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Non-linear hyperbolic PDE

Scalar conservation law

ut + f(u)x = 0, x ∈ R

with initial condition
u(x, 0) = u0(x)

Even if u0 is infinitely smooth, we may not have smooth solutions at future times.
We need to allow discontinuous solutions. In this case, the PDE is not satisfied in
a classical, pointwise sense. We need to use the notion of weak solutions .
Multiply the conservation law by a smooth, compactly supported test function
φ(x, t) ∫ ∞

0

∫
R

(ut + f(u)x)φdxdt = 0

and perform integration by parts in both x and t variable∫ ∞
0

∫
R

(uφt + f(u)φx)dxdt+

∫
R
u0(x)φ(x, 0)dx = 0 (1)
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Non-linear hyperbolic PDE

Note that there are no derivatives on u and hence this equation makes sense even
if u is not differentiable.

Definition: Weak solution I

A locally integrable function which satisfies equation (1) for all smooth test
functions is called a weak solution.

Suppose the solution has a discontinuity across the curve x = X(t). Then using
the definition of weak solution, we can show that the solution must satisfy the
Rankine-Hugoniot condition at every discontinuity point

f(u+)− f(u−) = s(u+ − u−), s = Ẋ(t)

where s is the speed of propagation of the discontinuity.

Definition: Weak solution II
A piecewise smooth solution which satifies the Rankine-Hugoniot solution at
points where solution is not smooth is a weak solution.
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Solution by method of characteristics

Define the characteristic curve X(t)

dX

dt
= f ′(u(X(t), t)) = a(u(X(t), t))

Then

d

dt
u(X(t), t) =

∂u

∂t
+

dX

dt

∂u

∂x
=
∂u

∂t
+ f ′(u)

∂u

∂x
=
∂u

∂t
+
∂f

∂x
= 0

Hence the solution is constant along the characteristics; since the slope depends
on u, the characteristics are straight lines. Draw the characteristic passing
through (x, t) backward in time to (x0, 0), then

x− x0

t
= a(u0(x0))

Solve this to get x0 = x0(x, t). Hence, a smooth solution is given by

u(x, t) = u0(x0(x, t))

4 / 111



Burgers equation: Rarefaction solution

Initial condition

u0(x) =

{
0, x < 0
1, x > 0

Foot of characteristic

x0 =

{
x if x < 0
x− t if x > t

so that

u(x, t) =

{
0 if x < 0
1 if x > t

t

x

u = 0 u = 1u =?

For x ∈ (0, t), the characteristic can be drawn such that the foot is at x0 = 0

u(x, t) =
x− x0

t
, and x0 = 0, =⇒ u(x, t) =

x

t

This satisfies the PDE, ut + uux = − x
t2 + x

t ·
1
t = 0
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Burgers equation: Rarefaction solution

Thus the solution can be completed as

u(x, t) =

 0 if x < 0
x
t if 0 ≤ x ≤ t
1 if x > t

t

x

u = 0 u = 1u = x
t

Plot the solution at any time t > 0. This solution is continuous but has some
corners where derivatives are not defined. So this is still a weak solution of the
conservation law.
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Burgers equation: Non-uniqueness

We can introduce a discontinuous solution satisfying the RH condition

u(x, t) =

 0 if x < 1
2 t

1 if x > 1
2 t

This is also a weak solution. Thus we
can have multiple weak solutions, and
this is a general feature of non-linear
conservation laws.

t

x

x = 1
2
t

• The characteristics show that causality is violated by this solution;
characteristics are emanating from the shock line but they do not determine
the future solution since we do not have data on the shock line.
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Burgers equation: Non-uniqueness

• The shock solution is also unstable as is clear by smoothening the initial
condition. Consider a smoothened initial condition and draw characteristics.
(Draw this on board)

Entropy condition I

An admissible shock should have characteristics going into the shock curve as
time advances. A discontinuity propagating with speed s given by the RH
condition satisfies the entropy condition if

f ′(ul) > s > f ′(ur)

For a convex flux f(u), f ′′(u) > 0, so that f ′(u) is an increasing function. Hence
the entropy condition becomes

f ′(ul) > f ′(ur) =⇒ ul > ur
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There is always viscosity

Any real fluid has some viscosity. The inviscid Burger’s equation

ut + uux = 0

does not have any dissipative mechanism which is the reason we get
non-uniqueness. We have neglected the viscosity thinking it is small and hence
insignificant. But we lose some essential information about the solution when we
do this simplification.

So let us consider the viscous Burgers equation

uεt + uεuεx = εuεxx, ε > 0

which has smooth solutions for all time. These solutions can be obtained using
Cole-Hopf transformation [1].

One can take the limit of the viscous solution uε by letting ε→ 0. The limiting
solution is the unique entropy solution.

u = lim
ε→0

uε
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Entropy function

Consider a convex scalar conservation law

ut + f(u)x = 0

Assume that there exists a convex function η(u) and another function θ(u) such
that

η′(u)f ′(u) = θ′(u)

Such a pair (η, θ) is called an entropy-entropy flux pair .

For Burgers equation, we can choose

η(u) = u2, θ(u) =
2

3
u3

For smooth solutions

ut + f ′(u)ux = 0, η′(u)ut + η′(u)f ′(u)ux = 0,
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Entropy function

leads to another conservation law

ηt + θx = 0

This equality cannot hold for discontinuous solutions; if it did, then we would get
a RH-type condition

θ(ur)− θ(ul) = s · (η(ur)− η(ul))

However this is in general incompatible with the RH condition for the original
conservation law.

In reality, the conservation law includes some dissipation

ut + fx = εuxx, ε > 0 =⇒ η′(u)ut + η′(u)f ′(u)ux = εη′(u)uxx

leads to the entropy equation

ηt + θx = ε(η(u)ux)x − εη′′(u)u2
x ≤ ε(η(u)ux)x since η′′(u) > 0
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Entropy function

In the limit of ε→ 0, we get the entropy inequality

ηt + θx ≤ 0

This condition must be satisfied in weak sense for all φ ∈ C1
0 (R× R+), φ ≥ 0∫ ∞

0

∫
R
(η(u)φt + θ(u)φx)dxdt+

∫
R
η(u0(x))φ(x, 0)dt ≥ 0

Entropy condition IV

A weak solution u(x, t) is the entropy solution if for all convex entropy functions η
and corresponding entropy fluxes θ, the inequality

ηt + θx ≤ 0

is satisfied in the weak sense.
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Entropy function

Across a discontinuity, this is equivalent to

θ(ur)− θ(ul) ≤ s · (η(ur)− η(ul))

For the Burgers equation, taking η(u) = u2, we get

2

3
(u3
r − u3

l ) ≤
1

2
(ur + ul)(u

2
r − u2

l ) =⇒ 1

6
(ur − ul)3 ≤ 0

and we recover the entropy condition for a admissible shock as ul > ur.

GR1, Theorem 3.4

If u(x, t) satisfies entropy condition for one strictly convex entropy η, then it
satisfies the entropy condition for all convex entropies.

Remark Kruzkov used the entropy pair

η(u) = |u− k|, θ(u) = sign(u− k)[f(u)− f(k)], k ∈ R
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Entropy function

Remark Scalar conservation laws have an infinite set of entropy pairs. For any
convex function η(u), define

θ(u) =

∫ u

η′(s)f ′(s)ds =⇒ θ′(u) = η′(u)f ′(u)

Remark To check entropy condition for numerical scheme, we will verify a
discrete approximation of the condition

d

dt

∫ b

a

η(u(x, t))dx+ θ(u(b, t))− θ(u(a, t)) ≤ 0

for the finite volume method.
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Finite volume method

In the FVM, the basic unknown is the cell average value and this is evolved
forward in time by using the conservation law applied to each finite volume. The
basic scheme is of the form

un+1
j = unj − λ[gnj+ 1

2
− gnj− 1

2
], λ =

∆t

∆x

where
gj+ 1

2
= g(uj , uj+1)

is the numerical flux function. We will demand that the numerical flux is
consistent in the sense that

g(u, u) = f(u)

The major task in the finite volume method is to find a suitable numerical flux
function that leads to a stable and accurate scheme.
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Godunov scheme

At any time tn, the finite volume solution is made up of piecewise constant states.
This naturally defines a Riemann problem at each cell face. Godunov’s
revolutionary idea was to solve these Riemann problems exactly for a short time
period, and then average the solution onto piecewise constant states to obtain the
cell averages at the next time tn+1 = tn + ∆t. The time step ∆t should be small
enough that neighbouring Riemann solutions do not interact with one another.

