
Numerical shape optimization for compressible flows

Praveen. C
praveen@math.tifrbng.res.in

Tata Institute of Fundamental Research
Center for Applicable Mathematics

Bangalore 560065
http://math.tifrbng.res.in

ICMPDE
TIFR-CAM, Bangalore

13–17 August, 2010

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 1 / 63

Shape optimization framework

• Shape is parameterized in terms of x ∈ D ⊂ Rd

• PDE-constrained minimization

min
x∈D

J(x, u) s.t. R(x, u) = 0

• Solving R = 0 is computationally expensive
• d can be large - Curse of dimensionality

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 2 / 63

Navier-Stokes Equations I

• In d-dimensions
∂U

∂t
+

d∑
i=1

∂Fi
∂xi

=
d∑
i=1

∂Gi
∂xi

• Conserved quantities and fluxes

U =


ρ
ρu1

ρu2

ρu3

E

, Fi =


ρui

pδi1 + ρu1ui
pδi2 + ρu2ui
pδi3 + ρu3ui
(E + p)ui

, Gi =


0
τi1
τi2
τi3

τijuj − qi


ρ = Density
(u1, u2, u3) = Velocity
p = Pressure
E = Energy per unit volume
τij = Viscous stress tensor
qi = Heat flux

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 3 / 63

Navier-Stokes Equations II

• Ideal gas equation of state

p = (γ − 1)
[
E − 1

2
ρ|u|2

]
• Constitutive law

τij = (µ+ µt)
[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
(∇ · u)δij

]
qi = −

(
µ

Pr
+

µt
Prt

)
∂T

∂xi

• Additional equations, Turbulence models, to determine µt

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 4 / 63

Quantities of interest

• Forces on a solid body

Fi =
∫
S

(−pni + τijnj)dS

• Lift and drag
L = F · V ⊥∞ D = F · V∞

• Optimization problem

minD s.t. L = W, etc.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 5 / 63

Finite volume method

∂U

∂t
+∇ ·H(U) = 0

• Divide Ω into non-overlapping, polygonal, finite volumes Ωi

Ω = ∪iΩi

• Conservation principle on each finite volume

d
dt

∫
Ωi

Udx+
∫
∂Ωi

H · nds = 0

• Semi-discrete scheme

|Ωi|
dUi
dt

+
∑
j∈N(i)

H(Ui, Uj , nij) = 0

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 6 / 63

Classical approach

• PDE-constrained problem

min
x
J(u, x) s.t. R(u, x) = 0

or
L(x, u, v) = J(x, u) + (v,R(u, x))

• Need to develop complex adjoint solvers
• PDE models not well motivated, e.g., turbulence models

min
x
Jh(uh, x) s.t. Rh(uh, x) = 0

• Discrete approach: Automatic Differentiation
• Noisy objective functions
• Only local optimum

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 7 / 63

Discrete adjoint in presence of shocks

points. One can observe that the error is larger at the cor-
ners than using meta-models. However, this is not critical
for statistics estimation, since the PDFs of uncertain param-
eters become smaller and smaller as one moves away from
nominal operational conditions.
Comparison of computational performance

Since the two proposed methods are essentially different,
it is interesting to compare also their computational perfor-
mance, in terms of CPU time and memory requirements. The
following table details the memory used by the AD-based ap-
proach:

Memory in Mb
Flow solver 130
First derivatives 250
Second derivatives 120
GMRES linear solver 250
Preconditionners 340

Total 1090

As seen, the computation of the flow solution with the first
and second derivatives requires about 10 times more mem-
ory than the flow solution alone. However, this result can
be improved using dynamic memory allocation or advanced
programming tricks.
The computational time required is given in the next table:

CPU time in second
Flow solver 403
Gradient 255
Hessian 278
Total 936

These results are obtained with an Intel Xeon 2.66 GHz. The
AD-based approach is particularly efficient in this case, since
the CPU time only increases about twice to obtain the gradi-
ent and Hessian required to compute the statistics.
Concerning the method based on meta-models, the costs
are mainly related to the construction of the database. If it
is built sequentially, the memory required is the same as the
one used by the flow solver alone, whereas the CPU time
increases linearly. If it is built using parallel computing, with
a number of processors equal to the database size, the CPU
time remains more or less similar to a single flow solver run.
For instance, we obtain for a database with 8 points:

CPU time in second
Sequential database 3250
Parallel database 440

In conclusion, the method based on meta-models is more ex-
pensive in terms of CPU time, except if one has the capability
to build it using parallel computing.
CURRENT CHALLENGES

