Finite volume method for conservation laws V
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Entropy condition

Let U(u) be any convex entropy of the scalar conservation law

ou 0
N + af(“) =0

with associated entropy flux F'(u), i.e.,
U ) f' () = F' ()

Then the unique entropy solution of the conservation law satisfies in the sense

of distributions
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Definition (Entropy consistent numerical scheme)

The difference scheme H is said to be consistent with the entropy condition if
there exists a continuous function G : R?* — R which satisfies the following
requirements

(1) consistency with the entropy flux F

(2) cell entropy inequality

U(v; ™) = U(v}) + G(V] i1 V) = GO gy, 07 1)

At Az

The function G is called the numerical entropy fluz.

If we set
U" =U(v "), G;’h = G(v‘;’;kﬂ,...,v;’%k)

then we have to verify that
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When the scheme is consistent with any entropy function, we say that it is an
“entropy scheme”.

Proposition 4.1 (GR1, Chap. 3)

Let H be a 3-point difference scheme with C? numerical flux which is
consistent with any entropy condition. Then it is at most first order accurate.

y

Theorem

Assume that the hypothesis of Lax-Wendroff theorem hold. Assume moreover
that the scheme is consistent with any entropy condition. Then the limit u is
the unique entropy solution of the conservation law.

Theorem

A monotone consistent scheme is consistent with any entropy condition.

Proof: It is enough to check the entropy condition for the Kruzkov’s entropy
functions: for any [ € R

U(u) = |u—1, F(u) = sign(u —1)(f(u) — f(1))



Set

a A'b=min(a,b) a Vb =max(a,b)

and define the numerical entropy flux G as follows
GU—pt1y-esVk) = g0 VI up V) — g1 Alyooo o A L)
We first prove the following identity

‘Uj*” 7)\(Gj+% 7Gj_%) = H(Uj_k;\/l,.--71]j+k;\/l)7H(Uj_k/\l,...71]j+]\’7/\l)

By definition of G, 1

Gj+% - Gj;% = [g(vj—k1 VI 0 V) — g(Uj—pqpr Al 04 AD)]
—[g(vj,k Vi, ... yVjtk—1 V l) — g(vj,k Al ..., Vjtk—1 N\ l)}
= [g('l)j,kJrl Vi,... yVjtk V l) - g(vj,k Vi,... s Vjtk—1 V l)]
7[g(vj_k+1 Al . .. yVjtk N l) - g(vj_k A yVjtk—1 N\ l)]
and using the finite volume scheme, we get

—A[GjJr% _ijé] = [H(vj,k\/l,...,UjJrk\/l)—’Uj\/l]
—[H(Uj,k/\l,...,’l)j+k/\l)—Uj/\l]



which gives the identity we wanted to show since
vy VI—vi ANl =|v; 1|
Now since H is monotone and consistent

Hj—x Vi vje V) > Hj o viq) VH( D) =0 VI

In the same way we obtain
Hwj—x AL ..o v, A1) < ”U;L+1 Al
Combining the above results we verify the entropy condition

w”+17 g - :
o =1 = o] =1+ Ay — G y) <0

The consistency condition of G is readily satisfied since

Gv,...,v) = glVvi...,ovl)—glAl...,uAl)

flovi) = flunl) =sign(v = 1)(f(v) = £(D)
= F(u)



Definition (E-scheme)

A consistent, conservative scheme is called an E-scheme if its numerical flux
satisfies

sign(vj4+1 — v;)(g;41 — f(u)) <0

for all u between v; and vj4.

Remark: Note that an E-scheme is essentially 3-point. Indeed letting
vj4+1 — v; with first v; 11 > v; and then with v;; < v; shows that g is
essentially 3-point.

Remark: A 3-point monotone scheme is an E-scheme. Since g(u,v) is
non-decreasing in u and non-increasing in v, we obtain

g(w,w)= f(w) if u<w<w

and therefore
sign(v — u)(g(u,v) — f(w)) <0, for all w between u and v

In particular, the Godunov scheme is an E-scheme under CF1 < 1.



Lemma
Assume that CFL < 1. Then E-fluxes are characterized by

G .
{gﬂ_é §gj+% if v; < vt

G i€ oy, 2.
9i+3 2 954y o >vim

where ¢¢ stands for Godunov numerical flux.

Proof: Under CFL < 1, the Godunov flux is given by

gG - minué[vj,vj+1] f(u) if V; < Vjt1
+3 = Y s :
T3 MaXyelv, 1,0,] f(0) if v > 0541

Assume v; < v;11. Then E-flux satisfies
gj+i = f(u), v; S u < Uit
Assume v; > v;11. Then E-flux satisfies

gyl = fw), vipr <u<wv; O




Lemma
Assume that CFL < 1. E-schemes are characterized by

0<QF1<Quy, V€L

Proof: Assume v; < v;t1. Then for E-scheme g;, 1 < g]+
2

1
SQF 1 (Wjp1 —v;) O

(5 + fre1) = 5

N)\»—A

1
5Qj+1 (V41 —vj) <

%(fj + fi+1) — 5

An E-scheme with differentiable numerical flux is at most first order accurate.

Proposition J




Theorem (Viscous form and entropy condition)
Assume that the CFL condition

Amax |a(u)| <

DN | =

holds. An E-scheme whose coefficient of numerical viscosity satisfies

| =

G
Jts = QH% =

is consistent with any entropy condition.
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The proof requires two lemmas which we first prove. The basic idea is to write
any E-scheme as a convex combination of the Godunov scheme and a modified
Lax-Friedrichs scheme, both of which satisfy entropy condition.