At face j + 1
2 which separates the states unj and unj+1, the Riemann solution is

self similar and may be written as

wR(ξ;unj , u
n
j+1), ξ =

x− xj+ 1
2

t− tn
, t > tn

Godunov scheme can be written as a finite volume scheme with numerical flux

gGj+ 1
2

= f(wR(0;unj , u
n
j+1))

Being based on exact solution, Godunov scheme satisfies all desirable properties
like entropy condition, TVD property, maximum stability, etc.
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Murman-Roe scheme

The idea introduced by Roe for Euler equations was to solve the Riemann problem
approximately. In case of scalar problem, the idea is to replace non-linear PDE
ut + f ′(u)ux = 0 with a linear PDE

wt + aj+ 1
2
wx = 0

and solve this exactly. We must choose aj+ 1
2
≈ f ′(u(xj+ 1

2
, tn))

aj+ 1
2

=

{
fj+1−fj
uj+1−uj

uj 6= uj+1

f ′(uj) otherwise

Solving the Riemann problem and evaluating the solution on ξ = 0 gives the Roe
flux

gRj+ 1
2

=
1

2
(fj + fj+1)− 1

2
|aj+ 1

2
|(uj+1 − uj) =

{
fj aj+ 1

2
> 0

fj+1 otherwise
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Murman-Roe scheme

Being based on shocks only, the approximate solution is not good at modeling
rarefactions. This can lead to entropy violating solutions. Consider the initial data

u0
j =

{
−1 j ≤ −1

+1 j ≥ 0

The Roe scheme gives the solution

unj = u0
j

which is a stationary shock and hence a weak solution. But the correct solution is
a rarefaction.

Note that the numerical viscosity vanishes at the initial discontinuity, which is the
cause of the unphysical solution.
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Monotone scheme

The exact solutions have the property that if u(x, 0) ≥ v(x, 0), then
u(x, t) ≥ v(x, t) a.e in x and t. This motivates the notion of monotone schemes.
Write a general finite volume scheme in the form

un+1
j = H(unj−k, . . . , u

n
j+k)

We say that the scheme is monotone if H is an increasing function of all its
arguments.

A 3-point scheme is of the form

un+1
j = H(unj−1, u

n
j , u

n
j+1) = unj − λ[g(unj , u

n
j+1)− g(unj−1, u

n
j )]

This is monotone if g(·, ·) is an increasing function of its first argument and a
decreasing function of its second argument, and provided a CFL condition is
satisfied. (Exercise: Check this for the Lax-Friedrich flux)

A monotone scheme is consistent with any entropy condition. This would
make monotone schemes to be the ideal choice but unfortunately, monotone
schemes are atmost first order accurate. Hence the notion of monotone
schemes is not very useful if we want to construct high order schemes.
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TVD schemes

The total variation of a grid function uh is defined as

TV (uh) =
∑
j

|uj+1 − uj |

The exact solutions of conservation laws have the property that their total
variation does not increase with time. Hence we demand the same from the
numerical solutions.

A numerical scheme is said to be total variation diminishing if

TV (un+1
h ) ≤ TV (unh)

Practically this helps to prevent the appearance of spurious oscillations in the case
of discontinuous numerical solutions.

To check if a scheme is TVD, we write it in incremental form

un+1
j = unj + Cnj+ 1

2
∆unj+ 1

2
−Dn

j− 1
2
∆unj− 1

2
, ∆uj+ 1

2
= uj+1 − uj
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TVD schemes

Theorem (Harten)

If
Cj+ 1

2
≥ 0, Dj+ 1

2
≥ 0, Cj+ 1

2
+Dj+ 1

2
≤ 1

then the scheme is TVD.

Unfortunately, TVD schemes need not be entropy consistent. So we have to
additionally check this property.

21 / 111



Viscosity form

We write the numerical flux in the viscosity form

gj+ 1
2

=
1

2
(fj + fj+1)− 1

2λ
Qj+ 1

2
∆uj+ 1

2

where Q is called the viscosity coefficient1. If the finite volume scheme satisfies

λ

∣∣∣∣∣∆fj+ 1
2

∆vj+ 1
2

∣∣∣∣∣ ≤ Qj+ 1
2
≤ 1

then it is TVD. If we further restrict the viscosity coefficient to

λ

∣∣∣∣∣∆fj+ 1
2

∆vj+ 1
2

∣∣∣∣∣ ≤ Qj+ 1
2
≤ 1

2

then the scheme is TVD and stable in maximum norm.

1Such schemes are said to be essentially 3-point.
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Example: Lax-Friedrichs scheme
The numerical flux is given by

g(u, v) =
1

2
(f(u) + f(v))− 1

2λ
(v − u)

for which the viscosity coefficient is

QLFj+ 1
2

= 1

This corresponds to the upper bound in the TVD condition. Hence the scheme is
TVD provided the CFL condition

λmax
j

∣∣∣∣∣∆fj+ 1
2

∆vj+ 1
2

∣∣∣∣∣ ≤ 1

is satisfied.
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Example: Murman-Roe scheme
The numerical flux is given by

gR(u, v) =
1

2
(f(u) + f(v))− 1

2
|a(u, v)|(v − u)

and its numerical viscosity coefficient is

QRj+ 1
2

= λ|a(vj , vj+1)| = λ

∣∣∣∣∣∆fj+ 1
2

∆vj+ 1
2

∣∣∣∣∣
This corresponds to the lower bound in the TVD condition. The scheme is TVD
provided the CFL condition

λmax
j

∣∣∣∣∣∆fj+ 1
2

∆vj+ 1
2

∣∣∣∣∣ ≤ 1

is satisfied. However, we know that this scheme admits entropy violating shocks.
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Example: Lax-Wendroff scheme
The numerical flux is given by

gLW (u, v) =
1

2
(f(u) + f(v))− 1

2
λa(u, v)(f(v)− f(u))

Hence its numerical viscosity coefficient is

QLWj+ 1
2

= (λaj+ 1
2
)2 = λ2

(
∆fj+ 1

2

∆vj+ 1
2

)2

which does not satisfy the TVD condition. This also implies that it does not
preserve monotonicity.
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Entropy consistent scheme

Consider a general finite volume scheme

un+1
j = unj − λ[gnj+ 1

2
− gnj− 1

2
], gj+ 1

2
= g(uj−k+1, . . . , uj+1)

We say that the scheme is consistent with an entropy pair (U,F ) if there exists a
numerical entropy flux Gj+ 1

2
= G(uj−k+1, . . . , uj+1) which is consistent with

the entropy flux F (u) in the sense

G(u, . . . , u) = F (u), ∀u

and the numerical solutions satisfy

U(un+1
j )− U(unj )

∆t
+
Gn
j+ 1

2

−Gn
j− 1

2

∆x
≤ 0

This is a discrete approximation to the entropy inequality

∂U

∂t
+
∂F

∂x
≤ 0
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Definition (E-scheme)

A consistent, conservative scheme is called an E-scheme if its numerical flux
satisfies

sign(vj+1 − vj)(gj+ 1
2
− f(u)) ≤ 0

for all u between vj and vj+1.

Remark Note that an E-scheme is essentially 3-point. Indeed letting vj+1 → vj
with first vj+1 ≥ vj and then with vj+1 ≤ vj shows that g is essentially 3-point.

Remark A 3-point monotone scheme is an E-scheme. Since g(u, v) is
non-decreasing in u and non-increasing in v, we obtain

g(u, v) ≤ g(u,w) ≤ g(w,w) = f(w) if u ≤ w ≤ v
g(u, v) ≥ g(w, v) ≥ g(w,w) = f(w) if u ≥ w ≥ v

and therefore

sign(v − u)(g(u, v)− f(w)) ≤ 0, for all w between u and v

In particular, the Godunov scheme is an E-scheme under CFL ≤ 1.
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Lemma
Assume that CFL ≤ 1. Then E-fluxes are characterized by{

gj+ 1
2
≤ gG

j+ 1
2

if vj < vj+1

gj+ 1
2
≥ gG

j+ 1
2

if vj > vj+1

where gG stands for Godunov numerical flux.

Lemma
Assume that CFL ≤ 1. E-schemes are characterized by

0 ≤ QGj+ 1
2
≤ Qj+ 1

2
, ∀j ∈ Z
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Theorem (Viscous form and entropy condition)

Assume that the CFL condition

λmax |a(u)| ≤ 1

2

holds. An E-scheme whose coefficient of numerical viscosity satisfies

QGj+ 1
2
≤ Qj+ 1

2
≤ 1

2

is consistent with any entropy condition.