The results presented above are promising, but one should
underline that the problem considered here remains quite
simple. Indeed, only two uncertain parameters are under con-
sideration. If this number increases, the CPU time and mem-
ory requirements will increase more than linearly, whatever
the method considered. Therefore, the current challenge is
to be able to manage a large number of uncertain param-
eters. To succeed, AD tools should clearly improve their
memorymanagement, whereas meta-models should improve

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

d
ra

g
 c

o
e

ff
ic

ie
n

t

Mach-0.83

Figure 6: Drag with respect to Mach number in transonic
regime.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

d
 c

d
/d

 M
a

c
h

Mach-0.83

Automatic Differentiation
Divided Differences

Figure 7: Drag derivatives with respect to Mach number in
transonic regime.

their accuracywhen using small databases in large dimension
spaces.
AD is also faced to another difficulty, arising from non-
differentiable programs. For instance, if one considers the
previous problem in transonic regime, one observes a noisy
gradient computation, although the drag seems to be smooth
(see figure (6) and (7)). This result is due to the presence of
limiters in the fluxes computation, that are not differentiable
at some points. This difficulty can be overcome bymodifying
the limiters, but it can be a tedious task.
CONCLUSION

In this paper, we have presented and compared two meth-
ods to estimate drag uncertainty for practical testcases: auto-
matic differentiation has been applied to a 3D Eulerian flow
solver to compute first and second derivatives of the drag
with respect to uncertain parameters, in the framework of the
method of moments. Metamodels have been used in con-
junction with Monte-Carlo simulations to estimate statistics.
Satisfactory results in terms of accuracy have been ob-
tained for a rather simple testcase. However, these method-
ologies still need to mature in order to be able to manage a
large number of uncertain parameters.
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the scientific commi-
tee of IDRIS (project 72906) and CINES (project sop2703)
for the attribution of CPU time.
This study has been partially supported by the RNTL-
ANR “OMD” project.

points. One can observe that the error is larger at the cor-
ners than using meta-models. However, this is not critical
for statistics estimation, since the PDFs of uncertain param-
eters become smaller and smaller as one moves away from
nominal operational conditions.
Comparison of computational performance

Since the two proposed methods are essentially different,
it is interesting to compare also their computational perfor-
mance, in terms of CPU time and memory requirements. The
following table details the memory used by the AD-based ap-
proach:

Memory in Mb
Flow solver 130
First derivatives 250
Second derivatives 120
GMRES linear solver 250
Preconditionners 340

Total 1090

As seen, the computation of the flow solution with the first
and second derivatives requires about 10 times more mem-
ory than the flow solution alone. However, this result can
be improved using dynamic memory allocation or advanced
programming tricks.
The computational time required is given in the next table:

CPU time in second
Flow solver 403
Gradient 255
Hessian 278
Total 936

These results are obtained with an Intel Xeon 2.66 GHz. The
AD-based approach is particularly efficient in this case, since
the CPU time only increases about twice to obtain the gradi-
ent and Hessian required to compute the statistics.
Concerning the method based on meta-models, the costs
are mainly related to the construction of the database. If it
is built sequentially, the memory required is the same as the
one used by the flow solver alone, whereas the CPU time
increases linearly. If it is built using parallel computing, with
a number of processors equal to the database size, the CPU
time remains more or less similar to a single flow solver run.
For instance, we obtain for a database with 8 points:

CPU time in second
Sequential database 3250
Parallel database 440

In conclusion, the method based on meta-models is more ex-
pensive in terms of CPU time, except if one has the capability
to build it using parallel computing.
CURRENT CHALLENGES

The results presented above are promising, but one should
underline that the problem considered here remains quite
simple. Indeed, only two uncertain parameters are under con-
sideration. If this number increases, the CPU time and mem-
ory requirements will increase more than linearly, whatever
the method considered. Therefore, the current challenge is
to be able to manage a large number of uncertain param-
eters. To succeed, AD tools should clearly improve their
memorymanagement, whereas meta-models should improve

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

d
ra

g
 c

o
e

ff
ic

ie
n

t

Mach-0.83

Figure 6: Drag with respect to Mach number in transonic
regime.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

d
 c

d
/d

 M
a

c
h

Mach-0.83

Automatic Differentiation
Divided Differences

Figure 7: Drag derivatives with respect to Mach number in
transonic regime.

