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Maxwell Equations
Linear hyperbolic system

∂B

∂t
+∇×E = 0,

∂D

∂t
−∇×H = −J

B = magnetic flux density D = electric flux density
E = electric field H = magnetic field

J = electric current density

B = µH, D = εE, J = σE µ, ε ∈ R3×3 symmetric

ε = permittivity tensor

µ = magnetic permeability tensor

σ = conductivity

Constraints

∇ ·B = 0,
∂

∂t
(∇ ·D) +∇ · J = 0
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Two fluid MHD
Non-linear hyperbolic system

Conservation laws for each species: α = i, e

∂ρα
∂t

+∇ · (ραvα) = 0

∂(ραvα)

∂t
+∇ · (ραvα ⊗ vα + pαI) =

1

mα
ραqα(E + vα ×B)

∂Eα
∂t

+∇ · [(Eα + pα)vα] =
1

mα
ραqαE · vα

Total energy: Eα =
pα

γα − 1
+

1

2
ρα|vα|2

Coupled with Maxwell’s equations

∂B

∂t
+∇×E = 0,

1

c2
∂E

∂t
−∇×B = −µ0(ρiqivi + ρeqeve)

together with the constraints

∇ ·B = 0, ∇ ·E =
1

ε0
(ρiqi + ρeqe)
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Ideal compressible MHD equations
Nonlinear hyperbolic system

Compressible Euler equations with Lorentz force

∂ρ

∂t
+∇ · (ρv) = 0

∂(ρv)

∂t
+∇ · (P I + ρv ⊗ v −B ⊗B) = 0

∂E
∂t

+∇ · ((E + P )v + (v ·B)B) = 0

∂B

∂t
−∇× (v ×B) = 0

P = p+
1

2
|B|2, E =

p

γ − 1
+

1

2
ρ|v|2 +

1

2
|B|2

Magnetic monopoles do not exist: =⇒ ∇ ·B = 0
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Divergence constraint

∂B

∂t
+∇×E = 0

∇ · ∂B
∂t

+∇ · ∇×︸ ︷︷ ︸
=0

E = 0

∂

∂t
∇ ·B = 0

∇·B(x, 0) = 0 =⇒ ∇·B(x, t) = 0

Intrinsic property, not dynamical eqn

Lorentz force: v ×B ⊥ B

∇ ·
(
B ⊗B − 1

2
|B|2I

)

= (∇×B)×B + (∇ ·B)B

Rotated shock tube
Discontinuous Galerkin Magnetohydrodynamics 31
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Figure 29. Rotated shock tube test. The relative error on the parallel magnetic
field Bk in the rotated shock tube test of Tóth (2000) is shown for the DG-3
method with the Powell and hyperbolic cleaning schemes in the top and
centre panel. The bottom panel shows the solution obtained with Athena,
with the 3rd order CTU (constrained transport) method. For the Powell
method, between the left and right fast shocks (x = ⌥0.4), the value of Bk
deviates with respect to the exact solution due to the nonconservative source
terms. Apart from oscillations at the discontinuities, the Powell scheme
results in systematic o�sets of Bk of order . 5%. The hyperbolic cleaning
scheme features no such systematic o�sets, but produces damped oscillations
which overtake the fast shocks as the divergence gets advected away.

6 DISCUSSION

6.1 High-order schemes for astrophysics

Our tests have shown some promising results for higher-order
schemes in astrophysical simulations, and for MHD in particular.
We now discuss how the combination of DG with adaptive mesh re-
finement could allow very e�cient computations in smooth regions
of the flow with high order convergence, while finely capturing the
shocks and discontinuities with spatial refinement.

We can interpret order/resolution convergence plots such as
Fig. 4 from two complementary points of view: looking at a given
spatial resolution on the x axis, we can increase the order to reduce
the solution error. But at a fixed error on the y axis, we may also
increase the order and correspondingly reduce the spatial resolution.
We argue that this second vision is more relevant to many types of
simulations in astrophysics, as the spatial truncation errors need
only be smaller or comparable to other types of errors, stemming
from uncertainties in the physical models, missing physics, subgrid
recipes, etc. We can therefore see order convergence as a way of
getting away with fewer cells in smooth problems, to the extent that
we can e�ciently “patch” smooth regions of the flow with coarser
cells.

Cell-based adaptive mesh refinement provides a suitable
framework to do this, as it allows cell-by-cell resolution adaptiv-
ity to match the local feature size. In a number of our test problems,
we found higher-order to better resolve features close to the grid
resolution. The vortex problem of Fig. 4 illustrates the advantage

of higher orders for capturing features which are barely resolved by
the grid (shaded area): at 322 resolution, the 2nd order scheme is
not yet resolving the vortex, whereas the DG-4 method has already
achieved its theoretical 4th order convergence. The same conclu-
sion holds in the presence of shocks, as illustrated by the Shu-Osher
MHD shock tube in Fig. 9 where we see a significant improvement
from DG-2 to DG-3. The loop advection problem further shows
that sharp features (such as singular field derivatives appearing in
the MHD current) can also be captured within one cell by mod-
erately increasing the spatial order: going from 2nd to 3rd or 4th

order dramatically improves the loop sharpness, while reducing the
dissipation of magnetic energy.

Compared to Lagrangian methods, a major issue with AMR
Eulerian grid codes is that they require su�cient grid resolution
to avoid dissipation due to bulk flow velocities; i.e. they are only
Galilean invariant for solutions su�ciently resolved to make ad-
vection errors negligible. Because spatial resolution translates into
tighter CFL constraints on the timestep, a compromise has to be
reached between advection errors and compute time in practice.
The advected Orszag–Tang test of Section 5.3.4 demonstrates that
not only do higher order schemes help reduce advection errors and
restore Galilean invariance, but for smooth regions of the flow, it
can actually be beneficial to increase the order while reducing spa-
tial resolution. Note that these test problems present MHD shocks,
and it is encouraging to see that these positive features remain, even
though we find that they can be sensitive to the details of the limiter
settings.

The combination of higher order methods with adaptive mesh
refinement therefore seems particularly powerful. We note that for
most astrophysical situations, spatial refinement will likely be re-
quired, because of the presence of shocks which are inherently first-
order features, but also whenever the fluid is self-gravitating. One
may therefore ask what scheme order will turn out to be the optimal
choice for a given problem. While we discussed positive e�ects of
higher orders, in practice we expect diminishing returns. From the
above discussion, it is clear the optimal global scheme order will
depend on the volume filling fraction and geometry of shocks and
other discontinuities, as well as the acceptable truncation error, both
of which are very problem-dependent. Higher orders will only be
helpful to the extent that we can e�ciently patch smooth regions
of the flow with coarser and coarser cells. In addition, the compu-
tational cost of DG becomes prohibitive for large orders, in part
because of the expensive quadrature operations, but also because of
the more restrictive CFL condition (27). We note that this CFL con-
straint can be relaxed within the DG framework, for example using
so-called PNPM schemes (Dumbser et al. 2008), where N moments
are evolved dynamically as in DG, whereas high-order spatial re-
construction is used up to order M � N to recover the remaining
moments; however this comes at the cost of a more extended pattern
of ghost cells, as with purely reconstruction-based schemes.