The basic idea is to write any E-scheme as a convex combination of the Godunov
scheme and a modified Lax-Friedrichs scheme, both of which satisfy entropy
condition.
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Godunov scheme

The finite volume solution is made of piecewise constant states

v∆(x, t) = vnj , x ∈ (xj− 1
2
, xj+ 1

2
), t ∈ [tn, tn+1)

which defines a Riemann problem at each cell face x = xj+ 1
2

∂wR
∂t

+
∂

∂x
f(wR) = 0, x ∈ (xj , xj+1), t ∈ [tn, tn+1)

wR(x, 0) =

{
vnj , x < xj+ 1

2

vnj+1, x > xj+ 1
2

Under the CFL condition

λmax |a(u)| ≤ 1

2

the solution at next time level is given by projecting the Riemann solution onto
piecewise constant states

vn+1
j =

1

∆x

∫ ∆x
2

0

wR(x/∆t; vnj−1, v
n
j )dx+

1

∆x

∫ 0

−∆x
2

wR(x/∆t; vnj , v
n
j+1)dx
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Godunov scheme

We can rewrite the above formula as a finite volume scheme with numerical flux

gGj+ 1
2

= f(wR(0; vj , vj+1))
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Approximate Riemann solver

Let w(x/t;ul, ur) be an approximation of the exact entropy solution
wR(x/t;ul, ur) of the Riemann problem

∂u

∂t
+

∂

∂x
f(u) = 0

u(x, 0) =

{
ul, x < 0

ur, x > 0

We will require that the approximate solution be consistent with the exact one in
two respects
Conservation: Integrate over rectangle (−∆x

2 ,+∆x
2 )× (0,∆t), and provided

λ|a(u)| ≤ 1

2
, for all u between ul and ur

we get

1

∆x

∫ + ∆x
2

−∆x
2

wR(x/∆t;ul, ur)dx =
1

2
(ul + ur) + λ(f(ul)− f(ur))
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Thus we require the approximate solution to satisfy

1

∆x

∫ + ∆x
2

−∆x
2

w(x/∆t;ul, ur)dx =
1

2
(ul + ur) + λ(f(ul)− f(ur))

Entropy condition: Integrating the entropy inequality Ut + Fx ≤ 0 yields

1

∆x

∫ + ∆x
2

−∆x
2

U(wR(x/∆t;ul, ur))dx ≤ 1

2
(U(ul) + U(ur)) + λ(F (ul)− F (ur))

For consistency with the entropy condition, we require approximate solution to
satisfy

1

∆x

∫ + ∆x
2

−∆x
2

U(w(x/∆t;ul, ur))dx ≤ 1

2
(U(ul) + U(ur)) + λ(F (ul)− F (ur))

Continuity: Finally, we require the solution to be continuous wrt the data

w(x/t;u, u) = u
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Godunov-type scheme: With the help of such an approximate Riemann solution
w, we define the Godunov-type scheme as follows

vn+1
j =

1

∆x

∫ ∆x
2

0

w(x/∆t; vnj−1, v
n
j )dx+

1

∆x

∫ 0

−∆x
2

w(x/∆t; vnj , v
n
j+1)dx

Theorem

Let w be the approximate Riemann solver which satisfies (1) conservation,
(2) consistency with entropy condition for an entropy pair (U,F ) and is
(3) continuous. Then the Godunov-type scheme can be put in conservation form,
is consistent with the conservation law and is consistent with the entropy
condition associated with (U,F ) under the CFL condition CFL ≤ 1

2 .
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Roe scheme and its entropy modification

The Roe scheme is an approximate Riemann solver with

w(x/t;ul, ur) =

{
ul, x/t < a(ul, ur)

ur, x/t > a(ul, ur)

with numerical flux

gR(u, v) =
1

2
(f(u) + f(v))− 1

2
|a(u, v)|(v − u)

But we have seen that this admits entropy violating shocks. This solution has only
shocks and hence there will be problem when the solution is a rarefaction. Harten
and Hyman proposed the following approximate Riemann solver

w(x/t;ul, ur) =


ul, x/t < al

u∗, al < x/t < ar

ur, x/t > ar

Here the intermediate state u∗ and al, ar are yet to be specified (See GR1).
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Entropy conservative schemes

Let (U,F ) be an entropy pair and define the entropy variable

v = U ′(u)

and entropy potential

ψ(v) = vf(u(v))− F (u(v))

Consider the semi-discrete finite volume scheme

duj
dt

+
g∗
j+ 1

2

− g∗
j− 1

2

∆x
= 0

Assume that the flux satisfies the condition (Tadmor)

(vj+1 − vj)g∗j+ 1
2

= ψj+1 − ψj

Now multiply semi-discrete scheme by vj = U ′(uj)

U ′(uj)
duj
dt

+ vj
g∗
j+ 1

2

− g∗
j− 1

2

∆x
= 0

36 / 111



Entropy conservative schemes

We have the identity

vj =
1

2
(vj + vj+1)− 1

2
(vj+1 − vj) = {{v}}j+ 1

2
− 1

2
JvKj+ 1

2

so that

vjg
∗
j+ 1

2
= {{v}}j+ 1

2
g∗j+ 1

2
− 1

2
JvKj+ 1

2
g∗j+ 1

2
= {{v}}j+ 1

2
g∗j+ 1

2
− 1

2
JψKj+ 1

2

Similarly

vj =
1

2
(vj + vj−1)− 1

2
(vj−1 − vj) = {{v}}j− 1

2
+

1

2
JvKj− 1

2

so that

vjg
∗
j− 1

2
= {{v}}j− 1

2
g∗j− 1

2
+

1

2
JvKj− 1

2
g∗j− 1

2
= {{v}}j− 1

2
g∗j− 1

2
+

1

2
JψKj− 1

2
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Entropy conservative schemes

Hence

vj(g
∗
j+ 1

2
− g∗j− 1

2
) = {{v}}j+ 1

2
g∗j+ 1

2
− 1

2
(ψj+1 − ψj)

−{{v}}j− 1
2
g∗j− 1

2
− 1

2
(ψj − ψj−1)

=

[
{{v}}j+ 1

2
g∗j+ 1

2
− 1

2
(ψj+1 + ψj)

]
−
[
{{v}}j− 1

2
g∗j− 1

2
− 1

2
(ψj + ψj−1)

]
=

[
{{v}}j+ 1

2
g∗j+ 1

2
− {{ψ}}j+ 1

2

]
−
[
{{v}}j− 1

2
g∗j− 1

2
− {{ψ}}j− 1

2
)
]

Define the numerical entropy flux

G∗j+ 1
2

= {{v}}j+ 1
2
g∗j+ 1

2
− {{ψ}}j+ 1

2
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Entropy conservative schemes
then we obtain the entropy equality

d

dt
U(uj) +

G∗
j+ 1

2

−G∗
j− 1

2

∆x
= 0

Now, let us check the consistency of the flux. The numerical flux is

g∗j+ 1
2

=
ψj+1 − ψj
vj+1 − vj

Firstly, this is a central flux since interchanging uj , uj+1 gives the same value.
Secondly, if uj = uj+1 = u and correspondingly vj = vj+1 = v = U ′(u), the

g∗j+ 1
2

= ψ′(v) = f(u(v)) + vf ′(u(v))u′(v)− F ′(u(v))u′(v)

= f(u(v)) + [U ′(u)f ′(u(v))− F ′(u(v))]u′(v)

= f(u)

The numerical entropy flux is also a central flux and if uj = uj+1 = u, we get

G∗j+ 1
2

= vf(u)− ψ(v) = F (u)
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Entropy conservative schemes

and hence is consistent with the entropy flux.

Theorem
If the numerical flux g∗

j+ 1
2

satisfies the condition

JvKj+ 1
2
g∗j+ 1

2
= JψKj+ 1

2

then the semi-discrete finite volume scheme satisfies entropy conservation
associated to the entropy U .
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Example: Burger’s equation

Take U(u) = 1
2u

2. Then

F (u) =

∫ u

U ′(s)f ′(s)ds =

∫ u

(s)(s)ds =
1

3
s3

and

v = U ′(u) = u, ψ = (u)(
1

2
u2)− 1

3
u3 =

1

6
u3

The entropy conserving flux is

g∗j+ 1
2

=
ψj+1 − ψj
vj+1 − vj

=
1
6u

3
j+1 − 1

6u
3
j

uj+1 − uj
=

1

6
(u2
j + ujuj+1 + u2

j+1)

With this flux, the entropy equation is

d

dt
(
1

2
u2
j ) +

G∗
j+ 1

2

−G∗
j− 1

2

∆x
= 0

which implies that (assuming periodic bc)

d

dt

∑
j

1

2
u2
j = 0

i.e., the energy is conserved.
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Viscosity form: U(u) = 1
2u

2

In this case v = U ′(u) = u. Define the straight line path

uj+ 1
2
(ξ) =

1

2
(uj + uj+1) + ξJuKj+ 1

2

The entropy conservative flux is

g∗j+ 1
2

=
ψj+1 − ψj
vj+1 − vj

=

∫ 1
2

− 1
2

ψ′(uj+ 1
2
(ξ))dξ =

∫ 1
2

− 1
2

f(uj+ 1
2
(ξ))dξ

Equating this to the viscosity form∫ 1
2

− 1
2

f(uj+ 1
2
(ξ))dξ =

1

2
(fj + fj+1)− 1

2
Q∗j+ 1

2
JuKj+ 1

2

we can write the viscosity coefficient as (Exercise)

Q∗j+ 1
2

=

∫ 1
2

− 1
2

2ξf ′(uj+ 1
2
(ξ))dξ
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Viscosity form: general case

In this case v = U ′(u). Define the straight line path

vj+ 1
2
(ξ) =

1

2
(vj + vj+1) + ξJvKj+ 1

2

The entropy conservative flux is

g∗j+ 1
2

=
ψj+1 − ψj
vj+1 − vj

=

∫ 1
2

− 1
2

ψ′(vj+ 1
2
(ξ))dξ =

∫ 1
2

− 1
2

f(u(vj+ 1
2
(ξ)))dξ

Equating this to the viscosity form∫ 1
2

− 1
2

f(uj+ 1
2
(ξ))dξ =

1

2
(fj + fj+1)− 1

2
P ∗j+ 1

2
JvKj+ 1

2

we can write the viscosity coefficient as (Exercise)

