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Plasma is everywhere

Neutral helium

Plasma: completely ionized gas,
consisting of freely moving positively
charged ions, or nuclei, and negatively
charged electrons.

90% of matter in the universe
1s in plasma state !!!

High temperatures

Electron
4 1\ / escapes

Many applications:

e Terrestrial fusion,

* 1interior of stars, solar wind,

* earth’s magnetic core,

* magnetospheres of stars and planets,

* re-entry of space vehicles into earth’s
atmosphere,

* lasers



Forces on charges and Maxwell’s equation

|<—Wavelenglh —-|

F E
E = electric field B
B = magnetic field 5
q (v x B) E
qE Lorentz force on moving charge g
E _»B F=g(E+vxB)
+q 0
\Y;
Maxwell’s Equations
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— +VxE=0 —— =V X B =—puyJ
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V-B=0, V. .-E= l, T = charge density
€0
J = electric current, (o = magnetic permeability, €p = electrical permittivity
1 :
c= = speed of light
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Models for plasma

Kinetic models
o distribution functions f, for each species
o Boltzmann or Vlasov equation (collision-less)

of.  Of, of, (0. B
or U aw“Lma(E“XB) 8v_(0t X he

+ Maxwell’s equations

Continuum models or fluid description Kinetic theory
o based on conservation laws U

o Mass conservation (Jrequent collisions )

o Momentum conservation (Newton) v

o Energy conservation Two-fluid theory
o Two fluid model I
o Single fluid model

U

I

Diss. MHD | = ( slow dissipation )= | Ideal MHD




Two £luid model

Conservation laws for each species

0P
TAr V- ala =0
5 TV (Pava)
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These equations are coupled with Maxwell’s equations
0B 1 OF
—_— VxFE=0 —— -V XB=-— 14iVq elele
5 T T 10(piqivs + Peqeve)
together with the constraints
1
VB =0, V'EZG—(M%’—FPeQe)
0

Model contains waves in fluids and electromagnetic waves.



Ideal Magnetohydrodynamics

Single fluid conservation laws

dp B
E—FV'(pU) =0
a(gtv)—kv-(pv@)erpl) =J xB+71E

o€
E%—V-[(Ewﬂ?)v] =J-FE

Perfectly conducting fluid (1 = 0), E vanishes in co-moving frame

nJ'=E'=E+vxB=0 — E=—-vxB
Ohm’s Law

Non-relativistic velocities Displacement current is small
19
v| < ¢ /g’ VxB=—uyd (Ampere’s Law)

Electrostatic force TE 1s also small, or quasi-neutral assumption 7 = O.



Ideal MHD

Vector 1dentity (VxB)x B=V-: (B ® B — %\BPI) - (V-B)B
Constraint on magnetic field V-B=0
System of non-linear conservation laws (ug = 1) 9p
E +V- (pv) =0
0
(ap:) +V-(pv@v+ Pl —-B®B)=0
- o0&
Ideal MHD equations = +V-[(+P)v—(v-B)B]=0
Cog(sjervation law form 5:9_? +V - (v®B-B®v)=0
T +div(F) =0
1 D 1 1
P = Z1Bl? _ v = 2 Z|BI2
pt3BI &=t ool +5lB

Total pressure Total energy



Divergence constraint

0

EV B :,V Vv % (vxB) =0 Property of the solution
=0 Does not provide an equation

V- B(z,0) =0 — V- B(z,t) =0

Parallel component
ifV-B#0

Lorentz force is perpendicular to B /

V-(B@B—%|B|21> — (VxB)xB+(V-B)B

Standard numerical methods may not satisfy this constraint.

Affects accuracy and stability of the scheme.

Solutions must remain positive
p >0, p>0

Positivity of density and pressure requires some discrete div-free condition to
be satisfied (Kailiang Wu)



Ideal MHD in one dimension

0B,

Divergence constraint P =0 — B, = constant
x
Conservation laws "o - ou T
ou P + pu* — B?
U  OF pv puv — B, B,
5 +8:1::O U= |pwl|, F = puw — B, B,
E (E+ P)u— (v B)B,
B, uB, —vB,
Flux jacobian matrix | B | i ubB; —wb;, i
oOF : :
A= T has seven real eigenvalues and eigenvectors

u—cr<u—c,<u—cs<u<utc,<utc, <u+tcy

B, 1
ca_’\/ﬁ‘ a = 7_5 Cf/s_\/§ [a2+\b\2:t\/a2—|—\b]) aQbQ} b=

Alfven speed Sound speed Fast/slow magnetosonic speeds

B
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Shocks, etc. and weak solutions

Non-linear hyperbolic PDE:
Cannot expect smooth solutions

even for very smooth initial
data.