Time integration for RKDG schemes is also both computa-
tionally and memory-expensive at high temporal orders, as Runge-
Kutta methods require multiple steps with intermediate storage.
These memory and computational requirements may be reduced
using other time integration schemes such as ADER (see 6.4.2).
Note that even though we match the RK time integration order to
the spatial order of the scheme (up to RK4) in most of our runs,
this is only done to ensure that the time integration errors do not
contaminate the convergence tests of Section 5.2. In practice, high-
order RK time integration may be unnecessary, for example when
the CFL criterion enforces very small time steps due to high plasma

MNRAS 000, 1–38 (2018)

Guillet et al., MNRAS 2019

Discrete div-free =⇒ positivity
(Kailiang Wu (2018))
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Figure 29. Rotated shock tube test. The relative error on the parallel magnetic
field Bk in the rotated shock tube test of Tóth (2000) is shown for the DG-3
method with the Powell and hyperbolic cleaning schemes in the top and
centre panel. The bottom panel shows the solution obtained with Athena,
with the 3rd order CTU (constrained transport) method. For the Powell
method, between the left and right fast shocks (x = ⌥0.4), the value of Bk
deviates with respect to the exact solution due to the nonconservative source
terms. Apart from oscillations at the discontinuities, the Powell scheme
results in systematic o�sets of Bk of order . 5%. The hyperbolic cleaning
scheme features no such systematic o�sets, but produces damped oscillations
which overtake the fast shocks as the divergence gets advected away.
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Objectives

• Based on conservation form of the equations

• Upwind-type schemes using Riemann solvers (Godunov approach)
• High order accurate

I discontinuous-Galerkin FEM

• Divergence-free schemes for Maxwell’s and compressible MHD
I Cartesian grids at present
I Divergence preserving schemes (RT)

• Non-oscillatory schemes for MHD
I using limiters
I div-free reconstruction using BDM1

• Explicit time stepping
I local mass matrices

• Based on
I Induction eqn: J. Sci. Comp., Vol. 79, pp, 79-102, 2019
I Compressible MHD: J. Sci. Comp., Vol. 84, 2020

1Hazra et al., JCP, Vol. 394, 2019
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Some existing methods

Exactly divergence-free methods

• Yee scheme (Yee (1966))

• Projection methods (Brackbill & Barnes (1980))

• Constrained transport (Evans & Hawley (1989))

• Divergence-free reconstruction (Balsara (2001))

• Globally divergence-free scheme (Li et al. (2011), Fu et al, (2018))

Approximate methods

• Locally divergence-free schemes (Cockburn, Li & Shu (2005))

• Godunov’s symmetrized version of MHD (Powell (1994),
Winters/Gassner (2016), C/Klingenberg (2016))

• Divergence cleaning methods (Dedner et al. (2002))
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MHD equations in 2-D

∂U
∂t

+
∂Fx
∂x

+
∂Fy
∂y

= 0

U =



ρ
ρvx
ρvy
ρvz
E
Bx

By

Bz


, Fx =



ρvx
P + ρv2x −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E + P )vx −Bx(v ·B)
0
−Ez

vxBz − vzBx


, Fy =



ρvy
ρvxvy −BxBy

P + ρv2y −B2
y

ρvyvz −ByBz

(E + P )vy −By(v ·B)
Ez

0
vyBz − vzBy


where

B = (Bx, By, Bz), P = p+
1

2
|B|2, E =

p

γ − 1
+

1

2
ρ|v|2 +

1

2
|B|2

Ez is the electric field in the z direction

Ez = −(v ×B)z = vyBx − vxBy
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Ideal MHD in one dimension
3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2
666666664

⇢
⇢u
⇢v
⇢w
E
By

Bz

3
777777775

, F =

2
666666664

⇢u
P + ⇢u2 � B2

x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v · B)Bx

uBy � vBx

uBz � wBx

3
777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u + cs  u + ca  u + cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2

x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2

x

i

where

a =

r
�p

⇢

is the sound speed.
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Conservation laws

Divergence constraint

Flux jacobian matrix

has seven real eigenvalues and eigenvectors
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6.3 Finite volume scheme

Let us divide the domain into non-overlapping finite volumes (vertex-based or vertex-
centered)
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Weak solution: Satisfy conservation 
law on each finite volume

The numerical solution of hyperbolic PDE is generally more involved due to the appearance of
shocks and other discontinuities in the solution even when starting with smooth initial data. Hence
we look for only weak solutions which satisfy an integral form of the equation
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In particular, at a discontinuity moving at speed s, the solution must satisfy the RH jump condition
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4 Finite volume method

If we try to approximate solutions of hyperbolic PDE with classical Galerkin methods or central
di↵erence approximations
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then the solutions turn out to be highly oscillatory and the computations can break down quite
quickly. This is fundamentally because the solution contains waves which propagate in certain
directions but the stencil of the scheme is ignorant of this. For example, for the linear advection
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then the schemes behave in a stable manner, e.g., we have stability in maximum norm and solution
is total variation bounded.

For non-linear system of equations, we have to identify the waves that arise in the solution and do
some trick like the above. A systematic approach was developed by the Russian mathematician S. K.
Godunov. This technique is called the finite volume method and is based on conservation principles.
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? Godunov solved this Riemann problem exactly
for the Euler equations. The solution is self-similar and contains shocks, rarefactions and contact
disconuities. The idea is to evolve these waves for a small duration �t so that waves from neigbouring
Riemann problems do not interact with one another, and then average the solution back to piecewise
constant states
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In the case of the MHD Riemann problem, we get the following type of waves:

u ± cf fast shock/rarefaction wave
u ± ca rotational discontinuity
u ± cs slow shock/rarefaction wave

u contact discontinuity

The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.

5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
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is self-similar and contains shocks, rarefactions and contact disconuities. The idea is to evolve these
waves for a small duration �t so that waves from neigbouring Riemann problems do not interact
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Figure 23.1: Waves from the Riemann problems in finite volume method
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The total solution is made up by patching the local Riemann problem solutions. At t = tn+1

the local solution is given by
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This gives the formula to obtain the solution at next time level. However, we would like to
get simpler expression for the scheme written in terms of a numerical flux function. Let us
integrate the conservation law over space-time slab (xj� 1
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If wR(⇠;ul, ur) is continuous at ⇠ = 0 then f(wR(⇠;ul, ur)) is continuous at ⇠ = 0. If
wR(⇠;ul, ur) is discontinuous at ⇠ = 0, then there is a stationary discontinuity at x = 0;
hence by RH condition

f(wR(0+; ul, ur)) = f(wR(0�; ul, ur))

Δ/
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MHD Riemann problem
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In the case of the MHD Riemann problem, we get the following type of waves:

u ± cf fast shock/rarefaction wave
u ± ca rotational discontinuity
u ± cs slow shock/rarefaction wave
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The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.
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Figure 1: Waves in 1-D MHD Riemann problem

5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
solution, and moreover we only need the flux and not the full Riemann solution, we can try to obtain
an approximate solution to the Riemann problem. There are many ways to do this and I will discuss
two of them.