their accuracywhen using small databases in large dimension
spaces.
AD is also faced to another difficulty, arising from non-
differentiable programs. For instance, if one considers the
previous problem in transonic regime, one observes a noisy
gradient computation, although the drag seems to be smooth
(see figure (6) and (7)). This result is due to the presence of
limiters in the fluxes computation, that are not differentiable
at some points. This difficulty can be overcome bymodifying
the limiters, but it can be a tedious task.
CONCLUSION

In this paper, we have presented and compared two meth-
ods to estimate drag uncertainty for practical testcases: auto-
matic differentiation has been applied to a 3D Eulerian flow
solver to compute first and second derivatives of the drag
with respect to uncertain parameters, in the framework of the
method of moments. Metamodels have been used in con-
junction with Monte-Carlo simulations to estimate statistics.
Satisfactory results in terms of accuracy have been ob-
tained for a rather simple testcase. However, these method-
ologies still need to mature in order to be able to manage a
large number of uncertain parameters.
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the scientific commi-
tee of IDRIS (project 72906) and CINES (project sop2703)
for the attribution of CPU time.
This study has been partially supported by the RNTL-
ANR “OMD” project.

(Martinelli et al.)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 8 / 63

Discrete adjoint in presence of shocks

Mach

C
-l
if
t

0.7 0.75 0.8 0.85

0.02

0.025

0.03

0.035

0.04

0.045

Naca 256x64

Naca 128x32

Naca 64x16

Mach

d
C
-l
if
t
/
d
M
a
c
h

0.7 0.75 0.8 0.85

-2

-1

0

1

2

3

Mach

C
-l
if
t

0.8 0.81 0.82 0.83 0.84 0.85

0.026

0.028

0.03

0.032

0.034

0.036

0.038

Mach

d
C
-l
if
t
/
d
M
a
c
h

0.8 0.81 0.82 0.83 0.84 0.85

-2

-1

0

1

2

3

Figure 1. Lift coefficient and derivatives against Mach number for a transonic NACA0012 aerofoil on three
grids. The bars in the top plots display the derivatives computed using the discrete adjoint.

6 of 23

American Institute of Aeronautics and Astronautics

(Dwight et al.)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 9 / 63

Discrete adjoint: Frozen turbulence

Alpha

C
-l
if
t

C
-d
ra
g

0 5 10

0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C-lift

C-drag

Grad - frozen turb

Alpha

C
-l
if
t

C
-d
ra
g

-4 -2 0 2 4 6 8 10

0

0.5

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14C-lift

C-drag

Grad - exact

Alpha

C
-l
if
t

1 2 3 4 5 6

0.4

0.6

0.8

1

Alpha

d
C
-d
ra
g
/
d
a
lp
h
a

-4 -2 0 2 4 6 8 10

-0.04

-0.02

0

0.02

0.04

Exact adjoint
Frozen turb.

Figure 2. Lift and drag against angle-of-attack for an RAE 2822 aerofoil. Line segments represent gradients
computed with a discrete adjoint code, with a full linearization of the turbulence model (black), and a frozen-
turbulence approximation (red).

7 of 23

American Institute of Aeronautics and Astronautics

(Dwight et al.)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 10 / 63

Derivative-free methods

• Using function values only
• Global, stochastic search

I Genetic algorithm
I Particle swarm method

min
x∈D

J(x), D ⊂ Rd

• Collection of Np solutions at any iteration n

Pn = {xn1 , xn2 , . . . , xnNp
} ⊂ D

• Solutions evolve according to some rules

Pn+1 = E(Pn)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 11 / 63

Particle swarm optimization

• Kennedy and Eberhart (1995)
• Modeled on behaviour of animal swarms: ants, bees, birds
• Cooperative behaviour of large number of individuals through

simple rules
• Emergence of swarm intelligence

Optimization problem

min
x∈D

J(x), D ⊂ R2

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 12 / 63

Particle swarm optimization

• Kennedy and Eberhart (1995)
• Modeled on behaviour of animal swarms: ants, bees, birds
• Cooperative behaviour of large number of individuals through

simple rules
• Emergence of swarm intelligence

Optimization problem

min
x∈D

J(x), D ⊂ R2

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 12 / 63

Particle swarm optimization

Particles distributed in design space

xi ∈ D, i = 1, ..., Np

X
2

X1

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 13 / 63

Particle swarm optimization

Each particle has a velocity

vi ∈ Rd, i = 1, ..., Np

X
2

X1

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 14 / 63

Particle swarm optimization

• Particles have memory (t = iteration number)

