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Maxwell Equations

Linear hyperbolic system

0B oD
— E=0 — -V xH=-J
o TV ’ ot .

B = magnetic flux density

FE = electric field

D = electric flux density
H = magpnetic field
J = electric current density

B =.H, D =c¢E, J=0cFE w, e € R¥3 symmetric
€ = permittivity tensor
1 = magnetic permeability tensor

o = conductivity

V-B=0, V-D=p (electric charge density), g[t) +V-J=0



Ideal MHD equations

Nonlinear hyperbolic system

Compressible Euler equations with Lorentz force

dp B
a‘f‘v'(/’”) =
0
eV (pl+ppev-BeB) =
OF
5 PV - (E+pv+(v-B)B) =
%—?—Vx(va) =

Magnetic monopoles do not exist: — V- -B =0
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Model problem

0B
— E=—-M
e +V x

Divergence evolves according to

%(divBHv-M:o

n 2D OB, OFE OB, OE
T z _ M, UDy z _ M
ot oy R TRl y




Model problem

In MHD, B represents the magnetic field and M =0

88?+V><E:0, E=-vxB

Magnetic monopoles do not exist: — V- -B =0
If

V-B=0 at t=0
then

0
5V B)+V-VxE=0 = V-B=0 for t>0

In 2-D, the induction equation can be written as

0B, OF 0B, 0E B
o Ty " e FruBioub

6
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Some existing methods for MHD

Exactly divergence-free methods
e Constrained transport ([1] Evans & Hawley (1989))
» V.-B=0impliess B=V x A
» Evolve A forward in time
» Compute B from A

e Divergence-free reconstruction ([2] Balsara (2001))
e Globally divergence-free scheme ([3] Li et al. (2011))

Approximate methods
e Using Godunov's symmetrized version of MHD [4] (Powell [5], CK [6])

¢ Divergence cleaning methods (Dedner et al. [7])



Approximation of magnetic field

When dealing with problems where the vector field B must be

divergence-free, it is natural to look for solutions in H(div, ) which is
defined as

H(div,Q) = {B € L*(Q) : div(B) € L*(Q)}

To approximate functions in H(div,{2) on a mesh 7, we need the
following compatibility condition.
Theorem (See [8], Proposition 3.2.2)
Let B" : Q — R? be such that
® By c H'(K) forall K € Ty,
® for each common face F' = K1 N Ky, K1, Ky € Ty, the trace of
normal component m - B"| i, and n - B"|, is the same.

Then B" € H(div,SY). Conversely, if B" ¢ H(div,) and (1) holds, then
(2) is also satisfied.




Approximation of magnetic field

Py(z), Pr(y): 1-D polynomials of degree at most k wrt the variables z, y

respectively.

Qr.s(x,y): tensor product polynomials of degree r in the variable 2 and
degree s in the variable y, i.e.,

Qrs(z,y) = span{z'y’, 0<i<r, 0<j<s}
For £ > 0, the Raviart-Thomas space of vector functions is defined as

RT) = Q1.6 X Qkt1, dim(RTy) = 2(k + 1)(k + 2)

Two consequences:

e For any B" € RT}, we have

diV(Bh) € Qri(z,y) = Qr(z,y)
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Approximation of magnetic field

e The restriction of B" = (Bl B]") to a face is a polynomial of degree
k,i.e.,

B} (+Az/2,y) € Pi(y),  Bj(z,+Ay/2) € Py()

For doing the numerical computations, it is useful to map each cell to a
reference cell.