5.1 Linearized methods

In the method pioneered by Phil Roe, we replace the non-linear conservation law with the linear one

@U

@t
+ A(Un

j , Un
j+1)

@U

@x
= 0

and solve the Riemann problem for this equation. The matrix A is constructed so that the problem
is still hyperbolic.

1. A(U , U ) = A(U )

2. A(UL, UR) has all real eigenvalues and full set of eigenvectors.

3. A(UL, UR)(UR �UL) = F (UR)� F (UL)

8

412 BRIO AND WU 

Numerical solutions which were obtained for 800 grid points with Ax = 1 and 
At = 0.2 (CFL- 0.8) are shown after 400 time steps unless specified otherwise. 
Initial discontinuity is located in the middle of the computational interval. The 
problem was solved by several numerical schemes including the newly constructed 
second-order Roe-type scheme, which was extended to second order by Harten’s 
approach [S], the Lax-Friedrichs scheme [13], the Lax-Wendroff scheme with 
Lapidus-type viscosity [14]-[15], and the FCT scheme [16]. 

Figure 2 shows the results for the second-order upwind scheme using the Roe 
matrix in the form of A(V) with V given by (26) and (28)-(30). The solution con- 
sists of the following waves separated by constant states. The waves moving to the 
left are a fast rarefaction wave, denoted by FR in the figure, and a slow compound 
wave, denoted by SM. The waves moving to the right include a contact discon- 
tinuity, denoted by C, a slow shock (SS), and a fast rarefaction wave, FR. The 
solution was checked by calculating Riemann invariants across the rarefaction 

X 

FIG. 2. Second-order upwind scheme. 

Brio-Wu
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MHD in multi-dimensions

x-direction Riemann problem

∂U
∂t

+
∂Fx
∂x

= 0, =⇒ ∂U
∂t

+Ax
∂U
∂x

= 0, Ax = F ′x(U)

Ax: 8 real eigenvalues, one zero, 7 lin. ind. eigenvectors only !!!

In the Riemann problem, (Bx)L 6= (Bx)R

Modify the MHD equations (Godunov, Powell)

∂U
∂t

+
∂Fx
∂x

+
∂Fy
∂y

+ Φ∇ ·B = 0

8 real eigenvalues and 8 lin. ind. eigenvectors

• Build approximate Riemann solver (Powell et al.)

• Build entropy stable schemes (Winters et al., C/Klingenberg)

BUT: not divergence-free, not conservative
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MHD equations in 2-D

Split into two parts

U = [ρ, ρv, E , Bz]>, B = (Bx, By)

∂U

∂t
+∇ · F (U ,B) = 0,

∂Bx
∂t

+
∂Ez
∂y

= 0,
∂By
∂t
− ∂Ez

∂x
= 0

Fluxes: F = (Fx,Fy)

Fx =




ρvx
P + ρv2x −B2

x

ρvxvy −BxBy
ρvxvz −BxBz

(E + P )vx −Bx(v ·B)
vxBz − vzBx



, Fy =




ρvy
ρvxvy −BxBy
P + ρv2y −B2

y

ρvyvz −ByBz
(E + P )vy −By(v ·B)

vyBz − vzBy



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Constraint preserving finite difference

Store magnetic field on the faces: (Bx)i+ 1
2
,j , (By)i,j+ 1

2

∂Bx

∂t
+
∂Ez

∂y
= 0 =⇒ d

dt
(Bx)i+ 1

2
,j +

(Ez)i+ 1
2
,j+ 1

2
− (Ez)i+ 1

2
,j− 1

2

∆y
= 0

∂By

∂t
− ∂Ez

∂x
= 0 =⇒ d

dt
(By)i,j+ 1

2
−

(Ez)i+ 1
2
,j+ 1

2
− (Ez)i− 1

2
,j+ 1

2

∆x
= 0

Measure divergence at cell center

∇h ·Bi,j =
(Bx)i+ 1

2
,j − (Bx)i− 1

2
,j

∆x
+

(By)i,j+ 1
2
− (By)i,j− 1

2

∆y

Then
d

dt
∇h ·Bi,j = 0

The corner fluxes cancel one another !!!
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Approximation of magnetic field

Bh ∈ Vh = FE polynomial space on mesh Th
If ∇ ·Bh = 0, then take

Bh ∈ Vh ⊂ H(div,Ω) = {B ∈ L2(Ω) : div(B) ∈ L2(Ω)}
Necessary condition

Bh · n continuous across element faces

Possible options: Brezzi-Douglas-Marini, Raviart-Thomas, etc.

Journal of Scientific Computing

Bx ∈ Q1,0 By ∈ Q0,1

Fig. 1 Location of dofs of Raviart–Thomas polynomial for k = 0

Bx ∈ Q2,1 By ∈ Q1,2

Fig. 2 Location of dofs of Raviart–Thomas polynomial for k = 1

Bx ∈ Q3,2 By ∈ Q2,3

Fig. 3 Location of dofs of Raviart–Thomas polynomial for k = 2

where e∓
x are the two vertical sides of cell C and e∓

y are the two horizontal sides of cell C as
shown in Fig. 4. The cell moments are given by

∫

C
Bh
x ψdxdy ∀ψ ∈ ∂x Qk,k(x, y):=Qk−1,k(x, y)

and
∫

C
Bh
yψdxdy ∀ψ ∈ ∂y Qk,k(x, y):=Qk,k−1(x, y)

Note that dim Pk(x) = dim Pk(y) = k + 1 and dim ∂x Qk,k(x, y) = dim ∂y Qk,k(x, y) =
k(k+1) so that we have in total 4(k+1)+2k(k+1) = 2(k+1)(k+2) pieces of information
which is enough to determine Bh ∈ RTk . The moments on the faces e∓

x uniquely determine
the restriction of Bh

x on those faces, and similarly the moments on e∓
y uniquely determine the

123
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Approximation spaces: Degree k ≥ 0

Map cell K to reference cell K̂ = [−1
2 ,+

1
2 ]× [−1

2 ,+
1
2 ]

Pr(ξ) = span{1, ξ, ξ2, . . . , ξr}, Qr,s(ξ, η) = Pr(ξ)⊗ Ps(η)

