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Entropy condition

Let U(u) be any convex entropy of the scalar conservation law

∂u

∂t
+

∂

∂x
f(u) = 0

with associated entropy flux F (u), i.e.,

U ′(u)f ′(u) = F ′(u)

Then the unique entropy solution of the conservation law satisfies in the sense
of distributions

∂U

∂t
+

∂

∂x
F (u) ≤ 0
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Definition (Entropy consistent numerical scheme)

The difference scheme H is said to be consistent with the entropy condition if
there exists a continuous function G : R2k → R which satisfies the following
requirements
(1) consistency with the entropy flux F

G(v, . . . , v) = F (v)

(2) cell entropy inequality

U(vn+1
j )− U(vnj )

∆t
+
G(vnj−k+1, . . . , v

n
j+k)−G(vnj−k, . . . , v

n
j+k−1)

∆x
≤ 0

The function G is called the numerical entropy flux.

If we set
Un
j = U(vnj ), Gn

j+ 1
2

= G(vnj−k+1, . . . , v
n
j+k)

then we have to verify that

Un+1
j ≤ Un

j − λ(Gn
j+ 1

2
−Gn

j− 1
2
)
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When the scheme is consistent with any entropy function, we say that it is an
“entropy scheme”.

Proposition 4.1 (GR1, Chap. 3)

Let H be a 3-point difference scheme with C2 numerical flux which is
consistent with any entropy condition. Then it is at most first order accurate.

Theorem
Assume that the hypothesis of Lax-Wendroff theorem hold. Assume moreover
that the scheme is consistent with any entropy condition. Then the limit u is
the unique entropy solution of the conservation law.

Theorem
A monotone consistent scheme is consistent with any entropy condition.

Proof: It is enough to check the entropy condition for the Kruzkov’s entropy
functions: for any l ∈ R

U(u) = |u− l|, F (u) = sign(u− l)(f(u)− f(l))
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Set
a ∧ b = min(a, b), a ∨ b = max(a, b)

and define the numerical entropy flux G as follows

G(v−k+1, . . . , vk) = g(v−k+1 ∨ l, . . . , vk ∨ l)− g(v−k+1 ∧ l, . . . , vk ∧ l)

We first prove the following identity

|vj − l|−λ(Gj+ 1
2
−Gj− 1

2
) = H(vj−k ∨ l, . . . , vj+k ∨ l)−H(vj−k ∧ l, . . . , vj+k ∧ l)

By definition of Gj+ 1
2

Gj+ 1
2
−Gj− 1

2
= [g(vj−k+1 ∨ l, . . . , vj+k ∨ l)− g(vj−k+1 ∧ l, . . . , vj+k ∧ l)]
−[g(vj−k ∨ l, . . . , vj+k−1 ∨ l)− g(vj−k ∧ l, . . . , vj+k−1 ∧ l)]

= [g(vj−k+1 ∨ l, . . . , vj+k ∨ l)− g(vj−k ∨ l, . . . , vj+k−1 ∨ l)]
−[g(vj−k+1 ∧ l, . . . , vj+k ∧ l)− g(vj−k ∧ l, . . . , vj+k−1 ∧ l)]

and using the finite volume scheme, we get

−λ[Gj+ 1
2
−Gj− 1

2
] = [H(vj−k ∨ l, . . . , vj+k ∨ l)− vj ∨ l]

−[H(vj−k ∧ l, . . . , vj+k ∧ l)− vj ∧ l]
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which gives the identity we wanted to show since

vj ∨ l − vj ∧ l = |vj − l|

Now since H is monotone and consistent

H(vj−k ∨ l, . . . , vj+k ∨ l) ≥ H(vj−k, . . . , vj+k) ∨H(l, . . . , l) = vn+1
j ∨ l

In the same way we obtain

H(vj−k ∧ l, . . . , vj+k ∧ l) ≤ vn+1
j ∧ l

Combining the above results we verify the entropy condition

|vn+1
j − l| − |vnj − l|+ λ(Gn

j+ 1
2
−Gn

j− 1
2
) ≤ 0

The consistency condition of G is readily satisfied since

G(v, . . . , v) = g(v ∨ l, . . . , v ∨ l)− g(v ∧ l, . . . , v ∧ l)
= f(v ∨ l)− f(v ∧ l) = sign(v − l)(f(v)− f(l))

= F (u)
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Definition (E-scheme)

A consistent, conservative scheme is called an E-scheme if its numerical flux
satisfies

sign(vj+1 − vj)(gj+ 1
2
− f(u)) ≤ 0

for all u between vj and vj+1.

Remark: Note that an E-scheme is essentially 3-point. Indeed letting
vj+1 → vj with first vj+1 ≥ vj and then with vj+1 ≤ vj shows that g is
essentially 3-point.