Lemma (Godunov scheme)

Assume that CFL < % The Godunov scheme can be written in the following
way

1 ,
H%(vj_1,v5,vj41) = §(UG L +05h)

J—3 .H‘%
where
9 5
’UJG__% = Az A wR(x/At;vj_l,vj)daU:vj—2)\(fj—gf_%)
G+ 2 [° G
Vi = A_;z:/m wR(:v/At;vj,ij)dm:vj—|—2)\(fj—gj+%)
T

Moreover if (U, F)) is any entropy pair, we have

G+
74}

UWis) < Ulvy) £ 2M[F(v) — GFi,]
where

G (u,v) = F(wr(0;u,v))




Proof: The formulae for Uff; follow from the derivation of the Godunov
2

scheme. Now since U is a convex function, we obtain by Jensen’s inequality
2 "2 )

Ax
2
U <A:r ’ UJR(J:/At;vj_l,’z)j)(lm) < Az, U(wr(z/At;vj-1,v;))dx

Since wg(x/At;v;_1,v;) is by definition the entropy solution of the Riemann
problem

ou a .
EJr%f(u)—O, t € [0, At]
’u,([I‘O) _ {1/'.]'_1 x <0

Vj x>0

it satisfies an entropy inequality

oU (u) N OF (u)
ot ox

<0



Integrating this last inequality on the domain (z;_ 1 xj) x (0, At) we get

Ax
_ 2 ER
U(vﬁ%) < X Ulwp(z/At;v;_1,v;))dz
< Ulyy) = 2A[F(v)) = G7,]

In the same way we have

2 0
U(UJG_;E) < M/_A; U(wR(m/At;vj,ij))dx
< U(v)) + 2\[F(v)) = GF 4]

Remark: This also shows that Godunov scheme satisfies the entropy
condition associated with (U, F') since

U(H® (vj—1,v,041))

IN
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Uley) ~ NGS,, — G9.
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Lemma (Lax-Friedrichs modified)

Consider the 3-point scheme

1 1
HM (vj_1,vj,0j41) = 7 Wi—1+2v; + i) = SA(fi41 =~ fi-1)

Then under the condition CFL < %, we can write

; 1
HM (0 1 v vs _ L M- M+
(Vj—1,v5,5+1) 2(%7% +vj+%)
where
1 &2 1
M—
’Uj_l = rx _%’UJR(I/At;Uj_l,’Uj)d(L‘: E(Uj-f—vj_l)—/\(fj—fj_l)
1 5 1
M
ijr'g = /7% wr(z/Atvj,vj41)de = i(vj +vj4+1) = A(fit1 — f5)

Moreover if (U, F) is any entropy pair, we have

U(v_fii%) < U(vj) £ 2A[F (v5)
where

y 1 1
M (u,0) = (F(w) + F(v) - o

M
,Gji%]

(U(v) = U(w))
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Proof: Under the condition CFL < %, we obtain the desired results by

integrating the conservation law over the domains (z;_1,2;) X (tn,tn+1) and

(j,2j41) X (tn,tnt1). We get

/W/ (8wR + f(wR)) dzdt

Az
2

= / wr(x/At;vj_1,v;)dz — —x(vj +vj_1)+

Az 2
2
At
/ [fwr(Az/(2t);vj-1,v;)) — f(wr(=Az/(2t);vj-1,v;))|dt
0
But the waves from Ti 1 do not reach x;_1, x; so that
wr(Az/(2t);vj—1,v;) = vj, wr(—Az/(2t);v-1,v;) = vj_1

This proves the formulae for vﬁi
2



Since wg is the entropy solution, we integrate the entropy inequality over
(xj_1,2;) X (tn,tnt1) and using Jensen’s inequality

Az

1 2
UMy < U(wr(z/At;vj-1,v;))de

Ax J_ 2z
2
1

< S(U;) +U(vj-1)) = AMF(v;) — F(vj-1))

2

= Uv;) = 2X(F(v)) = G}L4)

Remark: The modified Lax-Friedrichs scheme is consistent with any entropy

condition with numerical flux GM since

UHM (v;-1,v5,v511)) <

<

1 _
SUEM) +UEMY))
Ule) ~ NG, - G ]

i+

Note that the numerical viscosity of this scheme is

M

“j+3 9
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Proof of Theorem (Viscous form and entropy condition): Let us write
the scheme in viscous form

A 1
antl o n  oen _fm - n 2T e 2 T
v = U 9 ( J+1 .J—l) + Q(Qj+%Abj+% QJ;%AUJ;%)

1
w",""_l = — (v~ 1+
v 2(7,j7% +1,j+%)
where
vy = v = A = fi-1) — Q-3 Ay
+ _
vj-l,-% = Uj = )‘(fj-i-l - f]) + Qj-l,-%Aij,_%

We can write the Godunov and modified Lax-Friedrich schemes in the same
form with superscript G and M. Now since QM = % and

QGSQSQM=%

we can write, with some 0 < 9j+% <1



G M K
QH% :(JH%QH% +(1—9j+%) i+l VjeZ

It follows that
Ujiiézéiwil—&-(l—ﬁ ) Aff

If (U, F) is any entropy pair, then due to convexity of U

U@pt) < UG )+ 50U )
1 1 _
< 303U+ 51— 6, )UE) +
1 1 ,
501 USh) + 5 (1= 6, )UMY)
< Ulv) = MGy —Go1)

where
_ G M
Gjry =0;43Gi + (1 -0;,1)Gi
is a consistent entropy flux associated with the E-scheme under consideration.

Remark: Under the conditions of the above theorem Q¢ < Q < %, the
E-scheme is also TVD and L stable.