Hydrodynamic variables in each cell

U(ξ, η) =

k∑

i=0

k∑

j=0

Uijφi(ξ)φj(η) ∈ Qk,k

Normal component of B on faces

on vertical faces : bx(η) =
k∑

j=0

ajφj(η) ∈ Pk(η)

on horizontal faces : by(ξ) =

k∑

j=0

bjφj(ξ) ∈ Pk(ξ)

b x
(η

)

b x
(η

)

by(ξ)

by(ξ)

U(ξ, η)

{φi(ξ)} are orthogonal polynomials on [−1
2 ,+

1
2 ], with degree(φi) = i.
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Approximation spaces: Degree k ≥ 0

For k ≥ 1,define certain cell moments

αij = αij(Bx) :=
1

mij

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

Bx(ξ, η)φi(ξ)φj(η)︸ ︷︷ ︸
Qk−1,k

dξdη, 0 ≤ i ≤ k−1, 0 ≤ j ≤ k

βij = βij(By) :=
1

mij

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

By(ξ, η)φi(ξ)φj(η)︸ ︷︷ ︸
Qk,k−1

dξdη, 0 ≤ i ≤ k, 0 ≤ j ≤ k−1

mij =

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

[φi(ξ)φj(η)]2dξdη = mimj , mi =

∫ + 1
2

− 1
2

[φi(ξ)]
2dξ

α00, β00 are cell averages of Bx, By

Solution variables

{U(ξ, η)}, {bx(η)}, {by(ξ)}, {α, β}

The set {bx, by, α, β} are the dofs for the Raviart-Thomas space.
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Approximation spaces: Degree k ≥ 0
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RT reconstruction: {b±x (η), b±y (ξ), α, β} → B(ξ, η)

Given b±x (η) ∈ Pk and b±y (ξ) ∈ Pk,
and set of cell moments

{αij , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k}

{βij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1}

b+ x
(η

)

b− x
(η

)

b−
y (ξ)

b+
y (ξ)

α

β

0 1

32

Find Bx ∈ Qk+1,k and By ∈ Qk,k+1 such that

Bx(± 1
2
, η) = b±x (η), η ∈ [− 1

2
, 1
2
], By(ξ,± 1

2
) = b±y (ξ), ξ ∈ [− 1

2
, 1
2
]

1

mij

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

Bx(ξ, η)φi(ξ)φj(η)dξdη = αij , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k

1

mij

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

By(ξ, η)φi(ξ)φj(η)dξdη = βij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1

(1) ∃ unique solution. (2) B · n continuous.
(3) Data div-free =⇒ reconstructed B is div-free.
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DG scheme for B on faces

Vertical face of the mesh: ∂Bx
∂t + ∂Ez

∂y = 0

∫ + 1
2

− 1
2

∂bx
∂t

φidη −
1

∆y

∫ + 1
2

− 1
2

Êz
dφi
dη

dη +
1

∆y
[Ẽzφi] = 0, 0 ≤ i ≤ k

Numerical fluxes

Êz : on face, 1-D Riemann solver

Ẽz : at vertex, 2-D Riemann solver

(UL, bx, B
L
y ) (UR, bx, B

R
y ) Êz

Ẽz

Horizontal face of the mesh:
∂By

∂t − ∂Ez
∂x = 0

∫ + 1
2

− 1
2

∂by
∂t

φidξ +
1

∆x

∫ + 1
2

− 1
2

Êz
dφi
dξ

dξ − 1

∆x
[Ẽzφi] = 0, 0 ≤ i ≤ k

Unique vertex flux Ẽz used in all equations
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Ẽz
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Êz
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DG scheme for B on cells: ∂Bx

∂t + 1
∆y

∂Ez

∂η = 0

mij
dαij

dt
=

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

∂Bx

∂t
φi(ξ)φj(η)dξdη, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k

= − 1

∆y

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

∂Ez

∂η
φi(ξ)φj(η)dξdη

= − 1

∆y

∫ + 1
2

− 1
2

[Êz(ξ, 1
2
)φi(ξ)φj(

1
2
)− Êz(ξ,− 1

2
)φi(ξ)φj(− 1

2
)]dξ

+
1

∆y

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

Ez(ξ, η)φi(ξ)φ
′
j(η)dξdη

Numerical fluxes

Êz : on face, 1-D Riemann solver

Not a Galerkin method, test functions (Qk−1,k) different from trial
functions (Qk+1,k)
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DG scheme for B on cells: ∂Bx

∂t + 1
∆y
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mij
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dt
=

∫ + 1
2

− 1
2
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2

− 1
2

∂Bx

∂t
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∆y

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

∂Ez

∂η
φi(ξ)φj(η)dξdη

= − 1

∆y

∫ + 1
2

− 1
2

[Êz(ξ, 1
2
)φi(ξ)φj(

1
2
)− Êz(ξ,− 1

2
)φi(ξ)φj(− 1

2
)]dξ

+
1

∆y

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2
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′
j(η)dξdη

Numerical fluxes

Êz : on face, 1-D Riemann solver

Not a Galerkin method, test functions (Qk−1,k) different from trial
functions (Qk+1,k)
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DG scheme for U on cells

For each test function Φ(ξ, η) = φi(ξ)φj(η) ∈ Qk,k∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

∂U c

∂t
Φ(ξ, η)dξdη−

∫ + 1
2

− 1
2

∫ + 1
2

− 1
2

[
1

∆x
Fx

∂Φ

∂ξ
+

1

∆y
Fy
∂Φ

∂η

]
dξdη

+
1

∆x

∫ + 1
2

− 1
2

F̂+
x Φ( 1

2
, η)dη − 1

∆x

∫ + 1
2

− 1
2

F̂−x Φ(− 1
2
, η)dη

+
1

∆y

∫ + 1
2

− 1
2

F̂+
y Φ(ξ, 1

2
)dξ − 1

∆y

∫ + 1
2

− 1
2

F̂−y Φ(ξ,− 1
2
)dξ = 0

Numerical fluxes

F̂±x , F̂
±
y : on face, 1-D Riemann solver
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DG scheme for U on cells

b+ xb− x

b−
y

b+
y

U c

Bc
x

Bc
y

Ue

Be
x

Be
y

Un

Bn
x

Bn
y

Uw

Bw
x

Bw
y

Us

Bs
x

Bs
y

Fx = Fx(U c, Bc
x, B

c
y), Fy = Fy(U c, Bc

x, B
c
y)

F̂+
x = F̂x((U c, b+x , B

c
y), (Ue, b+x , B

e
y)), F̂−x = F̂x((Uw, b−x , B

w
y ), (U c, b−x , B

c
y))

F̂+
y = F̂y((U c, Bc

x, b
+
y ), (Un, Bn

x , b
+
y )), F̂−y = F̂y((Us, Bs

x, b
−
y ), (U c, Bc

x, b
−
y ))
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Constraints on B

Definition (Globally divergence-free)

A vector field B defined on a mesh is globally divergence-free if

1 ∇ ·B = 0 in each cell K ∈ Th
2 B · n is continuous at each face F ∈ Th

Theorem

(1) The DG scheme satisfies

d

dt

∫

K
(∇ ·B)φdxdy = 0, ∀φ ∈ Qk,k

and since ∇ ·B ∈ Qk,k =⇒ ∇ ·B = constant wrt time.