P ∗j+ 1
2

=

∫ 1
2

− 1
2

2ξf ′(u(vj+ 1
2
(ξ)))dξ
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Entropy consistent schemes

We must produce entropy at shock waves, which means that we need an entropy
inequality. Consider the semi-discrete finite volume scheme

duj
dt

+
gj+ 1

2
− gj− 1

2

∆x
= 0

Let us write the numerical flux in terms of viscosity form using jump in entropy
variable

gj+ 1
2

=
1

2
(fj + fj+1)− 1

2
Pj+ 1

2
JvKj+ 1

2

This can be re-written as

gj+ 1
2

=
1

2
(fj + fj+1)− 1

2
P ∗j+ 1

2
JvKj+ 1

2
− 1

2
(Pj+ 1

2
− P ∗j+ 1

2
)JvKj+ 1

2

= g∗j+ 1
2
− 1

2
(Pj+ 1

2
− P ∗j+ 1

2
)JvKj+ 1

2

= g∗j+ 1
2
− 1

2
Dj+ 1

2
JvKj+ 1

2
, Dj+ 1

2
= Pj+ 1

2
− P ∗j+ 1

2
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Entropy consistent schemes
where g∗

j+ 1
2

is the entropy conservative flux. Let us derive the entropy equation.

vj(gj+ 1
2
− gj− 1

2
) = vj(g

∗
j+ 1

2
− g∗j− 1

2
)− 1

2
vjDj+ 1

2
JvKj+ 1

2
+

1

2
vjDj− 1

2
JvKj− 1

2

Following steps as in the entropy conservative case

vjDj+ 1
2
JvKj+ 1

2
= {{v}}j+ 1

2
Dj+ 1

2
JvKj+ 1

2
− 1

2
JvKj+ 1

2
Dj+ 1

2
JvKj+ 1

2

vjDj− 1
2
JvKj− 1

2
= {{v}}j− 1

2
Dj− 1

2
JvKj− 1

2
+

1

2
JvKj− 1

2
Dj− 1

2
JvKj− 1

2

Hence

vj(gj+ 1
2
− gj− 1

2
) =

[
G∗j+ 1

2
− 1

2
{{v}}j+ 1

2
Dj+ 1

2
JvKj+ 1

2

]
−

[
G∗j− 1

2
− 1

2
{{v}}j− 1

2
Dj− 1

2
JvKj− 1

2

]
+

1

4
JvKj+ 1

2
Dj+ 1

2
JvKj+ 1

2
+

1

4
JvKj− 1

2
Dj− 1

2
JvKj− 1

2
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Entropy consistent schemes

Define the numerical entropy flux

Gj+ 1
2

= G∗j+ 1
2
− 1

2
{{v}}j+ 1

2
Dj+ 1

2
JvKj+ 1

2

then the entropy equation is

d

dt
U(uj) +

Gj+ 1
2
−Gj− 1

2

∆x
= −1

4
JvKj+ 1

2
Dj+ 1

2
JvKj+ 1

2
− 1

4
JvKj− 1

2
Dj− 1

2
JvKj− 1

2
≤ 0

where the inequality follows provided

Dj+ 1
2
≥ 0 ∀j =⇒ Pj+ 1

2
≥ P ∗j+ 1

2

i.e., the viscosity coefficient P must be larger than the viscosity coefficient
P ∗ in the entropy conservative scheme.
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Hyperbolic Systems

Consider a system of hyperbolic conservation laws

∂u

∂t
+

d∑
j=1

∂fj
∂xj

= 0, fj = fj(u)

We say that (U,F ) is an entropy pair for the above system if U(u) is strictly
convex and

F ′j(u) = U ′(u)f ′j(u), 1 ≤ j ≤ d
Smooth solutions satisfy the additional equation

∂U

∂t
+

d∑
j=1

∂Fj
∂xj

= 0

while in general we can only demand the inequality

∂U

∂t
+

d∑
j=1

∂Fj
∂xj

≤ 0

to hold in the sense of distributions which can be motivated from vanishing
viscosity approach. The existence of such pairs is not guaranteed in general.
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Strict convexity

The function U(u) being strictly convex means that

U((1− ξ)u1 + ξu2) < (1− ξ)U(u1) + ξU(u2), 0 < ξ < 1

If U(u) is differentiable, this means the symmetric matrix U ′′(u)

[U ′′(u)]ij =
∂2U

∂ui∂uj

is positive definite, i.e.,

s>U ′′(u)s > 0, ∀s 6= 0

and hence all eigenvalues of U ′′(u) are strictly positive.
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Symmetric Hyperbolic Systems

Suppose we do a change of variable from u to v

u′(v)
∂v

∂t
+

d∑
j=1

f ′j(u(v))u′(v)
∂v

∂xj
= 0

and we write this as

A0
∂v

∂t
+

d∑
j=1

AjA0
∂v

∂xj
= 0

where
A0 = u′(v), Aj = f ′j(u)

If A0 is symmetric, positive definite and AjA0 is symmetric, then we call this as a
symmetric, hyperbolic form. The conservation law is said to be symmetrizable if
such a change of variable exists.

Theorem (Godunov, Mock), ([2], Thm 3.2, page 25)

A necessary and sufficient condition for the conservation law to posses a strictly
convex entropy U is that there exists a change of dependent variables u = u(v)
that symmetrizes it.
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Given a strictly convex function, the following theorem tell us when it will be an
entropy function.

Theorem ([2], Thm 3.1, page 24)

Let U be a strictly convex function. A necessary and sufficient condition for U to
be an entropy is that the matrices U ′′(u)f ′j(u), 1 ≤ j ≤ d are symmetric.
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Let U be a strictly convex entropy function. Define the entropy variables

v> = U ′(u)

Since U ′′(u) is positive definite, we can uniquely convert from u→ v and v → u.

If we transform the PDE from conserved variables to entropy variables, we obtain
a symmetric, hyperbolic form.

Given some conservation law, there is no general method to find an entropy
function.

Usually, for systems coming from Physics, we already know the existence of an
entropy condition from the second law of Thermodynamics.

For an entropy pair (U,F ), define the entropy potential

ψ(v) = v · f(u(v))− F (u(v))
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Entropy conservative scheme

Consider the semi-discrete finite volume scheme

∂uj
∂t

+
f∗
j+ 1

2

− f∗
j− 1

2

∆x
= 0

and assume that the numerical flux f∗
j+ 1

2

= f∗(uj ,uj+1) satisfies

JvKj+ 1
2
· f∗j+ 1

2
= JψKj+ 1

2

Taking the dot product of the scheme with vj = U(uj) gives

d

dt
U(uj) +

F ∗
j+ 1

2

− F ∗
j− 1

2

∆x
= 0

where
F ∗j+ 1

2
= F ∗(uj ,uj+1) := {{v}}j+ 1

2
· f∗j+ 1

2
− {{ψ}}j+ 1

2

is a consistent numerical entropy flux, i.e., F ∗(u,u) = F (u).
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Higher order entropy conservative scheme

The entropy conservative flux f∗(uj ,uj+1) leads to a second order scheme. This
flux can be used as a building block to construct higher order schemes (LeFloch et
al. [3]).

Choose an integer p ≥ 1 and let α1, α2, . . . , αp be numbers which satisfy

2

p∑
r=1

rαr = 1,

p∑
l=1

l2s−1αr = 0, s = 2, 3, . . . , p

Define the numerical flux

f∗,2p
j+ 1

2

= f∗,2p(uj−p+1, . . . ,uj+p) =

p∑
r=1

αr

r−1∑
s=0

f∗(uj−s,uj−s+r)

Then the semi-discrete FV scheme is 2p’th order accurate

f∗,2p
j+ 1

2

− f∗,2p
j− 1

2

∆x
=
∂f

∂x
(xj) +O(∆x)2p
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Higher order entropy conservative scheme

and satisfies the entropy equation

dUj
dt

+
F ∗,2p
j+ 1

2

− F ∗,2p
j− 1

2

∆x
= 0

where

F ∗,2p
j+ 1

2

=

p∑
r=1

αr

r−1∑
s=0

F ∗(uj−s,uj−s+r)

is a consistent entropy flux.

Example: For p = 2 we get the fourth order accurate entropy conservative flux

f∗,4
j+ 1

2

=
4

3
f∗(uj ,uj+1)− 1

6
f∗(uj−1,uj+1)− 1

6
f∗(uj ,uj+2)
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Entropy consistent scheme

Consider the semi-discrete finite volume scheme

∂uj
∂t

+
fj+ 1

2
− fj− 1

2

∆x
= 0

where the numerical flux is

fj+ 1
2

= f∗j+ 1
2
− 1

2
Dj+ 1

2
JvKj+ 1

2
, Dj+ 1

2
= D>j+ 1

2
≥ 0

Then we get the entropy inequality

d

dt
U(uj) +

Fj+ 1
2
− Fj− 1

2

∆x
= −1

4
JvK>j− 1

2
Dj− 1

2
JvKj− 1

2
− 1

4
JvK>j+ 1

2
Dj+ 1

2
JvKj+ 1

2
≤ 0

where

Fj+ 1
2

= F ∗j+ 1
2
− 1

2
{{v}}>j+ 1

2
Dj+ 1

2
JvKj+ 1

2

is a consistent numerical entropy flux.