Shock waves, contact waves,
rarefactions can develop which
are not smooth solutions.

We relax the notion of solution
and look for weak solutions

/0 /R( £+F(U)ai) dxdt+/Ux 0)p(z,0)dz =0, V¢ € CHR x RY)

t
A

No derivatives required in this notion of solution !!!

Weak solution: piecewise smooth solution satisfying RH
jump conditions

Ft—F =s(U"-U")




Numerical approximation |

Partition space and time into intervals;
finite dimensional approximation of i
unknown solution %
i
J —»{Agfe——
: L. dU, F;,, —F;_
Central difference approximation ] 4 I =1 =

d¢ Ax

Fails due to oscillatory solutions, loss of positivity, etc. !!!

| R t=At
L. d t t au _|_ au O /\0 alt
. a =
inear advection equation: 5 . i »
II \\
/ \ o
>0 duj | W= (hackward difference) ]
a ; a = ackward difference
dt Ax
a<0: duj | M =Y 0 (forward difference)
' dt Ax

Stencil must be tailored to the waves in the problem !!!



Finite volume method

Q

b ‘ 1 ‘ * ‘ * ‘ T 3 Tl ‘ ‘ me1 ‘
J—1/2 j+1/2
Weak solution: Satisfy conservation A dU,; L F r 0
. r—— 01— .1 =
law on each finite volume dt It3 173
Basic unknown: . 1 [T+l IV
: U'~ — Ulx,t,)dx |
mean value in each cell o Ax
J72
What is the flux ?
e
. —_—
Riemann problem at each ——
—— —_—
cell face * A —
I N R N L N T R ™
| | | | | 1 | | |
i-1/2 i+1/2 x=b

X=a

ur T <X, 1 T — ;1
Uz, ty) =147 i+ mm) Uz, t)=Ug (t—;"’

. n
7Uj7

n+1
Uj+1

), t>t,

Self-similar solution of RP



Finite volume method

Evolve waves for small time At (CFL condition)

A
[ : \ 1

n+1 A

At

X, X. ‘
j-1 j-172 X X172 j*

Average solution at new time level

n+1 1 " L —ij_% n n xj—i_% QZ'—QZ'J-_'_% n n
Uj :A—gj / UR Tt;Uj_l,Uj dﬂf—|—/ UR A—t;Uj,Uj+1 da:

J— J

V]

Finite volume form

Ut =07 — A, FUR(O: U, Ufy)) = FUR(O: U, UY)))

RP-2>Evolve—> Average: Godunov finite volume scheme



MHD Riemann problem

Neither genuinely non-
linear nor linearly

uw £ ¢y fast shock/rarefaction wave
degenerate

u £ ¢, rotational discontinuity

7 waves u =+ ¢, slow shock/rarefaction wave .
u contact discontinuity Linearly degenerate
t
’ —
u+C | | |
u-c, u'.-CS ! ) H+Ca | |
Brio-Wu
p b
u P u
B VI B
/v L &

Cs < ¢q < cr: Wave speeds can coincide =2 non-strictly hyperbolic

Non-regular waves: compound waves, over-compressive intermediate shocks possible
Riemann solution is not always unique



Approximate Riemann solver: Roe

t
Idea of P. L. Roe: replace non- A
linear with linear conservation law M A2 A3
oU o OU . v s
57 TAWU; Uj) 5 - =0 Ui =t -
|l
1. A(U U) _ A(U) Simple waves

2. A(UL,Ug) has all real eigenvalues and full set of eigenvectors.

3. A(U.,Ug)(Ugr —Ur) = F(Ug) — F(Uyp)

Exactly solve the linear

problem to estimate flux Fy,

1 1
= 5(17} + Fj1) — §Rj+§‘Aj+%‘Lj+§(Uj+1 - Uj)
\ J \ J
Central Upwinding,' dissipative

N

Isolated discontinuities captured exactly in 1-D

For MHD
U Roe matrix for y = 2 by (Brio & Wu)
U general case by (Cargo & Gallice, (1997))



Approximate Riemann solver: HLL

Model Riemann solution with |
slowest and fastest wave only U*
(Harten, Lax, van Leer) |

UL UR
x;
t
. SL = X/t SR = x/t
Intermediate state
U*
[ — SrUr — S UL — (Fr — Fy)
* S R — S I UL Ur
x;
Numerical flux S, = v/t t Se = v/t
Fo— SRFL—SLFR+SLSR(UR—UL) U
’ Sr— 5L
UL UR
x;
Very simple for any conservation law Contact wave not included.