{&,0 < i <k + 1} = Gauss-Lobatto-Legendre (GLL) nodes

{£,0 <i < k} = Gauss-Legendre (GL) nodes

Let ¢; and QBZ be the corresponding 1-D Lagrange polynomials. Then the
magnetic field is given by

k+1 Ek k k+1

Bi(Em) =) (By)iidi(©)ei(m), Bp&m) =Y > (By)i;jdi(§)e;(n)
i=0 j=0 i=0 j=0
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Approximation of magnetic field

B, € Qip By, € Qoa

Location of dofs of Raviart-Thomas polynomial for k = 0

B, € Q21 B, € Qi

Location of dofs of Raviart-Thomas polynomial for k =1
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Approximation of magnetic field

B, € Q3 By, € Q3
[] [
[ ] [] []
[] []
] [ [
[] []

Location of dofs of Raviart-Thomas polynomial for k = 2

Our choice of nodes ensures that the normal component of the magnetic
field is continuous on the cell faces.

We have the error estimates on Cartesian meshes [9], [10]
|B — B"||p2(0) < CA* [ B|grs1(q)

|div(B) — le(Bh)HLQ < Ch**|div(B NEr+1(0)
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Construction of Bj, from moments

2 Cy 3
e, C er
0 = 1

Yy
The cell moments are given by

The edge moments are given by
[ Bl woe P

and

/ . Bl¢dz Vo € Py(x)

Y

/C Blydady  Vip € 0.Qn(x,y) = Qr_1.1(, )
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Construction of Bj, from moments

and
/C Blgdady Vi € 0,Q(,4) = Quir(z,9)
Note that
dim Py(z) = dim P(y) =k + 1
and

so that we have in total
A4k+1)+2k(k+1)=2(k+1)(k+2) =dimRTy

The moments on the edges eJ uniquely determine the restriction of B? on
those edges, and similarly the moments on e;F uniquely determine the

restriction of B; on the corresponding edges. This ensures continuity of
the normal component of B” on all the edges.
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Theorem J

If all the moments are zero for any cell C, then B" = 0 inside that cell.

Proof: The edge moments being zero implies that

h — F h — F
B, =0 on e and By=0 on ey

Now take ¢ = 9,¢ for some ¢ € @y, in the cell moment equation of B”
and perform an integration by parts

9By h h
— ¢dxdy — B ody + Biody =0
C Ox ez er
and hence .
0B
/ —ZLpdady =0 Vo € Qr
C 8$
Since 655 € Qp, this implies that aig =0 and hence B! = 0. Similarly,

we conclude that Bg =0. O
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Theorem
Let B" € RT}, satisfy the moments

[ Bty = [ Buoay  woenw ©)

xT

/ . Bllgdr = / _Bygdr Ve Py (z) (3)

Y

/Bi%/}dxdy = /Bx@bdxdy Y € 0,Qk(x,y) (4)
C C
/ Blydedy = / Bypdedy Ve € 0,Qp(x,y) (5)
C C

for a given vector field B € H(div, Q). If div(B) = 0 then div(B") = 0.

v
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Proof: We choose ¢ = 0,¢ and ¢ = 9,¢ for some ¢ € Qx(z,y)
respectively in the two cell moment equations (4), (5). Adding these two
equations together, we get

[ (BLo0+ Blo.odady = [ (Bodvo+ B,0,0)dy

Performing integration by parts on both sides

- / div(B")¢dzdy+ [ ¢B"-nds = — / div(B)¢dzdy+ | ¢B-nds
C oC C oC

Note that ¢ restricted to OC' is a one dimensional polynomial of degree k
and the edge moments of B" and B agree with one another by
equations (2), (3). Hence we get

/diV(Bh)qﬁdxdy = / div(B)¢dzdy Vo € Qr(x,y)
C C
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If div(B) = 0 then
/ div(B")¢dzdy =0 Vo € Qilz,vy)
c

Since div(B") € Q(x,v) this implies that div(B") = 0 everywhere inside
the cell C. ]

Remark: The proof makes use of integration by parts for which the
quadrature must be exact. The integrals involving B" can be evaluated
exactly using Gauss quadrature of sufficient accuracy. This is not the case
for the integrals involving B since it can be an arbitrary nonlinear
function. When div(B) = 0, we have B = (0,®, —0,®) for some smooth
function ®. We can approximate & by ®;, € Q;1 and compute the
projections using (9, ®j, —0,Pp,) in which case the integrations can be
performed exactly.
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Example: RTy