The flux fj+ 1
2

is first order accurate since JvKj+ 1
2

= O(∆x).
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Dissipation matrix

Let us first write the entropy conservative flux in viscosity form

f∗j+ 1
2

=
1

2
(fj + fj+1)− 1

2
P ∗j+ 1

2
JvKj+ 1

2

Define the symmetric matrix

B(v) =
∂

∂v
f(u(v))

then (Exercise)

P ∗j+ 1
2

=

∫ 1
2

− 1
2

2ξB(vj+ 1
2
(ξ))dξ

where vj+ 1
2
(ξ) is the linear path connecting vj , vj+1

vj+ 1
2
(ξ) = {{v}}j+ 1

2
+

1

2
ξJvKj+ 1

2
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Dissipation matrix

Let us write the entropy consistent flux also in viscosity form

fj+ 1
2

=
1

2
(fj + fj+1)− 1

2
Pj+ 1

2
JvKj+ 1

2

This can be rewritten as

fj+ 1
2

= f∗j+ 1
2
− 1

2
(Pj+ 1

2
− P ∗j+ 1

2︸ ︷︷ ︸
D

j+ 1
2

)JvKj+ 1
2

Hence for entropy stability, we need to satisfy

Pj+ 1
2
≥ P ∗j+ 1

2
in the sense of SPD matrix ordering

Using a linearization

JvKj+ 1
2

= Hj+ 1
2
JuKj+ 1

2
, Hj+ 1

2
= v′(u)j+ 1

2
:=

∫ 1
2

− 1
2

U ′′(u(vj+ 1
2
(ξ)))dξ
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Dissipation matrix

we can write the flux as

fj+ 1
2

=
1

2
(fj + fj+1)− 1

2
Pj+ 1

2
Hj+ 1

2
JuKj+ 1

2

If we match the above flux to the Rusanov flux,

Pj+ 1
2
Hj+ 1

2
= λmI =⇒ Pj+ 1

2
= λmH

−1
j+ 1

2

where λm is the maximum wavespeed at j + 1
2 . Tadmor shows that

λmH
−1
j+ 1

2

≥ P ∗j+ 1
2

(2)

and hence the Rusanov flux is entropy consistent. We can write the Rusanov flux
in terms of entropy variable jump as

fRusj+ 1
2

=
1

2
(fj + fj+1)− 1

2
λmH

−1
j+ 1

2

JvKj+ 1
2
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Dissipation matrix

Remark: It is usually not possible to find explicit formula for Hj+ 1
2

. We can find
an approximation to Hj+ 1

2
by performing a numerical integration, but we have to

check that (2) is satisfied.

Rusanov-type dissipation matrix: An easier scheme is to first approximate

JuKj+ 1
2
≈ u′(v)j+ 1

2
JvKj+ 1

2
, u′(v)j+ 1

2
= u′({{v}}j+ 1

2
)

and then add the Rusanov dissipation to the entropy conservative flux

fj+ 1
2

= f∗j+ 1
2
− 1

2
λmu

′(v)j+ 1
2
JvKj+ 1

2

We discuss a similar approach later in the context of Euler equations, see also [4].

Roe-type dissipation matrix: Barth [5] shows that we can scale the eigenvectors
in such a way that they satisfy the relation

RR> = u′(v)
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Dissipation matrix

The Roe flux is given by

fRoej+ 1
2

=
1

2
(fj + fj+1)− 1

2
Rj+ 1

2
|Λj+ 1

2
|R−1
j+ 1

2

JuKj+ 1
2

Converting jump in u to v

JuKj+ 1
2
≈ u′(v)j+ 1

2
JvKj+ 1

2
= Rj+ 1

2
R>j+ 1

2
JvKj+ 1

2

the dissipation in Roe flux can be written as

Rj+ 1
2
|Λj+ 1

2
|R−1
j+ 1

2

JuKj+ 1
2

= Rj+ 1
2
|Λj+ 1

2
|R−1
j+ 1

2

Rj+ 1
2
R>j+ 1

2
JvKj+ 1

2

= Rj+ 1
2
|Λj+ 1

2
|R>j+ 1

2
JvKj+ 1

2

We have an SPD dissipation matrix

Dj+ 1
2

= Rj+ 1
2
|Λj+ 1

2
|R>j+ 1

2
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Dissipation matrix

which can be used in combination with the entropy conservative flux

fj+ 1
2

= f∗j+ 1
2
− 1

2
Rj+ 1

2
|Λj+ 1

2
|R>j+ 1

2
JvKj+ 1

2

The above flux leads to an entropy consistent scheme (but the dissipation is
probably not optimal).

Remark: It is possible to carefully compute the dissipation matrix so that we get
exact resolution of stationary contact waves, see [6].
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Higher order entropy consistent scheme

To construct higher order scheme, we will follow the reconstruction approach. At
each face j + 1

2 , we obtain a left and right value of entropy variables vL
j+ 1

2

, vR
j+ 1

2

and define the numerical flux as

fj+ 1
2

= f∗,2p
j+ 1

2

− 1

2
Dj+ 1

2
(vRj+ 1

2
− vLj+ 1

2
)

Note that we use the higher order entropy conservative flux, and use the
reconstructed values to define the dissipative flux. Then we get the entropy
equation

d

dt
U(uj) +

Fj+ 1
2
− Fj− 1

2

∆x
= −1

4
(vj − vj−1)>Dj− 1

2
(vRj− 1

2
− vLj− 1

2
)

−1

4
(vj+1 − vj)>Dj+ 1

2
(vRj+ 1

2
− vLj+ 1

2
)

where

Fj+ 1
2

= F ∗,2p
j+ 1

2

− 1

2
{{v}}>j+ 1

2
Dj+ 1

2
(vRj+ 1

2
− vLj+ 1

2
)

We do not know the sign of the right hand side. We have to design a
reconstruction scheme that allows us to fix the sign of the terms on the right.
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Sign preserving reconstruction

Recall that the dissipation matrix can be written as

Dj+ 1
2

= Rj+ 1
2
|Λj+ 1

2
|R>j+ 1

2

Define the new variables

wk = R>j+ 1
2
vk, k = . . . , j − 1, j, j + 1, . . .

We will use the ENO reconstruction scheme to obtain wL
j+ 1

2

, wR
j+ 1

2

. We can then

compute
vLj+ 1

2
= R−1

j+ 1
2

wL
j+ 1

2
, vRj+ 1

2
= R−1

j+ 1
2

wR
j+ 1

2

But it is not necessary to compute vL
j+ 1

2

, vR
j+ 1

2

since we can write the flux as

fj+ 1
2

= f∗,2p
j+ 1

2

− 1

2
Rj+ 1

2
|Λj+ 1

2
|(wR

j+ 1
2
−wL

j+ 1
2
)
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Sign preserving reconstruction

Fjordholm and Mishra [7] have shown that the ENO scheme preserves the sign of
the jump, i.e.,

sign(wj+1 −wj) = sign(wR
j+ 1

2
−wL

j+ 1
2
)

On the right of the entropy equation, we have terms like

(vj+1 − vj)>Dj+ 1
2
(vRj+ 1

2
− vLj+ 1

2
)

= (vj+1 − vj)>Rj+ 1
2
|Λj+ 1

2
|R>j+ 1

2
(vRj+ 1

2
− vLj+ 1

2
)

= (R>j+ 1
2
vj+1 −R>j+ 1

2
vj)
>|Λj+ 1

2
|(R>j+ 1

2
vRj+ 1

2
−R>j+ 1

2
vLj+ 1

2
)

= (wj+1 −wj)>|Λj+ 1
2
|(wR

j+ 1
2
−wL

j+ 1
2
)

≥ 0

This shows that scheme satisfies entropy inequality.

For second order scheme, the ENO scheme is same as reconstruction using
minmod limiter.
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Euler equations

We will consider Euler equations in 1-D, which model friction-less fluids and can
be written as

∂u

∂t
+
∂f

∂x
= 0

where

u =

 ρρv
ρe

 , f =

 ρv
p+ ρv2

(ρe+ p)v


and

ρ = mass density, ρv = momentum density, ρe = energy density

and p is the pressure. The energy is made up of internal energy and kinetic energy

ρe = ρε+
1

2
ρv2

where ε = internal energy per unit mass.
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Thermodynamic considerations

We have four unknowns but only three equations. We need a way to relate the
internal energy to the thermodynamics variable ρ, p, T where T is the absolute
temperature.

For a system in equilibrium, the thermodynamic variables satisfy an equation of
state

f(ρ, p, T ) = 0

which may be solved for one of the variables, e.g., p = p(ρ, T ). The equation of
state for an ideal gas can be written as

p = ρRT

where R is the gas constant.