Local memory : pti = argmin
0≤s≤t

J(xsi)

Global memory : pt = argmin
i

J(pti)

• Velocity update

vt+1
i = ωvti + c1r

t
1 ⊗ (pti − xti)︸ ︷︷ ︸

Local

+ c2r
t
2 ⊗ (pt − xti)︸ ︷︷ ︸
Global

• Position update
xt+1
i = xti + vt+1

i

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 15 / 63

Surrogate Models

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 16 / 63

Metamodels

• Replace
min
x∈D

J(x, u) s.t. R(x, u) = 0

with
min
x∈D

J̃(x)

• Model error estimate/indicator σ(x)

min
x∈D

Jρ(x) := J̃(x)− ρσ(x), ρ ≥ 0

• Local and global search

x0 = argmin
x∈D

J0(x) x3 = argmin
x∈D

J3(x)

J(x0), J(x3) =⇒ Update J̃

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 17 / 63

Kriging I

Unknown function f : D ⊂ Rd → R

Given the data as FN = {f1, f2, . . . , fN} ⊂ R sampled at
XN = {x1, x2, . . . , xN} ⊂ D, infer the function value at a new point
xN+1 ∈ D.

Treat result of a computer simulation as a fictional gaussian process

FN is assumed to be one sample of a multivariate Gaussian process
with joint probability density

p(FN) =
exp

(
−1

2F
>
NC

−1
N FN

)√
(2π)N det(CN)

(1)

where CN is the N ×N covariance matrix.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 18 / 63

Kriging II

When adding a new point xN+1, the resulting vector of function values
FN+1 is assumed to be a realization of the (N + 1)-variable Gaussian
process with joint probability density

p(FN+1) =
exp

(
−1

2F
>
N+1C

−1
N+1FN+1

)√
(2π)N+1 det(CN+1)

(2)

Using Baye’s rule we can write the probability density for the unknown
function value fN+1, given the data (XN , FN) as

p(fN+1|FN) =
p(FN+1)
p(FN)

=
1
Z

exp

[
−(fN+1 − f̂N+1)2

2σ2
fN+1

]

where
f̂N+1 = k>C−1

N FN︸ ︷︷ ︸
Inference

, σ2
fN+1

= κ− k>C−1
N k︸ ︷︷ ︸

Error indicator

(3)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 19 / 63

Kriging III

Covariance matrix: Given in terms of a correlation function,
CN = [Cmn],

Cmn = corr(fm, fn) = c(xm, xn)

c(x, y) = θ1 exp

[
−1

2

d∑
i=1

(xi − yi)2

ri2

]
+ θ2

Parameters Θ = (θ1, θ2, r1, r2, . . . , rd) determined to maximize the
likelihood of known data

max
Θ

log(p(FN))

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 20 / 63

Kriging: Illustration

470 D.R. JONES, M. SCHONLAU ANDW.J. WELCH

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 8. The solid line represents an objective function that has been sampled at the five

points shown as dots. The dotted line is a DACE predictor fit to these points.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1 1.51.5 2 2.52.5 3 3.53.5 4 4.5

DACE
predictor

standard error
of the predictor

Figure 9. The DACE predictor and its standard error for a simple five-point data set.

surface, update the surface, and iterate, we are clearly only going to get a highly

accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that

this procedure does not acknowledge our uncertainty about that surface. It puts too

much emphasis on exploiting the predictor and no emphasis on exploring points

where we are uncertain. To eliminate this problem, we must put some emphasis

on sampling where we are uncertain, as measured by the standard error of the

predictor.

Figure 9 shows the standard error of the predictor. Because of the large number

of sampled points around x = 2, our uncertainty, and hence the standard error of

the predictor, is very low in that region. In fact, the standard error in this region is

so low that, in order for the reader to see it, we have had to magnify it in an inset.

Notice that the standard error does indeed go to zero at all the sampled points, as

it should. In rises up in between, but sometimes only by a little. The standard error

is maximized around x = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent

to putting all our emphasis on global search, and this is just as bad (if not worse)

than putting all our emphasis on local search. What we need is a figure of merit

that balances local and global search.