Remark: A 3-point monotone scheme is an E-scheme. Since g(u, v) is
non-decreasing in u and non-increasing in v, we obtain

g(u, v) ≤ g(u,w) ≤ g(w,w) = f(w) if u ≤ w ≤ v
g(u, v) ≥ g(w, v) ≥ g(w,w) = f(w) if u ≥ w ≥ v

and therefore

sign(v − u)(g(u, v)− f(w)) ≤ 0, for all w between u and v

In particular, the Godunov scheme is an E-scheme under CFl ≤ 1.
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Lemma
Assume that CFL ≤ 1. Then E-fluxes are characterized by{

gj+ 1
2
≤ gG

j+ 1
2

if vj < vj+1

gj+ 1
2
≥ gG

j+ 1
2

if vj > vj+1

where gG stands for Godunov numerical flux.

Proof: Under CFL ≤ 1, the Godunov flux is given by

gGj+ 1
2

=

{
minu∈[vj ,vj+1] f(u) if vj < vj+1

maxu∈[vj+1,vj ] f(u) if vj ≥ vj+1

Assume vj < vj+1. Then E-flux satisfies

gj+ 1
2
≤ f(u), vj ≤ u ≤ vj+1

Assume vj > vj+1. Then E-flux satisfies

gj+ 1
2
≥ f(u), vj+1 ≤ u ≤ vj
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Lemma
Assume that CFL ≤ 1. E-schemes are characterized by

0 ≤ QG
j+ 1

2
≤ Qj+ 1

2
, ∀j ∈ Z

Proof: Assume vj < vj+1. Then for E-scheme gj+ 1
2
≤ gG

j+ 1
2

1

2
(fj + fj+1)− 1

2
Qj+ 1

2
(vj+1 − vj) ≤

1

2
(fj + fj+1)− 1

2
QG

j+ 1
2
(vj+1 − vj)

Proposition

An E-scheme with differentiable numerical flux is at most first order accurate.
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Theorem (Viscous form and entropy condition)

Assume that the CFL condition

λmax |a(u)| ≤ 1

2

holds. An E-scheme whose coefficient of numerical viscosity satisfies

QG
j+ 1

2
≤ Qj+ 1

2
≤ 1

2

is consistent with any entropy condition.

The proof requires two lemmas which we first prove. The basic idea is to write
any E-scheme as a convex combination of the Godunov scheme and a modified
Lax-Friedrichs scheme, both of which satisfy entropy condition.
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Lemma (Godunov scheme)

Assume that CFL ≤ 1
2 . The Godunov scheme can be written in the following

way

HG(vj−1, vj , vj+1) =
1

2
(vG−

j− 1
2

+ vG+
j+ 1

2

)

where

vG−
j− 1

2

=
2

∆x

∫ ∆x
2

0

wR(x/∆t; vj−1, vj)dx = vj − 2λ(fj − gGj− 1
2
)

vG+
j+ 1

2

=
2

∆x

∫ 0

−∆x
2

wR(x/∆t; vj , vj+1)dx = vj + 2λ(fj − gGj+ 1
2
)

Moreover if (U,F ) is any entropy pair, we have

U(vG±
j± 1

2

) ≤ U(vj)± 2λ[F (vj)−GG
j± 1

2
]

where
GG(u, v) = F (wR(0;u, v))
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Proof: The formulae for vG±
j± 1

2

follow from the derivation of the Godunov

scheme. Now since U is a convex function, we obtain by Jensen’s inequality

U

(
2

∆x

∫ ∆x
2

0

wR(x/∆t; vj−1, vj)dx

)
≤ 2

∆x

∫ ∆x
2

0

U(wR(x/∆t; vj−1, vj))dx

Since wR(x/∆t; vj−1, vj) is by definition the entropy solution of the Riemann
problem

∂u

∂t
+

∂

∂x
f(u) = 0, t ∈ [0,∆t]

u(x, 0) =

{
vj−1 x < 0

vj x > 0

it satisfies an entropy inequality

∂U(u)

∂t
+
∂F (u)

∂x
≤ 0
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Integrating this last inequality on the domain (xj− 1
2
, xj)× (0,∆t) we get

U(vG−
j− 1

2

) ≤ 2

∆x

∫ ∆x
2

0

U(wR(x/∆t; vj−1, vj))dx

≤ U(vj)− 2λ[F (vj)−GG
j− 1

2
]

In the same way we have

U(vG+
j+ 1

2

) ≤ 2

∆x

∫ 0

−∆x
2

U(wR(x/∆t; vj , vj+1))dx

≤ U(vj) + 2λ[F (vj)−GG
j+ 1

2
]

Remark: This also shows that Godunov scheme satisfies the entropy
condition associated with (U,F ) since

U(HG(vj−1, vj , vj+1)) ≤ 1

2
[U(vG−

j− 1
2

) + U(vG+
j+ 1

2

)]

≤ U(vj)− λ[GG
j+ 1

2
−GG

j− 1
2
]
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Lemma (Lax-Friedrichs modified)

Consider the 3-point scheme

HM (vj−1, vj , vj+1) =
1

4
(vj−1 + 2vj + vj+1) −

1

2
λ(fj+1 − fj−1)