Only need estimates of wave speeds: Sy, Sp Scheme diffuses contacts



Multi-state Riemann solver

HLLC: include contact wave U Us

(Toro, Spruce, Spears)
UL UR

Intermediate states computed by satisfying jump conditions

For MHD: no unique way to determine intermediate states (Gurski (2004), Li (2005))

5-wave version (HLLD) developed by
Miyoshi & Kusano (2005)

Includes Alfven waves which are also linear
waves.




Higher order finite volume schemes
First order: |U — Up| = 0(Ax); Higher order: |U — U,| = 0(AxP),p > 1
From cell averages, reconstruct piecewise linear approximation

1 :
U(Q?) = Uj + A—QU(ZC - Zl?j)(sj' 5j = mmmod(Uj - Uj—l; Uj_|_1 - Uj>

minmod(a,b) = otherwise

{smin(\a!, b)) s = sign(a) = sign(b)

Need some non-linear limiter function to control numerical oscillations.

Higher order time accuracy using Runge-Kutta scheme.



Two dimensional case

MHD model in conservation form

glj}k‘f".i
U OF 0OG N
ot " ar Tay =
g’ Gk Uk Bk
/r
|
Fjin-

Finite volume method

dU; x

Divergence constraint Use 1-D Riemann
OB OB solver to estimate fluxes
ox oy

But (B-n); + (B -n)g

Two classes of methods ﬁzﬁpproxmﬁlately div-free
Exactly div-free



Projection methods

Use a standard scheme, say Godunov FV with Roe solver, to update solution

B" - B but V.B*£0

Correct B* by removing the divergence (Brackbill & Barnes (1980))

B —VxA+Vo .— Divergence contained here

Solve for the potential Ap=V - -B" min J (B — B*)?dx
B

suchthatV-B =0
Solution at next time B""' = B* — V¢

1 1
gn+1 — &* _ _‘B*‘2 + —‘Bn+1‘2
Need to solve a matrix problem / 2 2
Internal energy/temperature changed; add some correction

Conservation of magnetic flux is lost; does not affect results



Mixed GLM

Hyperbolic divergence cleaning

dp
Dedner et al. ot + V- (pv) =0 Generalized Lagrange multiplier
0
(pv) +V-(pv®v+ Pl — B® B) =0
ot o 02_¢ 4 Ch o 2 Ay
— 4+V-[(E+Pw—(v-B)B|= or 2ot
ot /’
9B |\ ¢ weB-B Vi) =0
5 T (v®B-B®v)+ Vi = Damps divergence
O ¢
e +¢V-B= CZ Transports divergence

Hyperbolic system: 9 real eigenvalues

—Chy, U—Cf, U—Cq U—Csy U, UTCs, UTCq, UFCF, FCp

\ Carryjumps il’l B - n and w

c,= maximum wave speed ¢p = 0(y/cp): equal hyperbolic

in whole domain and parabolic time scales



Hyperbolic divergence cleaning

Propagation of divergence error

—+— no corection

~¥-hyperbolic GLM
—&— mixed GLM
1 --#-— mixed EGLM

Lijmp

KX

'x*****“x****x
'ﬁ'%—*x*—*—*'*“x"‘”""xxxx"%x*

Y

0 02 04 06 08 1

o

0.1

O O (O O

t

Toth (2000)

Peak in B, (y =5/3)
Computational domain: [—0.5, —0.5] x [1.5, 1.5]
Boundaries: periodic
o Uy Uy u, B, B, B, p

1.0 1.0 1.0 0.0 r(x2+ y?)/A/4n 0.0 1//4m 6.0
r(s) := 4096 s* — 128 5% + 1



S-wave Riemann solver

In one dimension (B, ); = (B, )z but not true in multi-D

ox

Powell modified MHD equations

Eigenvalues are
Uu—cr<u—c<u—c<u=usutcs<utc,<u+tcy

There is a zero eigenvalue !!!