(2) If ∇ ·B ≡ 0 at t = 0 =⇒ ∇ ·B ≡ 0 for t > 0

But: Applying a limiter in a post-processing step destroys div-free
property !!!
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Definition (Globally divergence-free)
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But: Applying a limiter in a post-processing step destroys div-free
property !!!
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Constraints on B

Definition (Globally divergence-free)

A vector field B defined on a mesh is globally divergence-free if
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Numerical fluxes

(k + 1)-point Gauss-Legendre quadrature on faces

Êz, F̂x

Êz, F̂y

Ẽz

(UL, bx, B
L
y ) (UR, bx, B

R
y )

(UD, BD
x , by)

(UU , BU
x , by)

(a) (b)
(a) Face quadrature points & numerical fluxes, k = 2. (b) 1-D Riemann

problems at a vertical and horizontal face of a cell
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Numerical fluxes

F̂x, Êz: solve 1-D Riemann problem at each face quadrature point

∂U
∂t

+
∂Fx
∂x

= 0, U(x, 0) =

{
UL = U(UL, bx, B

L
y ) x < 0

UR = U(UR, bx, B
R
y ) x > 0

F̂x =




(F̂x)1
(F̂x)2
(F̂x)3
(F̂x)4
(F̂x)5
(F̂x)8



, Êz = −(F̂x)7

Riemann problem can lead to 7 waves !!! Solve approximately.
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HLL solver in 1-D: slowest and fastest waves: SL < SR

40 / 70

• Intermediate state from conservation law

U∗ =
SRUR − SLUL − (FR

x −FL
x )

SR − SL

• Satisfying conservation law over half Riemann fan

F∗x =
SRFL

x − SLFR
x + SLSR(UR − UL)

SR − SL

• Numerical flux is given by

F̂x =


FL

x SL > 0

FR
x SR < 0

F∗x otherwise

• Electric field from 7’th component

Êz(UL,UR) = −(F̂x)7 =


EL

z SL > 0

ER
z SR < 0

SREL
z −SLER

z −SLSR(BR
y −BL

y )

SR−SL
otherwise

Approximate Riemann solver: HLL

Model Riemann solution with 
slowest and fastest wave only
(Harten, Lax, van Leer)

The Riemann problem just consists of simple waves and the flux can be written down as

Fj+ 1
2

=
1

2
(Fj + Fj+1)�

1

2
Rj+ 1

2
|⇤j+ 1

2
|Lj+ 1

2
(Uj+1 �Uj)

The extra terms add some dissipation into the scheme but this arises naturally from the wave model.
For the Euler equations, such a matrix was constructed by Roe, and such schemes can exactly capture
isolated shocks and contact discontinuities. For MHD, it is possible to find a matrix for the case
� = 2 but not in general. What is done in practice is to use

A(UL, UR) = A(Ū ), Ū = some average of UL, UR

but this may not satisfy the third condition.

5.2 HLL scheme

Harten, Lax, van Leer proposed to model the Riemann solution by considering only the slowest and
fastest waves that arise in the solution. There is an intermediate state U⇤ between the two waves
which is found by integrating the conservation law over a space time region

U⇤ =
SRUR � SLUL � (FR � FL)

SR � SL

Then to obtain the flux, we integrate over one-half of the space-time region

F⇤ =
SRFL � SLFR + SLSR(UR �UL)

SR � SL

The scheme is very simple and can be applied to any system of equations; all we need are good
estimates of SL, SR.

5.3 Multi state solvers

The HLL solver is very robust but rather dissipative, especially for contact waves which are not
included in the wave model. Contact waves being linear waves are highly susceptible to numerical
di↵usion. Once they get smeared out, we lose them forever, unlike shocks, which can self-steepen
due to non-linearity. The HLLC solver was developed for Euler equations which included the contact
wave, so there are two intermediate states. These states are found by satisfying the jump conditions
across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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Intermediate state

Numerical flux

Very simple for any conservation law
Only need estimates of wave speeds: IJ, IK

Contact wave not included.
Scheme diffuses contacts

Unþ1
i ¼ Un

i #
Dt
Dx

F Rð0;Un
i ;U

n
iþ1Þ

! "
# F Rð0;Un

i#1;U
n
i Þ

! "# $
;

where n and i indicate a time step and a cell number, respectively, and Rðx=t;Un
i ;U

n
iþ1Þ is the approximate

solution of the Riemann problem around the interface xi+1/2. In this form, the appropriate numerical fluxes
are obtained by applying the integral conservation laws (7) over the rectangle (xi, xi+1/2) · (tn, tn+1) as

Fiþ1=2 ¼ Fi #
1

Dt

Z xiþ1=2

xi

R
x# xiþ1=2

Dt
;Un

i ;U
n
iþ1

% &
dxþ

xiþ1=2 # xi
Dt

Un
i ; ð8Þ

where Fiþ1=2 ¼ FðRð0;Un
i ;U

n
iþ1ÞÞ;Fi ¼ FðUn

i Þ, and Dt = tn+1 # tn. We note that the exact solution of the Rie-
mann problem Rexact produces the fluxes of the original Godunov scheme. The numerical fluxes Fi+1/2 ob-
tained by the other integral conservation laws over (xi+1/2, xi+1) · (tn, tn+1) must coincide with (8) due to the
consistency with the integral form of conservation laws over (xi, xi+1) · (tn, tn+1).

Particularly, Harten et al. [15] proposed one of the simplest Godunov-type scheme, the so-called HLL
approximate Riemann solver. The HLL Riemann solver is constructed by assuming an average intermedi-
ate state between the fastest and slowest waves. Consider a ‘‘subsonic’’ solution of the single-state approx-
imate Riemann problem at the interface between the left and right states, UL and UR, where the minimum
signal speed SL and the maximum signal speed SR are negative and positive, respectively (Fig. 1). By apply-
ing the integral conservation laws (7) over the Riemann fan, (DtSL, DtSR) · (0, Dt), the intermediate state is
given by

U& ¼ SRUR # SLUL # FR þ FL

SR # SL

: ð9Þ

After that, as denoted by (8), the integral over (DtSL, 0) · (0, Dt) gives the HLL fluxes,

F& ¼ SRFL # SLFR þ SRSLðUR #ULÞ
SR # SL

: ð10Þ

If both signal speeds are of the same sign, the fluxes must be evaluated only from the upstream side. There-
fore, in general, the HLL fluxes become

FHLL ¼
FL if SL > 0;

F& if SL 6 0 6 SR;

FR if SR < 0:

8
><

>:
ð11Þ

Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and
SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly
speaking, the upper and lower bounds of the signal speed in the system cannot be obtained without infor-
mation of the exact Riemann solution [2]. Particularly, the difficulty for the MHD equations may be

UL UR

U∗

S  = x/tL S  = x/tR

x

t

Fig. 1. Schematic structure of the Riemann fan with one intermediate state.

