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Conservation Laws and FVM

• Basic laws of physics are conservation laws - mass, momentum, energy

• Differential form
∂U

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0

U - conserved variables

f, g, h - flux vector

• Compressible flows - shocks and other discontinuities

• Classical solution may not exist

• Integral form (using divergence theorem)

∂

∂t

∫
Ω

Udxdydz +

∮
∂Ω

(fnx + gny + hnz)dS = 0

Rate of change of U in Ω = - (Net flux across the boundary of Ω)

⇓
Starting point for finite volume method



Praveen. C, CTFD Division, NAL, Bangalore First Prev Next Last Go Back Full Screen Close Quit

• Discontinuities are a consequence of conservation laws

• Rankine-Hugoniot jump conditions [9, 10]

(fnx + gny + hnz)R − (fnx + gny + hnz)L = s(UR − UL)

n

U

U

L

R
Shock

• Solution satisfying integral form - weak solution

• Definition (Weak solution)

1. Satisfies the differential form in smooth regions

2. Satisfies jump condition across discontinuities

• Hyperbolic conservation laws - non-uniqueness

• Limit of a dissipative model: Navier-Stokes → Euler
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• Entropy condition - second law of thermodynamics

• Entropy satisfying weak solution - unique (Kruzkov)

• Conservative scheme (FVM) - correct shock location (Warnecke)

• Useful for solving equations with discontinuous coefficients

• FVM can be applied on arbitrary grids - structured and unstructured
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FVM in 1-D

• Divide computational domain [a, b] into N cells

a = x1/2 < x3/2 < . . . < xN+1/2 = b

Ci = [xi−1/2, xi+1/2]

Ci

hi−3/2 i−1/2 i+1/2 i+3/2
i

• Conservation law for cell Ci

∂

∂t

∫ xi+1/2

xi−1/2

Udx + f (xi+1/2, t)− f (xi−1/2, t) = 0

• Cell average value

Ui(t) =
1

hi

∫ xi+1/2

xi−1/2

U(x, t)dx
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• Conservation law for cell Ci

hi
dUi

dt
+ f (xi+1/2, t)− f (xi−1/2, t) = 0

U

U

i+1/2

i

i+1

• Riemann problem at each interface

• Numerical flux function (Godunov approach)

Fi+1/2(t) = F (Ui(t), Ui+1(t))

• Semi-discrete update equation (ODE system)

dUi

dt
= − 1

hi
[Fi+1/2(t)− Fi−1/2(t)]
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• Method of lines approach

– Discretize in space

– Integrate the ODE system in time

• Explicit Euler scheme [ Un
i ≈ U(xi, t

n) ]

Ui(t
n+1)− Ui(t

n)

∆t
= − 1

hi
[Fi+1/2(t

n)− Fi−1/2(t
n)]

⇓

Un+1
i = Un

i −
∆t

hi
[F n

i+1/2 − F n
i−1/2]

• Conservation: Telescopic collapse of fluxes∑
i

hi
dUi

dt
= −

∑
i

[Fi+1/2(t)− Fi−1/2(t)]

= −[f (b, t)− f (a, t)]
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Numerical Flux Function

• Simple averaging

Fi+1/2 = f ((Ui + Ui+1)/2) or Fi+1/2 = (fi + fi+1)/2

• Equivalent to central differencing

dUi

dt
+

1

hi
(fi+1 − fi−1) = 0 (unstable)

• Two approaches

1. Central differencing with artificial dissipation [13]

Fi+1/2 =
1

2
(fi + fi+1)− di+1/2

2. Upwind flux formula [9, 10, 13, 20, 22]

FVS: Fi+1/2 = f+(Ui) + f−(Ui+1)

FDS: Fi+1/2 =
1

2
(fi + fi+1)−

1

2
[(∆f )−i+1/2 − (∆f )+i+1/2]
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• Example: convection-diffusion equation

∂U

∂t
+

∂f

∂x
= 0, f = aU − ν

∂U

∂x

Fi+1/2 = aUi+1/2 − ν
∂U

∂x

∣∣∣∣
i+1/2

• Upwind definition of interfacial state

Ui+1/2 =

{
Ui if a ≥ 0

Ui+1 if a < 0

• Central-difference for viscous term

∂U

∂x

∣∣∣∣
i+1/2

=
Ui+1 − Ui

xi+1 − xi

• Upwind numerical flux

Fi+1/2 =
1

2
(aUi + aUi+1)−

|a|
2

(Ui+1 − Ui)− ν
Ui+1 − Ui

xi+1 − xi
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Significance of conservative scheme

