) eighth-order tridiagonal scheme (8 = 0); (g) eighth- 
order pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal 
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia- 
tion. 

The fraction I-, = 1 - wf/7c represents the fraction of 
poorly resolved waves for the first derivative scheme. This 
fraction is also independent of the number of points N. The 
fraction e, = w,/rc = 1 - rl may be regarded as a measure of 
the resolving efficiency of a scheme. We note that the com- 
putational efficiency of a scheme is proportional to the 
resolving efficiency but also depends on the operation count 
of the numerical algorithm and its implementation. The 
leading order operation count for the spectral-like scheme 
described later in this section is 7N multiplies, N divides, 
and 7N addition or subtraction operations when sparse 
matrix techniques are used [46] and the Cholesky decom- 
position of the symmetric portion of the associated matrix is 
computed (in LDLT form) and saved for future use. For the 
tridiagonal schemes the operation count is SN, N, and 5N 
for multiply, divide, and add/subtract operations, respec- 
tively. For reference, a radix 2 FFT [47] requires 2N log, N 
multiplies and 3N log, N adds. 

The difference schemes (2.1) correspond to 

Plots of the modified wavenumber w’ against wave- 
number w  are presented in Fig. 1 for a variety of schemes. 
In this manner the resolution characteristics of different 
schemes can be compared. From this plot the fraction r,, 
representing the fraction of poorly resolved waves and the 

w,(w) = a sin(w) + (b/2) sin(2w) + (c/3) sin(3w) 
1 + 2cr cos(w) + 28 cos(2w) . (3.1.4) 

resolving efficiency e, = 1 - ri is determined. This is done 

for three different values of the error tolerance E, viz., 
E = 0.1 0.01, and 0.001. The results quantify the resolution 
characteristics of the schemes and are tabulated in 
Table. III. 

It is evident that compared to the standard second- and 
fourth-order central differences the compact schemes stay 
close to the exact differentiation over a wider range of 
wavenumbers. The tridiagonal sixth-order scheme (2.1.7) is 
better than the standard PadC scheme. Similarly, the eighth- 

TABLE III 
Resolving Efficiency e,(s) of the First Derivative Schemes 

Shown in Fig. 1 

Scheme 

iti 
1:; 
(e) 
(f) 
(g) 
(h) 
6) 

&=o.l E = 0.01 .s=O.OOl 

0.25 0.08 0.02 
0.44 0.23 0.13 
0.54 0.35 0.23 
0.59 0.35 0.20 
0.70 0.50 0.35 
0.75 0.58 0.44 
0.77 0.61 0.48 
0.81 0.68 0.56 
0.90 0.83 0.79 
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