470 D.R. JONES, M. SCHONLAU ANDW.J. WELCH

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 8. The solid line represents an objective function that has been sampled at the five

points shown as dots. The dotted line is a DACE predictor fit to these points.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1 1.51.5 2 2.52.5 3 3.53.5 4 4.5

DACE
predictor

standard error
of the predictor

Figure 9. The DACE predictor and its standard error for a simple five-point data set.

surface, update the surface, and iterate, we are clearly only going to get a highly

accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that

this procedure does not acknowledge our uncertainty about that surface. It puts too

much emphasis on exploiting the predictor and no emphasis on exploring points

where we are uncertain. To eliminate this problem, we must put some emphasis

on sampling where we are uncertain, as measured by the standard error of the

predictor.

Figure 9 shows the standard error of the predictor. Because of the large number

of sampled points around x = 2, our uncertainty, and hence the standard error of

the predictor, is very low in that region. In fact, the standard error in this region is

so low that, in order for the reader to see it, we have had to magnify it in an inset.

Notice that the standard error does indeed go to zero at all the sampled points, as

it should. In rises up in between, but sometimes only by a little. The standard error

is maximized around x = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent

to putting all our emphasis on global search, and this is just as bad (if not worse)

than putting all our emphasis on local search. What we need is a figure of merit

that balances local and global search.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 21 / 63

Minimization of 2-D Branin function: Initial database

−5 0 5 10
0

5

10

15

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 22 / 63

Minimization of 2-D Branin function: after 20 iter

−5 0 5 10
0

5

10

15

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 23 / 63

Transonic wing optimization
(with R. Duvigneau, INRIA, Sophia Antipolis)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 24 / 63

Transonic Wing shape optimization

M∞ = 0.83, α = 2o

(Piaggio Aero. Ind.)
Grid: 31124 nodes

Free form deformation

S0
D(x)−→ S(x)

Minimize drag under lift and volume constraint

min
Cd
Cd0

s.t.
Cl
Cl0
≥ 1,

V

V0
≥ 1

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 25 / 63

Wing optimization

Initial Optimized

Pressure distribution

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 26 / 63

Transonic wing optimization: 8 design variables

0 1000 2000 3000 4000 5000 6000 7000
Number of CFD

0.5

0.6

0.7

0.8

0.9

1

C
os

t f
un

ct
io

n
PSO
IPE-LB
GMO-LB

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 27 / 63

Transonic wing optimization: 16 design variables

0 1000 2000 3000 4000 5000 6000 7000
Number of CFD

0.5

0.6

0.7

0.8

0.9

1

C
os

t f
un

ct
io

n
PSO
IPE-LB
GMO-LB

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 28 / 63

Transonic wing optimization: 32 design variables

0 5000 10000
Number of CFD

0.4

0.5

0.6

0.7

0.8

0.9

1

C
os

t f
un

ct
io

n
PSO
IPE-EI
GMO-LB

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 29 / 63

Transonic, turbulent airfoil
optimization

(with R. Duvigneau, INRIA, Sophia Antipolis)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 30 / 63

TA5 test case

• Optimize RAE5243 airfoil to reduce drag under lift constraint

Mach Re Cl Flow condition
0.68 19 million 0.82 Fully turbulent

• Modify shape of upper airfoil surface by adding a bump

Xcr

Xbr

Xbl

∆Yh

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 31 / 63

Reference solution: Pressure

α = 2.5 deg.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 32 / 63

Optimization test

• 5 design variables
• Initial database of 48

using LHS
• 4 merit functions based

on statistical lower
bound with
κ = 0, 1, 2, 3

• Gaussian process
models

• Merit functions
minimized using PSO

48 52 56 60 64
68 72 76 80

84 88 92
96

10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

0 5 10 15 20 25 30
Number of iterations

0.78

0.8

0.82

0.84

0.86

O
bj

ec
tiv

e
fu

nc
tio

n

Annotation = Number of CFD evaluations

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 33 / 63

Shape parameters

Case Xcr Xbl Xbr ∆Yh × 10−3

Present 0.688 0.399 0.257 8.578
Qin et al. 0.597 0.313 0.206 5.900

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05
RAE5243
Optimized

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 34 / 63

Force and Pressure coefficient

Case Cd ∆Cd Cl AOA
Present 0.01266 -22.2% 0.8204 2.19

Qin et al. 0.01326 -18.2% 0.82 -

0 0.2 0.4 0.6 0.8
x/c

-1

-0.5

0

0.5

1

1.5

-C
p

RAE5243
Optimized

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 35 / 63

Pressure contours

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 36 / 63

Unsteady cylinder flow
(with R. Duvigneau, INRIA, Sophia Antipolis)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 37 / 63