Corresponding mode is undamped !!!

pu |
P+ pu* — B?
puv — B, B,
puw — B, B, _0
(E+Pu—(v-B)B,|
0
uB, —vB,
uB, —whB, |
ou oF 0G
ot oz oy

New eigenvalue u corresponds to a divergence wave

oD

— +v-VD =0,

ot

1
D:=-V-B

P

Construct Riemann
solver, e.g. Roe type

Divergence errors are
advected away.



Entropy stable schemes

oU OF, Entropy pair: n(U), f, (U)
ot + or. 0 1 is strictly convex function

fa(U) = n"(U)F,'(U)

Smooth solutions Discontinuous solutions
0 OFf.
5’77+3fa20 n fgo
875 8:Ca ot axa

Symmetrizability & Existence of convex entropy (Mock, Godunov)

ov ov
U—V =19 — Ay — + Ay — =0
) ~~ Ot N~~~ al’a
Entropy variables SPD Sym

For MHD, we have the thermodynamic entropy s = In(pp~7Y)

9 (p9) 4 V- (ps0) + (7~ 1>p<”];B>

V-B=0

Entropy equation follows if V- B = 0, may not hold at numerical level !!!



Entropy stable schemes

Also, the change of variables U — V = n'(U) fails to symmetrize the MHD model !!!

Godunov showed how to symmetrize conservation laws with an involution constraint

oU OF,

/ T _ . —
5 +axa+¢(V) V-B=0 V-¢(V)=09(V)

Entropy equation follows without requiring divergence constraint

on N Ofa ps

PSVq
ot Oz, ’ " J

v—1 v—1

This modification is 1dentical to Powell’s work !!!

Finite volume scheme

dUj 4 FJ’+%J<? B Fj—%,k Gj,kJr% — Gl
dt Ax Ay




Entropy stable schemes

Entropy conserving scheme (following Tadmor’s i1deas)

(Vierk = Vik) - Fii1 g = fin = Fie = (@510 — ¢j’k)(Bw)J+%7k

Such fluxes for MHD can be constructed (C &
Klingenberg (2016), Winters & Gassner (2016))

For discontinuous solutions, need to generate
entropy at jumps; numerical flux
1
F}—i—%,k - §R|A|RT(V}+1J€ - Vﬂ:)

Jumps in entropy variables generate entropy;
compare with Roe scheme.

Stable scheme without exactly making the >
divergence zero. ) 5125 (@) 1024 1024

F1G. 3. Density at t = 0.5 for Orszag-Tang test case on different meshes. The density range is
0.09 to 0.48

Summation-by-parts DG schemes (Gassner et al.)



Constrained transport schemes

Staggered storage of variables Remaining variables
(Maxwell: Yee (1967)) stored at cell center
Store normal component B - n on . N
each face T
Induction equation has 1-D form
an 8E’Z 83 aEZ Ci—.lvj = = Ci—ﬁzl,j
+ =0, y_ =0 TB
ot Oy ot Ox . G
Define finite difference scheme on y Chin
the faces L Titr/2
n+1 n n n
Belisyy = By Bl — B,y
At Ay
n+1 n n n
(By)i,j—i—% o (By)i,j_‘_% B (EZ)Z'+%J'_|_% o (Ez)i_%,j+% _ 0

At Ax



Constrained transport schemes

Measure divergence at cell center

(Bm)w%,j - (Bw)i—l,j (By)i,ﬁ% B (By)i’j—%

Vi -B);;= s
(Vi B)ig Ax i Ay
n+l _ At
(Vi - B) = (Vi B)}; — AzAy (Ez)i—l-%,j—l‘% - (Ez)1;+%,j—% - (Ez)i—%,j—I—% + (E)
All the E, cancel !!! — (Vp, - B)”Jrl (Va B)
Discrete approximation of V - B is kept zero. Z: ]
How to estimate the emf at the cell corner ? ] _0:1
* Interpolation of primary data 2 ol
* Interpolate solution of 1-D Riemann problems £
 Solve 2-D Riemann problem & I v
0.0 jL

1 1 1
—0.4 —0.2 0.0

1 1
0.2 0.4

Guillet et al.