Then under the condition CFL ≤ 1
2

, we can write

HM (vj−1, vj , vj+1) =
1

2
(vM−

j− 1
2

+ vM+

j+ 1
2

)

where

vM−
j− 1

2

=
1

∆x

∫ ∆x
2

−∆x
2

wR(x/∆t; vj−1, vj)dx =
1

2
(vj + vj−1) − λ(fj − fj−1)

vM+

j+ 1
2

=
1

∆x

∫ ∆x
2

−∆x
2

wR(x/∆t; vj , vj+1)dx =
1

2
(vj + vj+1) − λ(fj+1 − fj)

Moreover if (U, F ) is any entropy pair, we have

U(vM±
j± 1

2

) ≤ U(vj) ± 2λ[F (vj) −GM
j± 1

2

]

where

GM (u, v) =
1

2
(F (u) + F (v)) −

1

4λ
(U(v) − U(u))
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Proof: Under the condition CFL ≤ 1
2 , we obtain the desired results by

integrating the conservation law over the domains (xj−1, xj)× (tn, tn+1) and
(xj , xj+1)× (tn, tn+1). We get

0 =

∫ tn+1

tn

∫ xj

xj−1

(
∂wR

∂t
+

∂

∂x
f(wR)

)
dxdt

=

∫ ∆x
2

−∆x
2

wR(x/∆t; vj−1, vj)dx−
∆x

2
(vj + vj−1) +∫ ∆t

0

[f(wR(∆x/(2t); vj−1, vj))− f(wR(−∆x/(2t); vj−1, vj))]dt

But the waves from xj− 1
2

do not reach xj−1, xj so that

wR(∆x/(2t); vj−1, vj) = vj , wR(−∆x/(2t); vj−1, vj) = vj−1

This proves the formulae for vM±
j± 1

2

.
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Since wR is the entropy solution, we integrate the entropy inequality over
(xj−1, xj)× (tn, tn+1) and using Jensen’s inequality

U(vM−
j− 1

2

) ≤ 1

∆x

∫ ∆x
2

−∆x
2

U(wR(x/∆t; vj−1, vj))dx

≤ 1

2
(U(vj) + U(vj−1))− λ(F (vj)− F (vj−1))

= U(vj)− 2λ(F (vj)−GM
j− 1

2
)

Remark: The modified Lax-Friedrichs scheme is consistent with any entropy
condition with numerical flux GM since

U(HM (vj−1, vj , vj+1)) ≤ 1

2
(U(vM−

j− 1
2

) + U(vM+
j+ 1

2

))

≤ U(vj)− λ[GM
j+ 1

2
−GM

j− 1
2
]

Note that the numerical viscosity of this scheme is

QM
j+ 1

2
=

1

2
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Proof of Theorem (Viscous form and entropy condition): Let us write
the scheme in viscous form

vn+1
j = vnj −

λ

2
(fnj+1 − fnj−1) +

1

2
(Qn

j+ 1
2
∆vnj+ 1

2
−Qn

j− 1
2
∆vnj− 1

2
)

and in averaged form

vn+1
j =

1

2
(v−

j− 1
2

+ v+
j+ 1

2

)

where

v−
j− 1

2

= vj − λ(fj − fj−1)−Qj− 1
2
∆vj− 1

2

v+
j+ 1

2

= vj − λ(fj+1 − fj) +Qj+ 1
2
∆vj+ 1

2

We can write the Godunov and modified Lax-Friedrich schemes in the same
form with superscript G and M . Now since QM = 1

2 and

QG ≤ Q ≤ QM =
1

2

we can write, with some 0 ≤ θj+ 1
2
≤ 1
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Qj+ 1
2

= θj+ 1
2
QG

j+ 1
2

+ (1− θj+ 1
2
)QM

j+ 1
2
, ∀j ∈ Z

It follows that
v±
j± 1

2

= θj± 1
2
vG±
j± 1

2

+ (1− θj± 1
2
)vM±

j± 1
2

If (U,F ) is any entropy pair, then due to convexity of U

U(vn+1
j ) ≤ 1

2
U(v−

j− 1
2

) +
1

2
U(v+

j+ 1
2

)

≤ 1

2
θj− 1

2
U(vG−

j− 1
2

) +
1

2
(1− θj− 1

2
)U(vM−

j− 1
2

) +

1

2
θj+ 1

2
U(vG+

j+ 1
2

) +
1

2
(1− θj+ 1

2
)U(vM+

j+ 1
2

)

≤ U(vj)− λ(Gj+ 1
2
−Gj− 1

2
)

where
Gj+ 1

2
= θj+ 1

2
GG

j+ 1
2

+ (1− θj+ 1
2
)GM

j+ 1
2

is a consistent entropy flux associated with the E-scheme under consideration.

Remark: Under the conditions of the above theorem QG ≤ Q ≤ 1
2 , the

E-scheme is also TVD and L∞ stable.
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