• Flow past 2-D cylinder at Re = 200
• Periodic vortex shedding, oscillatory forces

Ref. St Cd

Bergmann et al. (2005) 0.195 1.382
Braza et al. (1986) 0.200 1.400
Henderson (1997) 0.197 1.341
Homescu et al. (2002) - 1.440
current study 0.198 1.370

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 38 / 63

Oscillating cylinder

Oscillating cylinder: Apply oscillating velocity boundary condition to
cylinder wall

ω(t) = A sin(2πNt)

ω

U

Find (A,N) to minimise
1

t1 − t0

∫ t1

t0

CD(t;A,N)dt

Non-dimensional variables and bounds:

A∗ =
AD

U∞
∈ [0, 5], N∗ =

ND

U∞
∈ [0, 1]

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 39 / 63

Optimization

Initial sample of 16 using LHS

0 2 4 6 8 10 12
optimization iterations

0.8

0.85

0.9

0.95

1

co
st

 fu
nc

tio
n

Good convergence in 3 iterations, 24 CFD solutions

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 40 / 63

Controlled case

Ref. Method A? N? ∆Cd
Bergmann et al.(2004) POD 2.2 0.53 25%
Bergmann et al.(2004) POD-ROM 4.25 0.74 30%
He et al.(2002) NS 2D 3.00 0.75 30%
current study NS 3D 3.20 0.80 25%

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 41 / 63

Optimization of flying wing
(with Biju Uthup, ADA, Bangalore)

!"

PART II

UCAV Configurations

#$%&'()*+', #$%&'()*+'-

#$%&'()*+'. #$%&'()*+'/

118

Confidential (Not for Circulation)

AURA-MDO-April/2009

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 42 / 63

Application to AURA

!"

PART II

UCAV Configurations

#$%&'()*+', #$%&'()*+'-

#$%&'()*+'. #$%&'()*+'/

118

Confidential (Not for Circulation)

AURA-MDO-April/2009

Optimization problem

Maximize Lift/Drag subject to volume constraint

• Inviscid, compressible flow model (Euler equations)

Configuration C1A1

M∞ = 0.75, AOA = 2 deg.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 43 / 63

Grid for C1A1

141× 20× 82

On the wing: 100× 72

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 44 / 63

FFD Box

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 45 / 63

Optimization test

• 4 design variables
• Gaussian process metamodel
• Statistical lower bound merit function (4)
• Initial database of 100 designs using LHD

Config L 100D L/D Improve
Initial 0.11529 0.47371 24.3 -

Optimized 0.08523 0.28928 29.4 21%

• 13 iterations, 150 CFD solutions in total
• Intel Xeon X5482 @ 3.2 GHz
• 6 process parallel job – about 7 hours

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 46 / 63

Initial wing

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 47 / 63

Optimized wing

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 48 / 63

RANS computations

Studies to improve L/D for AURA : Aerodynamic Team

Un-optimized
optimized

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 49 / 63

Optimized wings for turboprops
(with R. Narasimha, S. M. Deshpande and B. R. Rakshith

JNCASR, Bangalore)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 50 / 63

Subsonic aircraft

ATR (EADS) RTA70 (India)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 51 / 63

Potential flow model

• Thin, attached boundary
layers

• Velocity is irrotational

u = ∇φ

• Low speed flow

∆φ = 0
∂φ

∂n
= 0 on wing

φ = V∞(x cosα+ y sinα)
|∇φ| finite at TE

44 December 2005 Physics Today http://www.physicstoday.org

survived, though, mainly because of its use in subsequent
papers by Prandtl’s students.

Marching toward a solution
The overall perspective set forth by Prandtl in his 1905
paper was simple and straightforward. In brief, an aero-
dynamic flow over a body can be divided into two regions:
a thin boundary layer near the surface, where friction is
dominant, and an inviscid flow external to the boundary
layer, where friction is negligible. The outer inviscid flow
strongly affects the boundary-layer properties; indeed, the
outer flow creates the boundary conditions at the outer
edge of the boundary layer and dictates the velocity pro-
file within the layer. On the other hand, the boundary
layer is so thin that it has virtually no effect on the outer
inviscid flow. The exception to the no-effect rule is if the
flow separates; then the outer inviscid flow is greatly mod-
ified by the presence of the separation region. As Prandtl
noted in his 1905 paper:

While dealing with a flow, the latter divides
into two parts interacting on each other; on one
side we have the “free fluid,” which [is] dealt
with as if it were frictionless, according to the
Helmholtz vortex theorems, and on the other
side the transition layers near the solid walls.
The motion of these layers is regulated by the
free fluid, but they for their part give to the free
motion its characteristic feature by the emis-
sion of vortex sheets.