• Inviscid Burgers equation

∂U

∂t
+

∂

∂x

(
U 2

2

)
= 0, f (U) =

U 2

2

• Rankine-Hugoniot condition

fR − fL = s(UR − UL) =⇒ s =
1

2
(UL + UR)

• Non-conservative form
∂U

∂t
+ U

∂U

∂x
= 0

• Upwind scheme (assume U ≥ 0)

Un+1
i − Un

i

∆t
+ Un

i

Un
i − Un

i−1

h
= 0

or

Un+1
i = Un

i −
∆t

h
Un

i (Un
i − Un

i−1)
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• Initial condition

U(x, 0) =

{
1 if x < 0

0 if x > 0

• Numerical solution

Un
i = U o

i =⇒ stationary shock

• Exact solution (shock speed = 1/2)

U(x, t) =

{
1 if x < t/2

0 if x > t/2

• Conservation form from physical considerations

U
∂U

∂t
+ U

∂

∂x

(
U 2

2

)
= 0

or
∂

∂t

(
U 2

2

)
+

∂

∂x

(
U 3

3

)
= 0

• Jump conditions not identical: s = 2
3

(
U2

L+ULUR+U2
R

UL+UR

)
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Higher order scheme in 1-D

• Constant-in-cell representation

�����

�����

�����

i−3/2 i−1/2 i+1/2 i+3/2

Ci−1

Ci+1

Ci

• First order accurate

|Ui − U(xi)| = O(h)

h = max
i

hi

• Reconstruction - evolution - projection
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Higher order scheme in 1-D

• Reconstruct the variation within a cell

�����

�����

�����

i−3/2 i−1/2 i+1/2 i+3/2

Ci−1

Ci+1

Ci

Left state

Right
state

• Linear reconstruction

Ũ(x) = Ui + si(x− xi), x ∈ [xi−1/2, xi+1/2]

• Biased interpolant

UL
i+1/2 = Ui + si(xi+1/2 − xi), UR

i+1/2 = Ui+1 + si+1(xi+1/2 − xi+1),
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• Flux for higher order scheme

Fi+1/2 = F (Ui, Ui+1)

• Reconstruction variables

1. Conserved variables - conservative

2. Characteristic variables - better upwinding but costly

3. Primitive variables (ρ, u, p) - computationally cheap

• Unsteady flows - reconstruction must preserve conservation

1

hi

∫
Ci

Ũ(x)dx = Ui

• Gradients for reconstruction: backward, forward, central difference

si,b =
Ui − Ui−1

xi − xi−1
, si,f =

Ui+1 − Ui

xi+1 − xi
, si,c =

Ui+1 − Ui−1

xi+1 − xi−1



Praveen. C, CTFD Division, NAL, Bangalore First Prev Next Last Go Back Full Screen Close Quit

• Flux for higher order scheme

Fi+1/2 = F (UL
i+1/2, U

R
i+1/2)

• Reconstruction variables

1. Conserved variables - conservative

2. Characteristic variables - better upwinding but costly

3. Primitive variables (ρ, u, p) - computationally cheap

• Unsteady flows - reconstruction must preserve conservation

1

hi

∫
Ci

Ũ(x)dx = Ui

• Gradients for reconstruction: backward, forward, central difference

si,b =
Ui − Ui−1

xi − xi−1
, si,f =

Ui+1 − Ui

xi+1 − xi
, si,c =

Ui+1 − Ui−1

xi+1 − xi−1
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• Solution with discontinuity

1

1/2

i−1                  i                   i+1
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• Central-difference: Non-monotone reconstruction

1

1/2

i−1                  i                   i+1

• Limited gradients [9, 12]

si = Limiter(si,b, si,f , si,c)
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FVM in 2-D

• Divide computational domain into disjoint polygonal cells, Ω = ∪iCi

• Integral form for cell Ci

∂

∂t

∫
Ci

Udxdy +

∮
∂Ci

(fnx + gny)dS = 0

• Cell average value

Ui(t) =
1

|Ci|

∫
Ci

U(x, y, t)dxdy, |Ci| = area of Ci

• Cell connectivity: N(i) = {j : Cj and Ci share a common face}

Ci Ci
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∮
∂Ci

(fnx + gny)dS =
∑

j∈N(i)

∫
Ci∩Cj

(fnx + gny)dS

• Approximate flux integral by quadrature

C

n

C

i

j

ij

∫
Ci∩Cj

(fnx + gny)dS ≈ Fij∆Sij

• Semi-discrete update equation

|Ci|
dUi

dt
= −

∑
j∈N(i)

Fij∆Sij
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• Numerical flux function

Fij = F (Ui, Uj, n̂ij)