Bl(z,y) = ag + a1z, B;](CU,Z/) =bo + by

In this case we have only the edge moments. The polynomial test function
spaces needed to specify the edge moments are

Py(z) = span{1}, Py(y) = span{1}

and the four moments corresponding to the four faces are

t E
[ Brczpa=a [ B2 = o

I ol

) Bg(sc, —1/2)dz = p1 / B;}(x, 1/2)dz = B9

2
The solution is given by

GO:%(OH‘FOQ), ay = g — o1
(81 + Bo), by = B2 — p1
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Example: RT;

Bﬁ(x, y) = ap+ a1z + agy + azzy + ay(z® — %) + as(z? — %)y
Bg(:b,y) = by + b1z +boy + bswy + ba(y? — &) + bsz(y? — 35)

The polynomial test function spaces needed to specify the
moments (2)-(5) are

Py (z) = span{l, z}, Py (y) = span{1l,y}

0:Q1(z,y) = span{l,y},  9,Qi(x,y) =span{l,x}
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Example: RT,

The polynomial test function spaces needed to specify the edge moments
are

Py(x) = span{l, z, 2% — +1 Py(y) = span{l,y,y°* — L3

while those needed for the cell moments are given by

axQQ(J:ay) = Span{l,x,y,xy,yQ - %733(3/2 - %)}

8yQ2(l’,y) = Span{1>$7y7xy7x2 - T127 (JJQ - %)y}
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DG scheme for the induction equation

Constructing B from the edge and cell moments allowed us to get
divergence-free approximation.

We will construct a scheme to evolve the same moments in time.

2 2l 3

Consider the right edge ;. Multiply by test
function ¢ € Py(y)

0B oOF
¢ z 08 —— | M,
/e; ( o ay) ¢dy / Py

and integrate by parts in second term

0B
[ o= [ gy s (B - (Fon = - [ Meoay



DG scheme for the induction equation

Edge moments are evolved by

6Bh

/ E== dy+[E¢>] — / . Mapdy, Vo € Pi(y)

ed

8Bgd %4z — By . = M,¢dy, V¢ € P,
[ s+ [ Bggae Bolg =~ [ iy, o€ P
where

E = numerical flux from a 1-D Riemann solver required on the faces

FE = numerical flux from a multi-D Riemann solver needed at vertices
[E),- = (E¢)2 — (E¢)o,  [Ed],y = (E¢)s — (E¢)
[Egl,. = (E¢h — (Ed)o.  [Egl,s = (E¢)s — (Eg):
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DG scheme for the induction equation

The cells moments are evolved by the following standard DG scheme

h
8B / E— dmdy + Ewnyds = —/ Mzpdady, V¢ € 0:Qu(z,y)
c c

By O God —
/ En pdxdy -I-/Eaxdxdy

Note that the same 1-D numerical flux E is used in both the edge
and cell moment equations whereas the vertex numerical flux E is
needed only in the edge moment equations.

E‘zpnzds = —/ Mypdady, VYo € 0,Qr(x,y)
ac c
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Theorem

Assuming that M = 0, the DG scheme (22)-(22) preserves the divergence
of the magnetic field.