2-D Riemann problem

U = (U7, b, )

)b

U = (U, b,

U™, b;,b;)

(

use —

A A o
”
S N N
|
|
4 S W 9 3
W ” W
”
\\\\\\\ U S I S N S
S S S
|
|
”

3 W ]
o S - A
g g 2
S S S
”

-~ ! -~
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o5 n



Discontinuous Galerkin Method

Piecewise discontinuous /

polynomial approximation

o—a—-o—""
Jumps help to stabilize the method
Compact stencil, good for parallel computing ¢ o e — +

(Semi-discrete DG scheme) Find w;,(-,t) € V{ such that for all v;, € VE
ou of

ou, o — Oun dy Ovn
at+ax_o J ot vhdx Lf(uh) ™ dx

L (3.1)

A

+ fi+‘7(t)vh(xi—+1§) —Ti_

Entire polynomial is evolved forward in time
Fluxes across elements obtained from Riemann solvers
Very high order accuracy can be achieved



Discontinuous Galerkin Method

Gauss-Legendre nodes for e ¢ o
gene (B-n), # (B-n),
Lagrange basis :
¢« o o use 8-wave Riemann solver

« VB = 0 inside each cell.

« But(B:-n), # (B -n)g

* Use 8-wave Riemann solver or
entropy stable fluxes.

Locally divergence-free basis for B
(L1 et al., Pablo et al.)

Guillet et al.

Density Magnetic pressure Mach number

Figarv 10, Oryzag-Tang vortex fext problem ot ¢ = 0.5, The densily, pressure and Mach sumber are shown on a 5127 grid, compated using the thard-order
DG scheme with the Powell method
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Discontinuous Galerkin Methods

Divergence-free reconstruction (Balsara)

(y) € Py

xT

B

le—
7.5
5.0
25
0.0
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—7.5

]
=
'

I
-

7.5

5.0

2.5

0.0
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| Vl) DL o - N w » w o

(y) € By

By

Find By, By, such that
V-B=0
B - n agrees with value on face

B is Brezzi-Douglas-Marini polynomial.
Beyond third order (k>2), need information
of VX B to perform reconstruction (Hazra et al.)

Hybrid DG scheme on faces/cells

le—

I
LN 2o PN W s u o

Total internal reflection of
electromagnetic wave by
Maxwell’s equation

| | |
W N B O H N W W

-
®

4’th order div-free scheme (Hazra
et al. (2019))

| | | I
w N PR O N W W

Only using H(div) elements

x [um]



Discontinuous Galerkin Methods

B, € Q32 B, € Qa3

Constraint preserving DG schemes - - — e .
(C, 1. Sci. Comp., 2018 for I
induction equation) : "

B is Raviart-Thomas polynomial - - I

Location of dofs of Raviart-Thomas polynomial for k = 2

Hybrid DG scheme on faces and
cells; Petrov-Galerkin type

V- B = 0 everywhere, B - n cts.

% error in By

B,
M/w ! /_ﬂ Magnetic
10 le-15 2 4
_ loop
advection

P % error in v

ShOCk tube 1504 I_\ w (d) (k= 2) with Fu/Shu limiter
q/h . \: 7“;‘/

—0.04 A

04

L le—15

05
41 0.0
5 ~0.51

Rotated [L

(f) (k = 3) with Fu/Shu limiter

-1.0 -0.5 0 0.5 1.0 -1.0 - 1.0



Positivity property

Blast wave: 200 x 200 cells

1000 7 < 0.1 Positivity needs some div-
0.1  r>0.1 free property to hold
(Kailiang Wu)

p:

—

Locally div-free basis
Godunov’s MHD model
=>» Positive scheme

(Wu & Shu, 2019)

RTDG div-free scheme

O Cannot prove positivity of globally div-free DG scheme.
 Multi-dimensional stencil due to corner fluxes complicates analysis.



Summary

MHD model poses special challenges in its numerical solution.

Being hyperbolic conservation law, Godunov’s approach using approximate
Riemann solvers provides a robust strategy.

Ideas based on entropy stability theory and constrained transport lead to useful
schemes, even at high order of accuracy, using discontinuous Galerkin method.

Constrained transport approaches are very elegant; DG for high order accuracy.

There are issues in Riemann solver design, especially for 2-D Riemann solvers,
which are not well understood.

Designing provably positive schemes is difficult due to the need to satisfy a multi-
dimensional constraint involving the divergence.

Limiting solution without degrading accuracy still poses challenges. How to decide

where/when to limit the solution ? Techniques of machine learning are proving to be
usefull (Ray & Hesthaven).
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