• Properties of flux function

1. Consistency

F (U,U, n̂) = f (U)nx + g(U)ny

2. Conservation

F (V, U,−n̂) = −F (U, V, n̂)

3. Continuity

‖F (UL, UR, n̂)− F (U,U, n̂)‖ ≤ C max (‖UL − U‖, ‖UR − U‖)

• Flux functions [10, 13, 20, 22]

– FVS: Steger-Warming, Van Leer, KFVS, AUSM

– FDS: Godunov, Roe, Engquist-Osher

• Integrate in time using a Runge-Kutta scheme [5, 12]
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Grids and Finite Volumes

• Elements in 2-D

• Elements in 3-D
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• Boundary layers - prism and hexahedra

• Cell-centered and vertex-centered scheme [5, 18, 21]

• Median (dual) cell

– join centroid to mid-point of sides

– well-defined for any triangulation

Centroid

Mid−point
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• Voronoi cell

– join circum-center to mid-point of sides

– smooth area variation

– not defined for obtuse triangles

• Containment circle tessalation
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Median and containment-circle tessalation
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• Stretched triangles - median dual and containment-circle

• Containment-circle finite volume
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• Turbulent flow over RAE2822 airfoil: vertex-centered scheme

Mach = 0.729, α = 2.31 deg, Re = 6.5 million
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Higher order scheme in 2-D

• Bi-linear reconstruction in cell Ci

Ũ(x, y) = Ui + ai(x− xi) + bi(y − yi), (x, y) ∈ Ci

� �� �� ��� �� �� �

� �� �� ��� �� �� �U

U L

R

C

C

i

j

• Define left/right states

UL = Ui + ai(xij − xi) + bi(yij − yi)

UR = Uj + aj(xij − xj) + bj(yij − yj)

• Flux for higher order scheme

Fij = F (UL, UR, n̂ij)
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• Gradient estimation using

1. Green-Gauss theorem

2. Least squares fitting

• Green-Gauss theorem ∫
Ci

∇Udxdy =

∮
∂Ci

Un̂dS

• Approximate surface integral by quadrature

∇Ui ≈
1

|Ci|
∑
face

∫
face

Un̂dS

• Face value

Uface =
1

2
(UL + UR)

• Non-uniform cells

Uface = αUL + (1− α)UR, α ∈ (0, 1)

• Accuracy can degrade for non-uniform grids [4, 6, 8, 14]
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• Least-squares reconstruction [3, 5]

1

2

3

4

0

Uo + ao(xj − xo) + bo(yj − yo) = Uj, j = 1, 2, 3, 4

• Over-determined system of equations - solve by least-squares fit

min
∑

j

[Uj − Uo − ao(xj − xo)− bo(yj − yo)]
2, wrt ao, bo

ao =
∑

j

αj(Uj − Uo), bo =
∑

j

βj(Uj − Uo)
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• Limited reconstruction

– Cell-centered: Min-max [3, 5], Venkatakrishnan [5], ENO-type [1, 14]

– Vertex-centered: edge-based limiter [17]

• Min-max limiter

Umin ≤ Uo + ao(xj − xo) + bo(yj − yo) ≤ Umax, j = 1, 2, 3, 4

(ao, bo)←− (φao, φbo), φ ∈ [0, 1]

– Very dissipative - smeared shocks

– Performance degrades on coarse grids

– Stalled convergence - limit cycle

– Useful for flows with large discontinuities

• Venkatakrishnan limiter

– Smooth modification of min-max limiter

– Better control - depends on cell size

– Better convergence properties
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• Vertex-centered cell: Edge-based limiter

L R

i i+1
i−1

i+2

UL = Ui +
1

2
Limiter

[
(Ui+1 − Ui),

|PiPi+1|
|PiPi−1|

(Ui − Ui−1)

]
• Using vertex-gradients

UL = Ui +
1

2
Limiter

[
(Ui+1 − Ui), (~Pi+1 − ~Pi) · ∇Ui

]
• Van-albada limiter

Limiter(a, b) =
(a2 + ε)b + (b2 + ε)a

a2 + b2 + 2ε
, ε� 1
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Higher order flux quadrature

U L
1

U R
1

U L
2

U R
2

� �� �� ��� �� �� �

� �� �� ��� �� �� �

C

C

i

j

• Quadratic reconstruction in cell Ci

Ũ(x, y) = Ũi + ai(x− xi) + bi(y − yi)

+ ci(x− xi)
2 + di(x− xi)(y − yi) + ei(y − yi)

2

• 2-point Gauss quadrature for flux

Fij = ω1F (UL
1 , UR

1 , n̂ij) + ω2F (UL
2 , UR

2 , n̂ij)
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Discretization of viscous flux