The specific heats at constant volume and constant pressure are defined as

Cv =

(
∂ε

∂T

)
τ

, Cp =

(
∂h

∂T

)
p

, where τ =
1

ρ
, h = ε+ pτ

66 / 111



Thermodynamic considerations

For an ideal gas
ε = ε(T ), h = h(T )

If we assume that Cv, Cp are independent of temperature (calorically and
thermally perfect gas), which is a good assumption for air under normal
conditions, we get

ε = CvT, h = CpT, Cp − Cv = R

Define the ratio of specific heats

γ =
Cp
Cv

=⇒ Cv =
R

γ − 1
, Cp =

γR

γ − 1

Now we can close the model by using

ε = CvT =
RT

γ − 1
=

p

(γ − 1)ρ

Some authors/books refer to this model as a polytropic ideal gas.
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Thermodynamic considerations

The second law of thermodynamics introduces a new state variable called entropy
and denoted s. Under a quasi-static process

Tds = dε+ pdτ

For a polytropic ideal gas

s = s0 + Cv ln(ε/ργ−1)
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Euler equation: Entropy function

For our purpose, we can drop the constants and define the physical entropy
function as

s = ln(p/ργ)

From the Euler equations, we can derive an additional equation

∂

∂t
(ρs) +

∂

∂x
(ρvs) = 0

This motivates us to define the mathematical entropy function and entropy flux as

U = − ρs

γ − 1
, F = − ρvs

γ − 1
(3)

We can check that U(u) is a strictly convex function and F ′(u) = U ′(u)f ′(u) is
satisfied.

In fact, we have many entropy functions of the form

U = −ρη(s)

γ − 1
, F = −ρvη(s)

γ − 1
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Euler equation: Entropy function

where η(s) is any function that satisfies

γη′′(s) < η′(s)

The entropy condition for Navier-Stokes equations with Fourier law of heat
condition requires that η(s) must be an affine function [8, 9]. Hence we will use
the linear function η(s) = s from now onwards.

For the entropy pair (3), the entropy variable is

v = U ′(u) =

 γ−sγ−1 − βv
2

2βv
−2β

 , β =
ρ

2p
=

1

2RT

and the entropy potential is

ψ = v · f − F = ρv
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Euler equation: Entropy conservative flux [6]

An entropy conservative flux must satisfy the condition

(vj+1 − vj) · f∗j+ 1
2

= ψj+1 − ψj

This is one equation for the three components of the flux and is clearly
under-determined. There are many possible solutions and we discuss one of them.

Let f∗ = [f∗ρ , f
∗
m, f

∗
e ]> and let us choose ρ, v, β as independent variables. For any

two grid functions a, b we have the identity

JabKj+ 1
2

= aj+1bj+1 − ajbj =
aj + aj+1

2
(bj+1 − bj) +

bj + bj+1

2
(aj+1 − aj)

To keep the notation concise, we will drop the subscripts

JabK = {{a}}JbK + {{b}}JaK

Using this relation, we can write

JψK = JρvK = {{ρ}}JvK + {{v}}JρK
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Euler equation: Entropy conservative flux [6]

The jump in entropy variables is

Jv1K = − JsK
γ − 1

− {{v2}}JβK− {{β}}Jv2K

= − JsK
γ − 1

− {{v2}}JβK− 2{{β}}{{v}}JvK

Jv2K = 2{{β}}JvK + 2{{v}}JβK
Jv3K = −2JβK

We try to write JsK in terms of jumps in ρ, β

s = ln(p/ργ) = −(γ − 1) ln ρ− lnβ − ln 2

JsK = −(γ − 1)Jln ρK− JlnβK

For a positive quantity, define the logarithmic average

〈a〉 =
JaK

Jln aK
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Euler equation: Entropy conservative flux [6]

Then

JsK = −(γ − 1)
JρK
〈ρ〉
− JβK
〈β〉

and hence

Jv1K =
JρK
〈ρ〉

+

[
1

(γ − 1)〈β〉
− {{v2}}

]
JβK− 2{{β}}{{v}}JvK

The condition for entropy conservative flux is

Jv1Kf∗ρ + Jv2Kf∗m + Jv3Kf∗e = JρvK

Plugging in all the jump terms and collecting them together, we get

f∗ρ
〈ρ〉

JρK +
[
−2{{β}}{{v}}f∗ρ + 2{{β}}f∗m

]
JvK

+

[(
1

(γ − 1)〈β〉
− {{v2}}

)
f∗ρ + 2{{v}}f∗m − 2f∗e

]
JβK

= {{v}}JρK + {{ρ}}JvK
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Euler equation: Entropy conservative flux [6]

This equation must hold for all possible left and right states. Take the states such
that JρK 6= 0, JvK = JβK = 0 which yields the mass flux

f∗ρ = 〈ρ〉{{v}}

Similarly, the other fluxes are obtained as

f∗m =
{{ρ}}

2{{β}}
+ {{v}}f∗ρ

and

f∗e =

[
1

2(γ − 1)〈β〉
− 1

2
{{v2}}

]
f∗ρ + {{v}}f∗m

It is easy to check that these are consistent fluxes (Exercise).

For some more numerical fluxes, see [10], [11].
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Kinetic energy consistency

Kinetic energy per unit volume

K =
1

2
ρv2

satisfies the following equation

d

dt

∫
Ω

Kdx =

∫
Ω

p
∂v

∂x
dx− 4

3

∫
Ω

µ

(
∂v

∂x

)2

dx ≤
∫

Ω

p
∂v

∂x
dx (4)

Work done by pressure forces, absent in incompressible flows
Irreversible destruction due to molecular diffusion

Note: Convection contributes to only flux of KE across ∂Ω. It does not change
the total amount of KE inside the domain (except for boundary fluxes).

The correct KE budget is important for simulation of turbulence since the KE
cascade from large scales to small scales is a very important characteristic of
turbulent flows.
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KE preserving FVM

∂K

∂t
= −1

2
v2 ∂ρ

∂t
+ v

∂(ρv)

∂t

= − ∂

∂x
(p+ ρv2/2− 4

3
µ
∂v

∂x
)v + p

∂v

∂x
− 4

3
µ

(
∂v

∂x

)2

Centered numerical flux

fj+ 1
2

=

 fρfm
fe


j+ 1

2

=

 fρ

p̃+ {{v}}fρ
fe


j+ 1

2

, gj+ 1
2

=

 0
τ

ṽτ − q


j+ 1

2

where

{{v}}j+ 1
2

=
1

2
(vj + vj+1), τj+ 1

2
=

4

3
µ
vj+1 − vj

∆x
, qj+ 1

2
= −κTj+1 − Tj

∆x
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KE preserving FVM

Discrete KE equation

∑
j

∆x
dKj

dt
=
∑
j

[
∆vj+ 1

2

∆x
p̃j+ 1

2
− 4

3
µ

(
∆vj+ 1

2

∆x

)2
]

∆x

This is consistent with (4) and hence we refer to such a scheme as being KE
consistent.

Jameson’s KEP flux

fj+ 1
2

=

 {{ρ}} {{u}}
{{p}}+ {{v}}fρ
{{H}}fρ


j+ 1

2

, compare with fj+ 1
2

=
1

2
(fj + fj+1)

We are free to choose p̃ and the mass and energy fluxes in other ways. The
entropy conservative flux also satisfies the KE consistency, since the momentum
flux is of the correct form.
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Euler equation: Rusanov-type dissipation

The Rusanov flux is given by

fRusj+ 1
2

=
1

2
(fj + fj+1)− 1

2
λmJuKj+ 1

2

Derigs et al. [4] derive the exact relation

JuK = HJvK, H =

 〈ρ〉 〈ρ〉{{v}} Ẽ

〈ρ〉{{v}} 〈ρ〉{{v}}2 + p̃ (Ẽ + p̃){{v}}
Ẽ (Ẽ + p̃){{v}} 1

〈ρ〉

[
p̂2

γ−1 + Ẽ2
]

+ p̃{{v}}2


p̃ =

{{ρ}}
2{{β}}

, p̂ =
〈ρ〉

2〈β〉
, Ẽ =

p̂

γ − 1
+

1

2
〈ρ〉{{v2}}

The matrix H is obviously symmetric and can also be shown to be positive
definite. Then the entropy consistent flux can be taken as

fj+ 1
2

= f∗j+ 1
2
− 1

2
λmHj+ 1

2
JvKj+ 1

2
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Euler equation: Roe-type dissipation

The Jacobian matrix is

u′(v) =

 ρ ρv E
ρv p+ ρv2 ρHv

E ρHv γpE
(γ−1)ρ + 1

4ρv
4

 , H = h+
1

2
v2 = (ρe+ p)/ρ

The eigenvectors are usually written as

R =

 1 1 1
v − a v v + a
H − va 1

2v
2 H + va

 , a2 =
γp

ρ

But this does not satisfy the condition RR> = u′(v). Define the diagonal matrix

S = diag

[
ρ

2γ
,

(γ − 1)ρ

γ
,
ρ

2γ

]
and the scaled eigenvector matrix

R̃ = RS
1
2
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Euler equation: Roe-type dissipation

Then we can check that R̃R̃> = u′(v), so that the dissipation in Roe flux can be
written as

JuK ≈ R̃R̃>JvK, −1

2
R̃|Λ|R̃−1JuK ≈ −1

2
R̃|Λ|R̃−1R̃R̃>JvK = −1

2
R̃|Λ|R̃>JvK

and hence the entropy consistent flux can be taken as

fj+ 1
2

= f∗j+ 1
2
− 1

2
R̃j+ 1

2
|Λj+ 1

2
|R̃>j+ 1

2
JvKj+ 1

2

The dissipation matrix

Dj+ 1
2

= R̃j+ 1
2
|Λj+ 1

2
|R̃>j+ 1

2

is symmetric and positive definite.
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Entropy stable DG scheme