Proof: For any ¢ € Qi(x,y) take ¥ = 0,¢ and 1) = Oy¢ in the two cell
moment equations respectively and add them together to obtain

J

Note that two of the cell integrals cancel since 0,0,¢ = 0,0:¢.
Performing an integration by parts in the first term, we obtain

oB! 9B, -
6tx e+ at‘y@yqﬁl dady — / E(ng0y¢ — ny0yp)ds =0
oC

_/ ¢§tdiv(3h)d$dy+ cbg,g(B’“‘-n)ds— B (nq0y¢—ny 0 ¢)ds = 0
c ac oC
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Now, let us concentrate on the last two terms which can be re-arranged as

follows . )
© OB! " 0B,

/d)dBld 7/ ¢ xd +/ o /Ud / ()”

ey ( Jey ot

- / ) Ed,¢dy + / Eo,pdy + / BOyddx — / Ed,pdz

Y

The restriction of ¢ on each edge is a one dimensional polynomial of
degree k. We can use the edge moment equations to simplify as

(B9, + Bl + (B4, — [Fd],

=— (E¢)s + (E¢)1 + (E¢)2 — (Ed)o + (E¢)s — (E¢)2 — (E¢)1 + (E¢)o
—0

Hence we have
/ ¢9div(3h)dxdy =0 Ve Qulz,y)
c Ot

Since div(B") € Q(z,y) we conclude that the divergence is preserved by

the numerical scheme. O

26
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Remark: The above proof required integration by parts in the terms
involving the time derivative. These integrals can be computed exactly
using Gauss quadrature of sufficient order. The other cell integral in the
DG scheme can be computed using any quadrature rule of sufficient order
and need not be exact. All the edge integrals which involve the numerical
flux £ appearing in the edge moment and cell moment evolution equations
must be computed with the same rule and it is not necessary to be exact
for the above proof to hold. However, from an accuracy point of view,
these quadratures must be of a sufficiently high order to obtain optimal
error estimates.

Remark: The preservation of divergence does not rely on the specific form
of the fluxes E, E but only on the fact that we have a unique flux E at all
the vertices, and that we use the same 1-D numerical flux E in both the
edge and cell moment equations.



Theorem (M # 0)

The divergence evolves consistently with equation (1) in the sense that

/ d)g div(Bh)dxdy—/ M-V¢dxdy+/ dM -nds = 0, Vo € Qk
c Ot c ac

Since div(B") € Qy, we can expect div(B") to be accurate to O(h*F*1).

In case of Maxwell equations, if we want to compute charge density
p=V-D

we can get p to same accuracy as the vector fields, even though we take a
derivative 1!
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Numerical fluxes

Using the zero divergence condition, rewrite the induction equation

Ovy o, 0B, 7. VB,+B, Ovg B Ovy

OB ov
- x B - -B T
+ ot ¥ or U on

ot oy Yoy =0

The characteristics are the integral curves of v. The 1-D numerical flux is
given by

b E; ifv-n>0
Er otherwise

For example, acorss the face e, the flux is given by

b {vyBI — vaé: if v, >0

vy By — vaf otherwise
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Numerical fluxes

The corner flux is given by

By, = (BY.BY) | Byr=(BY.BF) Epr ifvy >0, v, >0
E: Eyr,  if vy >0, Uy<0
BDL:(BTD,Bi‘) BDR:(BTD,Bf) EDR lf'l)z<0, Uy>0

Eyp ifvx<0, Uy<0

which can be written in compact form as

U D Uz KL R vy U D vzl R L
(B, +B )—?(BerBy)—T(Bm —Bm)+7(By - B}))
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Numerical fluxes

An equivalent expression is given by [11]

E =BV + BYR 4+ BPY + BY) — SL(BYE + BYR + BYF + B)F)

oyl (BUL+BUR BDL+B )

2 2
N |Ux| ByUR 4 ByDR BUL 4 BDL
2 2
with the understanding that BPL = BDPE etc.
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Boundary flux

E: Given boundary condition B*

& E(Bjy,v) v-n>0
E(B*,v) otherwise

E: Corner flux for boundary point: use numerical flux

Byr = (BY, BY)

Bpr = (B?, B.,L)

(a)

Vertex states at boundary: (a) inflow vertex on left side of domain, (b)
outflow vertex on right side of domain
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Implementation details