T. Miyoshi, K. Kusano / Journal of Computational Physics 208 (2005) 315–344 319
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HLL solver in 1-D: slowest and fastest waves: SL < SR
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• Intermediate state from conservation law

U∗ =
SRUR − SLUL − (FR

x −FL
x )

SR − SL

• Satisfying conservation law over half Riemann fan

F∗x =
SRFL

x − SLFR
x + SLSR(UR − UL)

SR − SL

• Numerical flux is given by

F̂x =


FL

x SL > 0

FR
x SR < 0

F∗x otherwise

• Electric field from 7’th component

Êz(UL,UR) = −(F̂x)7 =


EL

z SL > 0

ER
z SR < 0

SREL
z −SLER

z −SLSR(BR
y −BL

y )

SR−SL
otherwise

Approximate Riemann solver: HLL

Model Riemann solution with 
slowest and fastest wave only
(Harten, Lax, van Leer)

The Riemann problem just consists of simple waves and the flux can be written down as

Fj+ 1
2

=
1

2
(Fj + Fj+1)�

1

2
Rj+ 1

2
|⇤j+ 1

2
|Lj+ 1

2
(Uj+1 �Uj)

The extra terms add some dissipation into the scheme but this arises naturally from the wave model.
For the Euler equations, such a matrix was constructed by Roe, and such schemes can exactly capture
isolated shocks and contact discontinuities. For MHD, it is possible to find a matrix for the case
� = 2 but not in general. What is done in practice is to use

A(UL, UR) = A(Ū ), Ū = some average of UL, UR

but this may not satisfy the third condition.

5.2 HLL scheme

Harten, Lax, van Leer proposed to model the Riemann solution by considering only the slowest and
fastest waves that arise in the solution. There is an intermediate state U⇤ between the two waves
which is found by integrating the conservation law over a space time region

U⇤ =
SRUR � SLUL � (FR � FL)

SR � SL

Then to obtain the flux, we integrate over one-half of the space-time region

F⇤ =
SRFL � SLFR + SLSR(UR �UL)

SR � SL

The scheme is very simple and can be applied to any system of equations; all we need are good
estimates of SL, SR.

5.3 Multi state solvers

The HLL solver is very robust but rather dissipative, especially for contact waves which are not
included in the wave model. Contact waves being linear waves are highly susceptible to numerical
di↵usion. Once they get smeared out, we lose them forever, unlike shocks, which can self-steepen
due to non-linearity. The HLLC solver was developed for Euler equations which included the contact
wave, so there are two intermediate states. These states are found by satisfying the jump conditions
across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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solution of the Riemann problem around the interface xi+1/2. In this form, the appropriate numerical fluxes
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mann problem Rexact produces the fluxes of the original Godunov scheme. The numerical fluxes Fi+1/2 ob-
tained by the other integral conservation laws over (xi+1/2, xi+1) · (tn, tn+1) must coincide with (8) due to the
consistency with the integral form of conservation laws over (xi, xi+1) · (tn, tn+1).

Particularly, Harten et al. [15] proposed one of the simplest Godunov-type scheme, the so-called HLL
approximate Riemann solver. The HLL Riemann solver is constructed by assuming an average intermedi-
ate state between the fastest and slowest waves. Consider a ‘‘subsonic’’ solution of the single-state approx-
imate Riemann problem at the interface between the left and right states, UL and UR, where the minimum
signal speed SL and the maximum signal speed SR are negative and positive, respectively (Fig. 1). By apply-
ing the integral conservation laws (7) over the Riemann fan, (DtSL, DtSR) · (0, Dt), the intermediate state is
given by
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After that, as denoted by (8), the integral over (DtSL, 0) · (0, Dt) gives the HLL fluxes,
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fore, in general, the HLL fluxes become
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F& if SL 6 0 6 SR;
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Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and
SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly
speaking, the upper and lower bounds of the signal speed in the system cannot be obtained without infor-
mation of the exact Riemann solution [2]. Particularly, the difficulty for the MHD equations may be
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• Intermediate state from conservation law

U∗ =
SRUR − SLUL − (FR

x −FL
x )

SR − SL

• Satisfying conservation law over half Riemann fan

F∗x =
SRFL

x − SLFR
x + SLSR(UR − UL)

SR − SL

• Numerical flux is given by

F̂x =


FL

x SL > 0

FR
x SR < 0

F∗x otherwise

• Electric field from 7’th component

Êz(UL,UR) = −(F̂x)7 =


EL

z SL > 0

ER
z SR < 0

SREL
z −SLER

z −SLSR(BR
y −BL

y )

SR−SL
otherwise

Approximate Riemann solver: HLL

Model Riemann solution with 
slowest and fastest wave only
(Harten, Lax, van Leer)

The Riemann problem just consists of simple waves and the flux can be written down as

Fj+ 1
2

=
1

2
(Fj + Fj+1)�

1

2
Rj+ 1

2
|⇤j+ 1

2
|Lj+ 1

2
(Uj+1 �Uj)

The extra terms add some dissipation into the scheme but this arises naturally from the wave model.
For the Euler equations, such a matrix was constructed by Roe, and such schemes can exactly capture
isolated shocks and contact discontinuities. For MHD, it is possible to find a matrix for the case
� = 2 but not in general. What is done in practice is to use

A(UL, UR) = A(Ū ), Ū = some average of UL, UR

but this may not satisfy the third condition.

5.2 HLL scheme

Harten, Lax, van Leer proposed to model the Riemann solution by considering only the slowest and
fastest waves that arise in the solution. There is an intermediate state U⇤ between the two waves
which is found by integrating the conservation law over a space time region

U⇤ =
SRUR � SLUL � (FR � FL)

SR � SL

Then to obtain the flux, we integrate over one-half of the space-time region

F⇤ =
SRFL � SLFR + SLSR(UR �UL)

SR � SL

The scheme is very simple and can be applied to any system of equations; all we need are good
estimates of SL, SR.