With the advent of Prandtl’s boundary-layer concept,
it became possible to quantitatively calculate aerodynamic
drag. Prandtl showed that for the boundary layer, the
Navier–Stokes equations can be reduced to a simpler form,
applicable only to the boundary layer. The results—called
the boundary-layer equations—are similar to

Navier–Stokes in that each system
consists of coupled, nonlinear partial
differential equations. The major
mathematical breakthrough, however,
is that the boundary-layer equations
exhibit a completely different mathe-
matical behavior than the Navier–
Stokes equations.

The Navier–Stokes equations
have what mathematicians call ellip-
tic behavior. That is to say, the com-
plete flow field must be solved simul-
taneously, in accord with specific
boundary conditions defined along
the entire boundary of the flow. In
contrast, the boundary-layer equa-
tions have parabolic behavior, which
affords tremendous analytical and
computational simplification. They
can be solved step-by-step by march-
ing downstream from where the flow
encounters a body, subject to specified
inflow conditions at the encounter and
specified boundary conditions at the
outer edge of the boundary layer. The
systematic calculation yields the flow
variables in the boundary layer, in-
cluding the velocity gradient at the
wall surface. The shear stress at the
wall, hence the skin-friction drag on
the surface, is obtained directly from
those velocity gradients.

Such step-by-step solutions for
boundary-layer flows began within a few years of Prandtl’s
1904 presentation, carried out mainly by his students at
the University of Göttingen. With those solutions, it be-
came possible to predict with some accuracy the skin-
friction drag on a body, the locations of flow separation on
the surface, and, given those locations, the form drag—the
pressure drag due to flow separation. In his 1905 paper,
short as it was, Prandtl gave the boundary-layer equations
for steady 2D flow, suggested some solution approaches for
those equations, made a rough calculation of friction drag
on a flat plate, and discussed aspects of boundary-layer
separation under the influence of an adverse pressure gra-
dient. Those were all pioneering contributions. Goldstein
was moved to state that “the paper will certainly prove to
be one of the most extraordinary papers of this century,
and probably of many centuries.”4

Extensions of Prandtl’s work
If Prandtl had presented his paper in our electronic age of
almost instant information dissemination, his boundary-
layer concept would quickly have spread throughout the
aerodynamics community. But at the turn of the century,
information flowed much more slowly. Also, the Third In-
ternational Mathematics Congress was an obscure setting
for such an important contribution, and Prandtl’s idea
went virtually unnoticed by anybody outside of Göttingen
for several years. It surfaced again in 1908 when Prandtl’s
student, Heinrich Blasius, published in the respected jour-
nal Zeitschrift für Mathematik und Physik, his paper
“Boundary Layers in Fluids with Little Friction,” which
discussed 2D boundary-layer flows over a flat plate and a
circular cylinder.5

Blasius solved the boundary-layer equations in both
cases. For the flat plate, he obtained an even more accu-
rate solution for skin-friction drag than appeared in
Prandtl’s original paper. For the circular cylinder, his so-

Figure 2. A fluid flow may be viewed as comprising two parts. In a thin
boundary layer (blue) adjacent to the surface, the effects of friction are
dominant. Outside the boundary layer, the flow is inviscid. The blowup of
the boundary layer shows how the flow velocity v changes, as a function of
the normal distance n, from zero at the surface to the full inviscid-flow
value at the outer edge.

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 52 / 63

Prandtl’s lifting-line model (1918)

Large aspect ratio A = b/c� 1

Formally obtained through asymptotic expansion with A−1 as small
parameter (Van Dyke, 1975)

Concentrated line vorticity distribution

ω(x, y, z) = Γ(y)δ(x)δ(z)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 53 / 63

Prandtl’s lifting-line model (1918)

• Integral equation for Γ

Γ(y) =
1
2
c(y)a(y)V∞

[
α(y)− 1

4πV∞

∫ +b/2

−b/2

1
y − y′

dΓ
dy′

dy′
]

with boundary conditions

Γ(−b/2) = Γ(+b/2) = 0

• Lift and drag

L =
∫ +b/2

−b/2
ρV∞Γ(y)dy

Di =
ρ

4π

∫ +b/2

−b/2

∫ +b/2

−b/2

1
y − y′

Γ(y)
dΓ
dy′

dy′dy

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 54 / 63

Optimal wings

min
c(y)