Divide the domain into disjoint cells Ij = (xj− 1
2
, xj+ 1

2
) and inside each cell, we

approximate the solution by a polynomial

vh(x) = polynomial of degree k for x ∈ Ij

and vh(x) may be discontinuous at the cell faces xj+ 1
2

. Note that we expand the
entropy variable in terms of polynomials. The semi-discrete DG scheme is∫
Ij

φh·∂tu(vh)dx−
∫
Ij

f(u(vh))·∂xφhdx+fj+ 1
2
·φh(x−

j+ 1
2

)−fj− 1
2
·φh(x+

j− 1
2

) = 0

where the test functions φh are also piecewise polynomials of degree k. The
numerical flux is given by

fj+ 1
2

= f∗j+ 1
2
− 1

2
Dj+ 1

2
JvhKj+ 1

2
, JvhKj+ 1

2
= vh(x+

j+ 1
2

)− vh(x−
j+ 1

2

)

Let us take φh = vh in the DG scheme.∫
Ij

vh ·∂tu(vh)dx−
∫
Ij

f(u(vh))·∂xvhdx+fj+ 1
2
·vh(x−

j+ 1
2

)−fj− 1
2
·vh(x+

j− 1
2

) = 0
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Entropy stable DG scheme

Since vh = U ′(u(vh))∫
Ij

vh · ∂tu(vh)dx =

∫
Ij

∂tU(u(vh))dx

The integrand in the second term can be written as

f · ∂xv = ∂x(f · v)− v · ∂xf
= ∂x(f · v)− U ′(u)f ′(u)∂xu

= ∂x(f · v)− F ′(u)∂xu

= ∂x(f · v)− ∂xF
= ∂x(f · v − F )

= ∂xψ

Hence the second term becomes

−
∫
Ij

f(u(vh)) · ∂xvhdx = ψ(vh(x+
j− 1

2

))− ψ(vh(x−
j+ 1

2

))

82 / 111



Entropy stable DG scheme

The boundary flux terms can be written as

fj+ 1
2
· vh(x−

j+ 1
2

) = {{vh}}j+ 1
2
· fj+ 1

2
− 1

2
JvhKj+ 1

2
· fj+ 1

2

where

{{vh}}j+ 1
2

=
1

2
[vh(x−

j+ 1
2

) + vh(x+
j+ 1

2

)]

Using the definition of the numerical flux

fj+ 1
2
· vh(x−

j+ 1
2

) = {{vh}}j+ 1
2
· fj+ 1

2
− 1

2
JvhKj+ 1

2
· f∗j+ 1

2

+
1

4
JvhK>j+ 1

2
Dj+ 1

2
JvhKj+ 1

2

= {{vh}}j+ 1
2
· fj+ 1

2
− 1

2
ψ(vh(x+

j+ 1
2

)) +
1

2
ψ(vh(x−

j+ 1
2

))

+
1

4
JvhK>j+ 1

2
Dj+ 1

2
JvhKj+ 1

2
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Entropy stable DG scheme

Similarly

fj− 1
2
· vh(x−

j− 1
2

) = {{vh}}j− 1
2
· fj− 1

2
+

1

2
JvhKj− 1

2
· fj− 1

2

= {{vh}}j− 1
2
· fj− 1

2
+

1

2
ψ(vh(x+

j− 1
2

))− 1

2
ψ(vh(x−

j− 1
2

))

−1

4
JvhK>j− 1

2
Dj− 1

2
JvhKj− 1

2

Adding all terms we get∫
Ij

∂tU(vh)dx+

[
{{vh}}j+ 1

2
· fj+ 1

2
− 1

2
ψ(vh(x+

j+ 1
2

))− 1

2
ψ(vh(x−

j+ 1
2

))

]
−
[
{{vh}}j− 1

2
· fj− 1

2
− 1

2
ψ(vh(x+

j− 1
2

))− 1

2
ψ(vh(x−

j− 1
2

))

]
=− 1

4
JvhK>j− 1

2
Dj− 1

2
JvhKj− 1

2
− 1

4
JvhK>j+ 1

2
Dj+ 1

2
JvhKj+ 1

2

≤ 0
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Entropy stable DG scheme

Defining the numerical entropy flux

Fj+ 1
2

= {{vh}}j+ 1
2
· fj+ 1

2
− {{ψ(vh)}}j+ 1

2

we get the cell entropy inequality

d

dt

∫
Ij

U(vh)dx+ Fj+ 1
2
− Fj− 1

2
≤ 0

Remark: We have shown entropy stability of DG scheme of arbitrary order of
accuracy.

Remark: We use integration by parts to prove the entropy stability. In practice we
use quadrature to approximate the integrals but due to non-linearity, the
quadratures are not exact. This inexact integration spoils the entropy stabililty
property, which can lead to inaccurate solutions on coarse meshes.
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DG scheme with SBP property

The goal is to construct a DG scheme which satisfies the entropy condition even if
the numerical integration is not exact. The two main ingredients are

1 summation by parts or SBP property

2 the use of entropy conservative/consistent fluxes

For more details see [12], [13], [14], [15].

The DG scheme is based on nodal Lagrange basis functions. So we map each cell
Ii to the reference cell I = [−1,+1]. We choose k + 1 Gauss-Lobatto-Legendre
(GLL) quadrature nodes

−1 = ξ0 < ξ1 < . . . < ξk = 1

Define the Lagrange basis polynomials each of degree k

Lj(ξ) =

k∏
l=0,l 6=j

ξ − ξl
ξj − ξl

, Lj(ξl) = δjl
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DG scheme with SBP property

Define the continuous and discrete inner products

(u, v) :=

∫
I

uvdξ, (u, v)h :=

k∑
j=0

ωju(ξj)v(ξj)

Recall that this GLL quadrature is exact for polynomials of degree upto 2k − 1.

We want to approximate the first derivative of a grid function at the GLL nodes.
The interpolation is given by

uh(ξ) =

k∑
l=0

Ll(ξ)ul

We differentiate the interpolant and evaluate at GLL nodes

u′h(ξj) =
k∑
l=0

L′l(ξj)ul =
k∑
l=0

Djlul, 0 ≤ j ≤ k
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DG scheme with SBP property

where we defined the differentiation matrix

Djl = L′l(ξj), 0 ≤ j, l ≤ k

Define the mass and stiffness matrices

Mjl = (Lj , Ll)h 6= (Lj , Ll) , Sjl = (Lj , L
′
l)h = (Lj , L

′
l)

The mass matrix is approximate and diagonal,

Mjl =

k∑
r=0

ωrLj(ξr)Ll(ξr) =

k∑
r=0

ωrδjrδlr = ωjδjl

M = diag{ω0, ω1, . . . , ωk}

also known as lumped mass matrix, while the stiffness matrix is exact.
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Theorem (SBP property)

Define
B = diag{−1, 0, . . . ,+1}

Then
S = MD, MD +D>M = S + S> = B

which is a discrete analogue of integration by parts.

Proof: By definition

Sjl = (Lj , L
′
l)h

=

k∑
r=0

ωrLj(ξr)L
′
l(ξr) =

k∑
r=0

ωrδjrL
′
l(ξr)

= ωjL
′
l(ξj) = MjjDjl

=

k∑
r=0

MjrDrl =⇒ S = MD
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Next

Sjl + Slj = (Lj , L
′
l) +

(
Ll, L

′
j

)
=

∫ 1

−1

(LjL
′
l + LlL

′
j)dξ

=

∫ 1

−1

d

dξ
(LjLl)dξ

= Lj(1)Ll(1)− Lj(−1)Ll(−1)

= Lj(ξk)Ll(ξk)− Lj(ξ0)Ll(ξ0)

= δjkδlk − δj0δl0
= Bjl

and hence S + S> = B is proved.
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Theorem
For each j = 0, 1, . . . , k, we have

k∑
l=0

Djl =

k∑
l=0

Sjl = 0,

k∑
l=0

Slj = τj =


−1 j = 0

0 1 ≤ j ≤ k − 1

+1 j = k

Note: B = diag(τ0, τ1, . . . , τk)

Proof: (1) The Lagrange polynomials form a partition of unity

k∑
l=0

Ll(ξ) = 1 ∀ξ

Hence
k∑
l=0

Djl =

k∑
l=0

L′l(ξj) = 0
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(2) Next, using previous Theorem and result from (1)

k∑
l=0

Sjl = ωj

k∑
l=0

Djl = 0

(3) Finally, using S> = B − S

k∑
l=0

Slj =

k∑
l=0

Bjl −
k∑
l=0

Sjl =

k∑
l=0

Bjl = Bjj = τj
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Semi-discrete DG scheme: Scalar case

Find uh =
∑k
l=0 u

i
lLl(ξ) such that for all test functions φh of degree k∫

Ii

∂uh
∂t

φhdx−
∫
Ii

f(uh)
∂φh
∂x

dx+ fi+ 1
2
φh(x−

i+ 1
2

)− fi− 1
2
φh(x+

i− 1
2

) = 0

The boundary flux is given by some numerical flux formula

fi+ 1
2

= f(uh(x−
i+ 1

2

), uh(x+
i+ 1

2

)) = f(uik, u
i+1
0 )

and couples the solution in the two cells i and i+ 1.