5.3 Multi state solvers

The HLL solver is very robust but rather dissipative, especially for contact waves which are not
included in the wave model. Contact waves being linear waves are highly susceptible to numerical
di↵usion. Once they get smeared out, we lose them forever, unlike shocks, which can self-steepen
due to non-linearity. The HLLC solver was developed for Euler equations which included the contact
wave, so there are two intermediate states. These states are found by satisfying the jump conditions
across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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Numerical flux
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where n and i indicate a time step and a cell number, respectively, and Rðx=t;Un
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n
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solution of the Riemann problem around the interface xi+1/2. In this form, the appropriate numerical fluxes
are obtained by applying the integral conservation laws (7) over the rectangle (xi, xi+1/2) · (tn, tn+1) as
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i Þ, and Dt = tn+1 # tn. We note that the exact solution of the Rie-
mann problem Rexact produces the fluxes of the original Godunov scheme. The numerical fluxes Fi+1/2 ob-
tained by the other integral conservation laws over (xi+1/2, xi+1) · (tn, tn+1) must coincide with (8) due to the
consistency with the integral form of conservation laws over (xi, xi+1) · (tn, tn+1).

Particularly, Harten et al. [15] proposed one of the simplest Godunov-type scheme, the so-called HLL
approximate Riemann solver. The HLL Riemann solver is constructed by assuming an average intermedi-
ate state between the fastest and slowest waves. Consider a ‘‘subsonic’’ solution of the single-state approx-
imate Riemann problem at the interface between the left and right states, UL and UR, where the minimum
signal speed SL and the maximum signal speed SR are negative and positive, respectively (Fig. 1). By apply-
ing the integral conservation laws (7) over the Riemann fan, (DtSL, DtSR) · (0, Dt), the intermediate state is
given by

U& ¼ SRUR # SLUL # FR þ FL

SR # SL

: ð9Þ

After that, as denoted by (8), the integral over (DtSL, 0) · (0, Dt) gives the HLL fluxes,

F& ¼ SRFL # SLFR þ SRSLðUR #ULÞ
SR # SL

: ð10Þ

If both signal speeds are of the same sign, the fluxes must be evaluated only from the upstream side. There-
fore, in general, the HLL fluxes become

FHLL ¼
FL if SL > 0;

F& if SL 6 0 6 SR;

FR if SR < 0:
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Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and
SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly
speaking, the upper and lower bounds of the signal speed in the system cannot be obtained without infor-
mation of the exact Riemann solution [2]. Particularly, the difficulty for the MHD equations may be
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• Intermediate state from conservation law

U∗ =
SRUR − SLUL − (FR

x −FL
x )

SR − SL

• Satisfying conservation law over half Riemann fan

F∗x =
SRFL

x − SLFR
x + SLSR(UR − UL)

SR − SL

• Numerical flux is given by

F̂x =


FL

x SL > 0

FR
x SR < 0

F∗x otherwise

• Electric field from 7’th component

Êz(UL,UR) = −(F̂x)7 =


EL

z SL > 0

ER
z SR < 0

SREL
z −SLER

z −SLSR(BR
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otherwise

Approximate Riemann solver: HLL

Model Riemann solution with 
slowest and fastest wave only
(Harten, Lax, van Leer)

The Riemann problem just consists of simple waves and the flux can be written down as
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2
|⇤j+ 1

2
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2
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The extra terms add some dissipation into the scheme but this arises naturally from the wave model.
For the Euler equations, such a matrix was constructed by Roe, and such schemes can exactly capture
isolated shocks and contact discontinuities. For MHD, it is possible to find a matrix for the case
� = 2 but not in general. What is done in practice is to use

A(UL, UR) = A(Ū ), Ū = some average of UL, UR

but this may not satisfy the third condition.

5.2 HLL scheme

Harten, Lax, van Leer proposed to model the Riemann solution by considering only the slowest and
fastest waves that arise in the solution. There is an intermediate state U⇤ between the two waves
which is found by integrating the conservation law over a space time region

U⇤ =
SRUR � SLUL � (FR � FL)

SR � SL

Then to obtain the flux, we integrate over one-half of the space-time region

F⇤ =
SRFL � SLFR + SLSR(UR �UL)

SR � SL

The scheme is very simple and can be applied to any system of equations; all we need are good
estimates of SL, SR.

5.3 Multi state solvers

The HLL solver is very robust but rather dissipative, especially for contact waves which are not
included in the wave model. Contact waves being linear waves are highly susceptible to numerical
di↵usion. Once they get smeared out, we lose them forever, unlike shocks, which can self-steepen
due to non-linearity. The HLLC solver was developed for Euler equations which included the contact
wave, so there are two intermediate states. These states are found by satisfying the jump conditions
across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and
SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly
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2-D Riemann problem
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2-D Riemann problem

Strongly interacting state

B
∗∗
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1

2(Se − Sw)(Sn − Ss)
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2SeSnB
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Jump conditions b/w ∗∗ and {n∗, s∗, ∗e, ∗w}

E∗∗z = En∗z − Sn(Bn∗
x −B∗∗x )

E∗∗z = Es∗z − Ss(Bs∗
x −B∗∗x ) 4 equations

E∗∗z = E∗ez + Se(B
∗e
y −B∗∗y ) 1 unknown

E∗∗z = E∗wz + Sw(B∗wy −B∗∗y )
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2-D Riemann problem

Over-determined, least-squares solution (Vides et al.)

E∗∗z =
1

4
(En∗z + Es∗z + E∗ez + E∗wz )−1

4
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4
Ss(B

s∗
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+
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4
Se(B
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y −B∗∗y ) +

1

4
Sw(B∗wy −B∗∗y )

Consistency with 1-D solver

If

Unw = Usw = UL

Une = Use = UR

then

E∗∗z = Êz(UL,UR) = 1-D HLL

x

y

Usw = UL

Unw = UL

Use = UR

Une = UR
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HLLC Riemann solver*

1-D solver

• Slowest and fastest waves SL, SR, and contact wave SM = u∗
• Two intermediate states: U∗L, U∗R
• No unique way to satisfy all jump conditions: Gurski (2004), Li (2005)

• Common value of magnetic field B∗L = B∗R

• Common electric field E∗Lz = E∗Rz , same as in HLL

2-D solver

• Electric field estimate E∗∗z same as HLL

• Consistent with 1-D solver
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Limiting procedure: Given Un+1, bn+1
x , bn+1

y , αn+1, βn+1

1 Perform RT reconstruction =⇒ B(ξ, η).

2 Apply TVD limiter in characteristic variables to {U(ξ, η),B(ξ, η)}.
3 Reset cell moments

αij = aij , βij = bij

4 On each face, use limited left/right B(ξ, η) to limit bx, by

bx(η)← minmod
(
bx(η), BL

x (12 , η), BR
x (−1

2 , η)
)

Do not change mean value on faces:
∮
∂C B · n = 0

5 Restore divergence-free property using divergence-free-reconstruction
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Divergence-free reconstruction2: (b±x , b
±
y , ∗)→ (Bx, By)