Di, L = constant

leads to elliptic circulation distribution

Γ
Γ0

+
4y2

b2
= 1

which can be achieved by elliptic wings

c2

c0
+

4y2

b2
= 1

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 55 / 63

Elliptic wing

V

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 56 / 63

Propeller aircraft (ATR-72-600)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 57 / 63

Propeller aircraft slipstream

y

PROPELLER

WING

ω

Axial velocity behind propeller

Swirl velocity behind propeller

Slipstream

x

y

z

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 58 / 63

Modified lifting-line model

• Velocity information by solving Euler/NS equations

V (y) = V∞ + Vp(y), wp(y)

• Integral equation for Γ

Γ(y) =
1
2
c(y)a(y)V (y)

α(y)− wp(y)
V (y)

− 1
4πV (y)

+b/2∫
−b/2

1
y − y′

dΓ
dy′

dy′


with boundary conditions

Γ(−b/2) = Γ(+b/2) = 0

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 59 / 63

Planform optimization for propeller aircraft!"#$%&#'

'

!"#$%&'(')*+,)'-.'&/-012&'+3'4*&'+14"0"5&6',".#'6&)"#.'+74-".&6'".'4*")',+%8'3+%'-',".#',"4*'3+%'-',".#'
,"4*'-')4%-"#*4'2&-6".#'&6#&9'-'4-1&%'+3':;<='-.6'-'>+'2".&-%',-)*+$4;'?*&'@+.)4%-".4)'".@2$6&6'ABC':;DE9'
,".#'-%&-9'%++4'@*+%69'4"1'@*+%6'-.6'7+$.6)'+.'4,")4'F ;'?*&'+14"0"5&6',".#'#"G&)'

-.'".6$@&6'6%-#'%&6$@4"+.'+3'HI;>'J'-.6'-'4+4-2'6%-#'%&6$@4"+.'+3'K;E<'J;''
'
'
'

'
'

F-L'
'

'
'

F7L'
'

!"#$%&'(M'!"#$%&"'()*+$,-./$!01)*2$2-34*-564-)'#$
$$!5#$*."*$,-./$!&))7-'8$(*)+$41.$4*"-&-'8$.28.#9$41.$4/-34$2-34*-564-)'-3+"8'-(-.2$5:$;<$4-+.3$()*$$$$$$
$$$$$$$5.44.*$,-36"&-="4-)'$)($41.$4/-34>>>$

'
'

!"("!")*"#'

'
NHO'P-0&)+.'Q9'HI(I'?'"&:3-3$)($/-'8$3&-@34*."+$(&)/$-'4.*"04-)'9'RQSQ'AT'H(>D;''
NDO'U%++'V9'HIK('%*)@.&&.*A/-'8$-'4.8*"4-)'$()*$+-'-+6+$-'260.2$&)33;'P+$%.-2'+3'Q"%@%-34'''''''''''''
'''''D>FELM=(H'=;''
N>O'W&26*$")'BBX9'D:::'?.*)2:'"+-0$)@4-+3"4-)'$)($/-'83$-'$+6&4-B.'8-'.2$4*"04)*$@*)@.&&.*$$
$$$$$"**"'8.+.'439'Q"%@%-34'Y&)"#.'>'M'HDIZH<I;''
N<O'P+)[;'\;'\$22+@8-%-9'D::I9'\&%)+.-2'@+00$."@-4"+.;'
N=O'!"#$%&'()*+(),-.%)/0102"#1%)3%&0405"(6)C1.$D&.+.'43$)($?.*)()-&$"'2$?-*30*./$C1.)*:9''''''
'''''A-07%"6#&']."G;'\%&))9'A-07%"6#&9']U9'HID(9'11;'H>EZH=='

Pressure surface

Induced drag reduced by 19%
Total drag reduced by 8%

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 60 / 63

Euler/NS model for wing-propeller

p

PROPELLER

WING

x

y

x=x

∂U

∂t
+∇ ·H =


0
f1

f2

f3

u1f1 + u2f2 + u3f3

 δ(x− xp)

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 61 / 63

Actuator disk: cell‐based CFD 

Actuator disk
of infinitesimal
thickness

Cell centers of finite
volume where flow
solution is known

FL FR

FL ≠ FR

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 62 / 63

Euler simulations

Axial velocity Swirl velocity

Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 63 / 63