B* BY
6 7
1 Im 3
||
10 11
0 8m 2
4 5
M 0 0 0 0 0]
0 M®* 0 0 0 0
0O 0 MY 0 0 O
0O 0 0 MY 0 O
N* N* 0 0 Q° 0
0 0 N/ N 0 QY
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Numerical Results
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Edge quadrature using (k + 2)-point GL rule
Cell quadrature using (k + 2) x (k + 2)-point GL rule
Time integration by 3-stage, 3-rd order SSPRK

Time step
1

(2k + 1) max (% + Lﬂ)

At <

Code written using deal.II library
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Test 1la: Approximation property

Take B = (0,®, —9,P) where

O(x,y) = sin(27x) sin(27y),

(z,y) € [0,1] x [0,1]

h B — Bnllrzy | lldiv(Bn)llL2(a)
0.1250 | 1.0189e-01 - 3.7147e-14
0.0625 | 2.5519e-02 | 2.00 0.5162e-14
0.0312 | 6.3826e-03 | 2.00 3.7880e-13
0.0156 | 1.5958e-03 | 2.00 1.4840e-12
0.0078 | 3.9896e-04 | 2.00 5.8016e-12

h B~ BhHLQ(Q) l|div(Br) |l 20
0.1250 | 6.7521e-03 1.3265e-13
0.0625 | 8.4659e-04 | 3.00 3.7389%e-13
0.0312 | 1.0590e-04 | 3.00 1.3266e-12
0.0156 | 1.3241e-05 | 3.00 5.2716e-12
0.0078 | 1.6552e-06 | 3.00 2.0924e-11

36
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Test 1b: Approximation property

B = V® where
B(z,y) = Tlo ep[=202 +12)],  (z,y) € =1, +1] x [=1,+1]

h 1B — BhHL2(Q |[div(B) — div(Bp)| 20

0.0625 | 9.0930e-04 2.7438e-02 -

0.0312 | 2.2445e-04 | 2.02 | 6.9076e-03 1.99 R

0.0156 | 5.5927e-05 | 2.00 | 1.7299e-03 2.00

0.0078 | 1.3970e-05 | 2.00 | 4.3267e-04 2.00

0.0039 | 3.4918e-06 | 2.00 | 1.0818e-04 2.00
h 1B = Bullre) | ldiv(B) — div(Bp)ll 12

0.0625 | 4.7750e-05 - 1.8703e-03 -

0.0312 | 5.9190e-06 | 3.01 | 2.3550e-04 2.99 L9

0.0156 | 7.3827e-07 | 3.00 | 2.9491e-05 3.00

0.0078 | 9.2233e-08 | 3.00 | 3.6881e-06 3.00

0.0039 | 1.1528e-08 | 3.00 | 4.6106e-07 3.00
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Test 2: Smooth test case

The initial condition is given by By = (9,®, —0,®) where

Bz, y) = 15 xpl-20((x — 1/2)* +42)

and the velocity field is v = (y, —x). The exact solution is a pure rotation
of the initial condition and is given by

B(r,t) = RO)Bo(R(~t)r),  R(t) = [Cost —smq

sint cost

Animation
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Test 2a: Smooth test case

We compute the numerical solution on the computational domain

[—1,+1] x [-1,41] upto a final time of T' = 27 at which time the
solution comes back to the initial condition.

(a) (b)
Contour of |By| for Test 2a, 10 contours between 0 and 0.3867: (a)
initial, (b) final, £ =1, (c) final, k =2

39 /55



Test 2a: Smooth test case

h | Br — Bllrz) | ldiv(Bn)llz2@)
0.0312 | 2.1427e-03 - 6.0137e-14
0.0156 | 3.2571e-04 | 2.71 1.8566e-13
0.0078 | 5.9640e-05 | 2.45 5.8486e-13
0.0039 | 1.3209e-05 | 2.17 1.8853e-12

h |Br — Bllrz@) | lldiv(Bp)llz2 )
0.0625 | 2.4003e-04 - 4.9081e-14
0.0312 | 2.5212e-05 | 3.25 1.4299e-13
0.0156 | 3.0946e-06 | 3.02 4.5663e-13
0.0078 | 3.8448e-07 | 3.00 1.5058e-12

k=1
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Test 2b: Smooth test case

We compute the numerical solution on the computational domain
[0,1] x [0,1] upto a final time of T'= 7 /4.