For each cell, find B(ξ, η) such that

Bx(±1
2 , η) = b±x (η), ∀η ∈ [−1

2 ,+
1
2 ]

By(ξ,±1
2) = b±y (ξ), ∀ξ ∈ [−1

2 ,+
1
2 ]

∇·B(ξ, η) = 0, ∀(ξ, η) ∈ [−1
2 ,

1
2 ]×[−1

2 ,
1
2 ]

b+ x
(η

)

b− x
(η

)

b−
y (ξ)

b+
y (ξ)

Bx(ξ, η)

By(ξ, η)

We look for B in (Brezzi & Fortin, Section III.3.2)

BDM(k) = P2
k ⊕∇× (xk+1y)⊕∇× (xyk+1) ⊃ P2

k

• For k = 0, 1, 2, we can solve the above problem
• For k ≥ 3, we need additional information

I k = 3: b10 − a01 = ω1 = ∇×B(0, 0)
I k = 4: ω1, b20 − a11 = ω2 ≈ ∂

∂x∇×B, b11 − a02 = ω3 ≈ ∂
∂y∇×B

I ω1, etc. are known from α, β

2Hazra et al., JCP, Vol. 394, 2019
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Divergence-free reconstruction

• Preserves mean value of B · n on the faces

=⇒
∮

∂C
B · n = 0

• Does not preserve mean value of B in the cells

• Fundamental principle: magnetic flux conservation across surfaces

d

dt

∫

S
B · nds = −

∮

∂S
E · dl
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Algorithm 1: Constraint preserving scheme for ideal compressible MHD

Allocate memory for all variables;
Set initial condition for (U , bx, by, α, β);
Loop over cells and reconstruct (Bx, By);
Set time counter t = 0;
while t < T do

Copy current solution into old solution;
Compute time step ∆t;
for each RK stage do

Loop over vertices and compute vertex flux;
Loop over faces and compute all face integrals;
Loop over cells and compute all cell integrals;
Update solution (bx, by, α, β) to next stage;
Loop over cells and do RT reconstruction (bx, by, α, β)→ B;
Loop over cells and apply limiter on U ,B;
Loop over faces and limit solution bx, by;
Loop over faces and perform div-free reconstruction;
Apply positivity limiter;

end
t = t+ ∆t;

end
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Numerical Results
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Smooth vortex
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Rotated shock tube: k = 1, 128 cells, HLL
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Orszag-Tang test

Density, t = 0.5, k = 3, 512× 512 cells, TVD limiter

LxF HLL HLLC
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Rotor test

Mach, t = 0.15, k = 3, 512× 512 cells, TVD limiter

LxF HLL HLLC
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Blast wave: 200× 200 cells, TVD limiter
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Summary

• Solve the conservation form of PDE

• Div-free DG scheme using RT basis for B
• Multi-D Riemann solvers essential

I consistency with 1-d solver is not automatic; ok for HLL (2-wave) and
HLLC (3-wave); what about HLLD (5-wave) ?

• Div-free limiting needs to ensure strong div-free condition
I Reconstruction of B using div=0 and curl=given

• Limiters are still major obstacle for high order
I WENO-type ideas
I sub-cell limiter
I Machine learning ideas (Ray & Hesthaven)

• No proof of positivity for div-free scheme
I Not a fully discontinuous solution
I Variables are not co-located
I No proof of positivity of first order div-free scheme
I Div-free limiter is non-conservative
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Thank You

65 / 70



Divergence-free reconstruction: RT(1)

On faces

b±x (η) = a±0 + a±1 η, b±y (η) = b±0 + b±1 ξ

with ∮

∂C
B · n = (a+0 − a−0 )∆y + (b+0 − b−0 )∆x = 0

In the cell

Bx(ξ, η) =

2∑

i=0

1∑

j=0

aijφi(ξ)φj(η), By(ξ, η) =

1∑

i=0

2∑

j=0

bijφi(ξ)φj(η)
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Divergence-free reconstruction: RT(1)

Matching the cell solution with the face solution

a00 − a10/2 + a20/6 = a−0 (1)

a01 − a11/2 + a21/6 = a−1 (2)

a00 + a10/2 + a20/6 = a+0 (3)

a01 + a11/2 + a21/6 = a+1 (4)

b00 − b01/2 + b02/6 = b−0 (5)

b10 − b11/2 + b12/6 = b−1 (6)

b00 + b01/2 + b02/6 = b+0 (7)

b10 + b11/2 + b12/6 = b+1 (8)

∇ ·B is in Q1

div(B)∆x∆y = (a10∆y + b01∆y) + (2a20∆y + b11∆x)ξ

+ (a11∆y + 2b02∆x)η + (2a21∆y + 2b12∆x)ξη
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Divergence-free reconstruction: RT(1)

∇ ·B(ξ, η) = 0 yields four equations

a10∆y + b01∆y = 0 (constant) (9)

2a20∆y + b11∆x = 0 (ξ) (10)

a11∆y + 2b02∆x = 0 (η) (11)

2a21∆y + 2b12∆x = 0 (ξη) (12)

12 coefficients and 12 equations, but not linearly independent.
To show this, combine the equations in the form
[(3)− (1)]∆y + [(7)− (5)]∆x which yields

a10∆y + b01∆x = (a+0 − a−0 )∆y + (b+0 − b−0 )∆x = 0 (13)

Equation (9) is contained in the remaining equations.

Only 11 equations (i.e., (1)-(12) but excluding (9)) for the 12 unknown
coefficients.
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We can solve for some of the variables from the above equations

a00 =
1

2
(a−0 + a+0 ) + 1

12
(b+1 − b

−
1 )

∆x

∆y

a10 = a+0 − a
−
0

a11 = a+1 − a
−
1

a20 = −1

2
(b+1 − b

−
1 )

∆x

∆y

b00 =
1

2
(b−0 + b+0 ) + 1

12
(a+1 − a

−
1 )

∆y

∆x

b01 = b+0 − b
−
0

b11 = b+1 − b
−
1

b02 = −1

2
(a+1 − a

−
1 )

∆y

∆x

The remaining unknowns are a01, a21, b10, b21 which satisfy the equations

a01 +
1

6
a21 =

1

2
(a−1 + a+1 ) (14)

b10 +
1

6
b12 =

1

2
(b−1 + b+1 ) (15)

a21∆y + b12∆x = 0 (16)
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We have four remaining unknowns but only three equations. Hence we
have to make additional assumptions or simplificiations in order to solve
the problem.

For second order accuracy, it is enough to include P1 in our approximation
space and hence we can set

a21 = b12 = 0

The remaining two coefficients are given by

a01 =
1

2
(a−1 + a+1 ), b10 =

1

2
(b−1 + b+1 )

This approach can be used at higher degrees; the resulting solution is same
as BDM polynomial.
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