• Viscous terms

∇ · µ∇u

• Finite volume discretization∫
Ci

(∇ · µ∇u)dV =

∮
∂Ci

(µ∇u · n̂)dS

• Simple averaging

∇uij =
1

2
(∇ui +∇uj)

– Odd-even decoupling on quadrilateral/hexahedral cells

– Large stencil size

• 1-D case: ut = uxx

un+1
i = un

i +
∆t

2h
(un

i−2 − 2un
i + un

i+2)

• Correction for decoupling problem [5]
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• Green-Gauss theorem for auxiliary volume

Face−centered volume

i

j

• Least-squares gradients

– Quadratic reconstruction: gradients and hessian [3]

– Face-centered least-squares

• Vertex-centered scheme

– Galerkin approximation on triangles/tetrahedra

– Nearest neighbour stencil
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Turbulence models

• Reynolds-average Navier-Stokes equations - need turbulence models

• Differential equation based models: k − ε, k − ω, Spalart-Allmaras

• Turbulence quantities must remain positive

• Discretize using first order upwind finite volume method

Example: Spalart-Allmaras model∫
Ci

∇ · (ν̃u)dV ≈
∑

j∈N(i)

[(uij · n̂ij)
+ν̃i + (uij · n̂ij)

−ν̃j]∆Sij

(·)± =
(·)± |(·)|

2
, uij =

1

2
(ui + uj)

• Coupled or de-coupled approach

• Stiffness problem - positivity preserving implicit methods
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Boundary conditions

• Cell-centered approach

1. Ghost cell

2. Flux boundary condition

w

g

Boundary

Ghost cell

• Inviscid flow (slip flow - zero normal velocity)

ρg = ρw, pg = pw, ug = uw, vg = −vw

• Viscous flow (noslip flow - zero velocity)

ρg = ρw, pg = pw, ug = −uw, vg = −vw
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• Boundary flux depends on pressure only

F (Uw, Ug, n̂) = function of p only

• Flux boundary condition

(~F · n̂)wall = p[0, nx, ny, 0]>

1. Extrapolate pressure from interior cells

2. Solve normal momentum equation [2]

• Vertex-centered approach - flux boundary condition

• Boundary cell in vertex-centered scheme
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Accuracy and Stability

• FVM with linear reconstruction - second order accurate on uniform and

smooth grids

• On non-uniform grids =⇒ formally first order accurate

• Local truncation error not a good indicator of global error [22]

• r’th order reconstruction and ng Gaussian points for flux quadrature - accu-

racy is min(r, 2ng) [19]

• Semi-discrete scheme

dUi

dt
=

∑
j∈N(i)

aij(Uj − Ui), aij ≥ 0

• Local Extremum Diminishing (LED) property - maxima do not increase and

minima do not decrease (Jameson)
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• If Ui is a local maximum =⇒ Uj − Ui ≤ 0

dUi

dt
=

∑
j∈N(i)

aij(Uj − Ui) ≤ 0 =⇒ Ui does not increase

• Fully discrete scheme

Un+1
i = (1−∆t

∑
j

aij)U
n
i +

∑
j

aijU
n
j , ∆t ≤ 1∑

j aij

• Convex linear combination

min
j∈N(i)

Un
j ≤ Un+1

i ≤ max
j∈N(i)

Un
j

• Prevents oscillations (Gibbs phenomenon) near discontinuities

• Stable in maximum norm

min
j

Un
j ≤ Un+1

i ≤ max
j

Un
j

• Elliptic equations - discrete maximum principle

min
j∈∂Ω

Uj ≤ Ui ≤ max
j∈∂Ω

Uj
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Data structures and Programming

• Data structure for FVM

– Coordinates of vertices

– Indices of vertices forming each cell

• Cell-based updating

------------------------------------------------------

for cell = 1 to Ncell

FluxDiv = 0

for face = 1 to Nface(cell)

cellNeighbour = CellNeighbour(cell, face)

flux = NumFlux(cell, cellNeighbour)

FluxDiv += flux

end

Unew(cell) = Uold(cell) - dt*FluxDiv

end
------------------------------------------------------
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• Face-based updating

------------------------------------------------------

FluxDiv(:) = 0

for face = 1 to Nface

LeftCell = FaceCell(face,1)

RightCell = FaceCell(face,2)

flux = NumFlux(LeftCell, RightCell)

FluxDiv(LeftCell) += flux

FluxDiv(RightCell) -= flux

end

Unew(:) = Uold(:) - dt*FluxDiv(:)

------------------------------------------------------

• Flux computations reduced by half - speed-up of two

• Other geometric quantities - cell centroids, face areas, face normals, face

centroids
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