=)

(a) (b) (c)
Contour of |By| for Test 2b, 10 contours between 0 and 0.3867: (a)
initial, (b) final, K =1, (c) final, k =2
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Test 2b: Smooth test case

h | Br — Bllrz) | ldiv(Bn)llz2@)
0.0312 | 6.5882e-04 - 2.8687e-14
0.0156 | 1.4979e-04 | 2.13 9.8666e-14
0.0078 | 3.6394e-05 | 2.04 3.2902e-13
0.0039 | 9.0308e-06 | 2.01 1.1356e-12

h |Br — Bllrz@) | lldiv(Bp)llz2 )
0.0625 | 1.4110e-04 - 2.4986e-14
0.0312 | 1.7238e-05 | 3.03 7.9129e-14
0.0156 | 2.1442e-06 | 3.00 2.5910e-13
0.0078 | 2.6749e-07 | 3.00 9.2720e-13

k=1
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Test 3: Smooth test case, divergent solution
The exact solution is taken to be

cost —sint
B(ZL’,yﬂf) — |:SiIlt cost :| BO(xvy)

where

1
By=V¢,  ¢=-exp(=20(" +y%)

so that V - B # 0, and the velocity field is taken as
T 1 . .
v=V"4, 1 = — sin(7x) sin(7y)
T

The right hand side source term M is computed from the above solution
using the formula M = —%—}f + V X (v x B). The problem is solved on
the domain [—1,+1] x [—1, +1] until a final time of T' = 27.
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Test 3: Smooth test case, divergent solution

(a) (b) (c)
Contour plot of B, for Test 3 showing 16 contours between -0.3838 and
+0.3838: (a) initial condition, (b) final, K =1 and (c) final, k = 2
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Test 3: Smooth test case, divergent solution

h |Br — Bllr2 | l[div(B) — div(Bs)|[12(a)
0.0312 | 8.5550e-04 - 6.9076e-03 -
0.0156 | 1.8915e-04 | 2.17 | 1.7299e-03 1.99
0.0078 | 3.8730e-05 | 2.29 | 4.3267e-04 1.99
0.0039 | 7.8346e-06 | 2.30 | 1.0818e-04 1.99

h 1B — Bllr2) | lldiv(B) — div(Bs)||r2(q)
0.0625 | 3.4775e-04 - 1.8703e-03 -
0.0312 | 3.3408e-05 | 3.38 | 2.3550e-04 2.99
0.0156 | 3.0287e-06 | 3.46 | 2.9491e-05 2.99
0.0078 | 2.7345e-07 | 3.47 | 3.6881e-06 2.99
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Test 4: Discontinuous test case

We take the potential

20 —2x x>y
O(z,y) = .
0 otherwise

and the velocity field is v = (1,2). This leads to a discontinuous magnetic
field with the discontinuity along the line z =y

2,2
0,0) z<uy
The exact solution is given by

B(x7y>t) = BO(x _tay_ 2t)

Animation
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Test 4: Discontinuous test case

i
k<

~—

Bpeed
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Summary

DG scheme on Cartesian meshes

Globally divergence-free solutions

Arbitrary orders possible

Local mass matrices: good for explicit time-stepping
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Ongoing work

Adaptive mesh refinement

Unstructured grids

Limiters

Application to

» Maxwell equations (CED)
» Magnetohydrodynamics (MHD)
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Ongoing work

Adaptive mesh refinement

Unstructured grids

Limiters

Application to

» Maxwell equations (CED)
» Magnetohydrodynamics (MHD)

Thank You
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