We map to reference cell I = [−1,+1]

x = xi(ξ) =
1

2
(xi− 1

2
+ xi+ 1

2
) +

1

2
ξ∆xi

The DG scheme becomes

∆xi
2

∫
I

∂uh
∂t

φhdξ −
∫
I

f(uh)
∂φh
∂ξ

dξ + fi+ 1
2
φh(1)− fi− 1

2
φh(−1) = 0
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Semi-discrete DG scheme: Scalar case
We will approximate the integrals by GLL quadrature, and also approximate the
flux

f(uh) ≈ fh(ξ) :=

k∑
j=0

f(uij)Lj(ξ) =

k∑
j=0

f ijLj(ξ)

Taking the test functions φh = Lj

∆xi
2

d

dt
(uh, Lj)h −

(
fh, L

′
j

)
h

+ fi+ 1
2
Lj(1)− fi− 1

2
Lj(−1) = 0

∆xi
2

k∑
l=0

duil
dt

(Lj , Ll)h −
k∑
l=0

f il
(
Ll, L

′
j

)
h

+ fi+ 1
2
δjk − fi− 1

2
δj0 = 0

Define

ui =


ui0
ui1
...

uik−1

uik

 , f i =


f i0
f i1
...

f ik−1

f ik

 , f̂ i =


fi− 1

2

0
...
0

fi+ 1
2


94 / 111



Semi-discrete DG scheme: Scalar case

Then we can write the DG scheme as

∆xi
2
M

dui

dt
− S>f i = −Bf̂ i

Using S> = B − S, we rewrite this as

∆xi
2
M

dui

dt
+ Sf i = B(f i − f̂ i)

or using S = MD
∆xi

2

dui

dt
+Df i = M−1B(f i − f̂ i)

Note that
2

∆xi
(Df i)j =

∂f

∂x
(xj) +O(∆x)k

The last equation shows that we have a collocation method, i.e., we are
collocating the PDE at the GLL nodes, together with a penalty term for the end
nodes.
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Semi-discrete DG scheme: System case

We skip the detailed derivation in system case and directly give the equations.
Consider a system of p equations and define the matrices and vectors

M = M ⊗ Ip, D = D ⊗ Ip, S = S ⊗ Ip, B = B ⊗ Ip

ui =


ui0
ui1
...
uik

 , f i =


f i0
f i1
...
f ik

 , f̂ i =


fi− 1

2

0
...
0

fi+ 1
2


Then the semi-discrete scheme can be written as

∆xi
2
M

dui

dt
− S>f i = −Bf̂ i

∆xi
2

dui

dt
+Df i = M−1B(f i − f̂ i)
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Entropy conservative scheme

We consider a single element, so we will omit the superscript i. The collocation
scheme can be written as

∆xi
2

duj
dt

+

k∑
l=0

Djlf(ul) =
τj
ωj

(fj − f̂j)

We modify this scheme by introducing a symmetric flux f∗ in the interior and
boundary terms

∆xi
2

duj
dt

+ 2

k∑
l=0

Djlf
∗(uj ,ul) =

τj
ωj

(fj − f̂∗j ) (5)

E.g., if f∗(uj ,ul) = 1
2 (f(uj) + f(ul)), we get

2

k∑
l=0

Djlf
∗(uj ,ul) =

k∑
l=0

Djlf(uj) +

k∑
l=0

Djlf(ul) =

k∑
l=0

Djlf(ul)
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Theorem (Entropy conservative scheme)

If f∗ is consistent and symmetric, then (5) is conservative and high order
accurate. If f∗ is entropy conservative, then (5) is also entropy conservative.

Proof: (1) Conservation property: The mean value changes as

d

dt

k∑
j=0

∆x

2
ωjuj =

k∑
j=0

τj(fj − f̂∗j )− 2

k∑
j=0

k∑
l=0

Sjlf
∗(uj ,ul)

=

k∑
j=0

τj(fj − f̂∗j )−
k∑
j=0

k∑
l=0

(Sjl + Slj)f
∗(uj ,ul)

=

k∑
j=0

τj(fj − f̂∗j )−
k∑
j=0

k∑
l=0

Bjlf
∗(uj ,ul)

=

k∑
j=0

τj(fj − f̂∗j )−
k∑
j=0

τjf(uj)

= −(f∗i+ 1
2
− f∗i− 1

2
)

The mean value in the cell changes only due to boundary fluxes.
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(2) Accuracy property: Define

f∗(x, y) = f∗(u(x),u(y)), f(x) = f(u(x))

Then f∗(x, y) is also symmetric and consistent

f∗(x, y) = f∗(y, x), f∗(x, x) = f(x)

Hence
∂f

∂x
(x) =

∂f∗

∂x
(x, x) +

∂f∗

∂y
(x, x) = 2

∂f∗

∂y
(x, x)

The difference matrix D is exact for polynomials of degree upto k

4

∆x

k∑
l=0

Djlf
∗(x(ξj), x(ξl)) = 2

∂f

∂y
(x(ξj), x(ξj))+O(∆xk) =

∂f

∂x
(x(ξj))+O(∆xk)

Hence the scheme has high order of accuracy.
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(3) Entropy conservation: We compute the rate of change of total entropy in cell

d

dt

k∑
j=0

∆x

2
ωjUj =

k∑
j=0

∆x

2
ωjv

>
j

duj
dt

=

k∑
j=0

τjv
>
j (fj − f̂∗j )− 2

k∑
j=0

k∑
l=0

Sjlv
>
j f
∗(uj ,ul)

The second term can be written as

k∑
j=0

k∑
l=0

(Bjl + Sjl − Slj)v>j f∗(uj ,ul)

=

k∑
j=0

τjv
>
j fj +

k∑
j=0

k∑
l=0

Sjl(vj − vl)>f∗(uj ,ul)

=

k∑
j=0

τjv
>
j fj +

k∑
j=0

k∑
l=0

Sjl(ψj − ψl)

=

k∑
j=0

τj(v
>
j fj − ψj)
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Then

d

dt

k∑
j=0

∆x

2
ωjUj =

k∑
j=0

τj(ψj − v>j f̂∗j ) = (ψk − v>k f∗i+ 1
2
)− (ψ0 − v>0 f∗i− 1

2
)

All quantities on right are from element i, so the rhs is

(ψik − (vik)>f∗i+ 1
2
)− (ψi0 − (vi0)>f∗i− 1

2
)

We can rewrite

ψik =
1

2
ψik +

1

2
ψik +

1

2
ψi+1

0 − 1

2
ψi+1

0 = {{ψ}}i+ 1
2
− 1

2
JψKi+ 1

2

vik = {{v}}i+ 1
2
− 1

2
JvKi+ 1

2

Hence

ψik − (vik)>f∗i+ 1
2

= {{ψ}}i+ 1
2
− 1

2
JψKi+ 1

2
− {{v}}>i+ 1

2
f∗i+ 1

2
+

1

2
JvK>i+ 1

2
f∗i+ 1

2

= {{ψ}}i+ 1
2
− {{v}}>i+ 1

2
f∗i+ 1

2
=: −F ∗i+ 1

2
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so that we have entropy equation

d

dt

k∑
j=0

∆x

2
ωjUj + (F ∗i+ 1

2
− F ∗i− 1

2
) = 0
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Entropy consistent scheme

Now we take a numerical flux that satisfies

JvKi+ 1
2
· fi+ 1

2
≤ JψKi+ 1

2

An example of such a flux is

fi+ 1
2

= f∗i+ 1
2
− 1

2
Di+ 1

2
JvKi+ 1

2
, Di+ 1

2
= D>i+ 1

2
≥ 0

From the previous theorem, we have seen we get only some boundary terms which
can be can written as

ψik − (vik)>fi+ 1
2

= {{ψ}}i+ 1
2
− {{v}}>i+ 1

2
fi+ 1

2︸ ︷︷ ︸
−F

i+ 1
2

−1

4
JvK>i+ 1

2
Di+ 1

2
JvKi+ 1

2

so that we get the entropy inequality

d

dt

k∑
j=0

∆x

2
ωjUj + (Fi+ 1

2
− Fi− 1

2
) = −

1

4
JvK>

i− 1
2

Di− 1
2
JvKi− 1

2
−

1

4
JvK>

i+ 1
2

Di+ 1
2
JvKi+ 1

2

≤ 0
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Summary

Entropy stability concept allows to construct non-linearly stable schemes.

Semi-discrete entropy stable finite volume and DG schemes of arbitrary high order
of accuracy can be constructed.

The entropy conservative schemes are non-dissipative, and hence useful for
compressible flow LES and DNS.

Kinetic energy consistent schemes [16] have been shown to be useful for low Mach
LES [17].

Entropy stable schemes have also been constructed for MHD, see [18], [19], [15]

For recent review, see Chapters 18 and 19 in [20]
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