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Plasma is everywhere

High temperaturesNeutral helium

Electron
escapes

Plasma: completely ionized gas, 
consisting of freely moving positively 
charged ions, or nuclei, and negatively 
charged electrons.

90% of matter in the universe 
is in plasma state !!!

Many applications: 
• Terrestrial fusion, 
• interior of stars, solar wind, 
• earth’s magnetic core, 
• magnetospheres of stars and planets, 
• re-entry of space vehicles into earth’s 

atmosphere, 
• lasers



Forces on charges and Maxwell’s equation
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Matter on earth is mostly made up of neutral atoms and molecules.
At high temperatures, some electrons can get knocked out of atoms/molecules, creating positively

charged ions and negatively charged electrons.
The name plasma is usually used to refer to completely ionized gas, consisting of freely moving

positively charged ions, or nuclei, and negatively charged electrons.
Astronomers estimate that 90% of the matter in the universe is in the plasma state.
Many applications

• Terrestrial fusion

• Interior of stars

• Solar wind

• Magnetospheres of stars and planets

The presence of charged particles gives rise to electric E and magnetic B fields and they are also
influenced by these fields. A charge q moving with velocity v experiences a force

F = q(E + v ⇥B)

The dynamics of the electromagnetic field is governed by the Maxwell’s equations which can be
written as

@B

@t
+r⇥E = 0,

1

c2

@E

@t
�r⇥B = �µ0J

where

J = electric current, µ0 = magnetic permeability, ✏0 = electrical permittivity

c =
1

p
µ0✏0

= speed of light

1

𝑬 = electric field
𝑩 = magnetic field

Lorentz force on moving charge 𝑞
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We also have the constraints

r ·B = 0, r ·E =
⌧

✏0
, ⌧ = charge density

where the first condition is related to non-existence of magnetic monopoles.

1 Models for plasma

Two useful models for describing plasma are based on kinetic and continuum assumptions.

1.1 Kinetic description

In the kinetic description, you have velocity distribution functions f↵ = f↵(t,x,v) for ions and
electrons as the basic unknowns, and you write down a Boltzmann-type equation for these functions.

@f↵

@t
+ v · @f↵

@x
+ q↵(E + v ⇥B) · @f↵

@v
=

✓
@f↵

@t

◆

col

, ↵ = i, e

The collision term is not the classical one, since charged particles exert long range forces.
If we ignore the collision term, we get the collision-less Boltzman equation which is usually called

the Vlasov equation.
The numerical solution of Boltzmann equations is computationally expensive due to the fact that

we have 7 independent variables (t, x1, x2, x3, v1, v2, v3) and at present it does not seem feasible to
solve them for even moderate sized problems like a fusion reactor.

In this talk, I will not be concerned with the kinetic approach but only the continuum approach.

2 Continuum description

In the continuum or fluid decription of plasma, we assume that we can define densities for mass,
momentum and energy, and we write down the conservation laws for these quantities.

Formally, we can obtain these equations by averaging or taking certain moments of the Boltzmann
equation.

2.1 Two fluid model

In the two fluid approximation, we separately model the dynamics of ions and electrons with their
own individual density, velocity, etc. The conservation laws are similar to the Euler equations for
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Maxwell’s Equations



Models for plasma

Kinetic models
o distribution functions 𝑓% for each species
o Boltzmann or Vlasov equation (collision-less)

Continuum models or fluid description
o based on conservation laws

o Mass conservation
o Momentum conservation (Newton)
o Energy conservation

o Two fluid model
o Single fluid model 

+ Maxwell’s equations
66 Elements of plasma physics

Fig. 2.8. Different theoretical plasma models and their connections.

The explicit expressions for τe and τi may be found in Section 3.2.4 (Eqs. (3.50)
and (3.51), which demonstrate the faster relaxation of the electrons due to the
smallness of the mass ratio: τe/τi ∼ (me/mi )

1/2 ≪ 1). Once more: transport
theory is an enormous field of research by itself, the needed results of which have
been collected in Chapter 3. Here, we just indicate the main line of thought leading
to the fluid description. In particular, from the explicit expressions for τe and τi ,
frequent collisions imply that the plasma densities ne,i should be high enough for
given values of the temperatures Te,i .

(b) Macroscopic scales The plasma dynamics described by the two-fluid equa-
tions still involves the small length and time scales of the fundamental phenomena
we have encountered, viz. the plasma frequency ωpe, the cyclotron frequencies
#e,i , the Debye length λD, and the cyclotron radii Re,i (and also a quantity not yet
encountered, viz. the electron skin depth δe ≡c/ωpe; see Eq. (3.100)). Therefore,
the essential second step towards the magnetohydrodynamics (MHD) description
of plasmas is to consider large length and time scales:

λMHD ∼ a ≫ Ri , τMHD ∼ a/vA ≫ #−1
i . (2.110)

Here, the magnetic field crucially enters: the larger the magnetic field strength, the
more easily these conditions are satisfied. On these scales, the plasma is considered
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Two fluid model

compressible flows with an extra force term due to the Lorentz force on charged particles

@⇢↵

@t
+r · (⇢↵v↵) =0

@(⇢↵v↵)

@t
+r · (⇢↵v↵ ⌦ v↵ + p↵I) =

1

m↵
⇢↵q↵(E + v↵ ⇥B), ↵ = i, e

@E↵
@t

+r · [(E↵ + p↵)v↵] =
1

m↵
⇢↵q↵E · v↵

where the total energy is

E↵ =
p↵

�↵ � 1
+

1

2
⇢↵|v↵|2

These equations are coupled with Maxwell’s equations

@B

@t
+r⇥E = 0,

1

c2

@E

@t
�r⇥B = �µ0(⇢iqivi + ⇢eqeve)

together with the constraints

r ·B = 0, r ·E =
1

✏0
(⇢iqi + ⇢eqe)

We have a system of 16 hyperbolic balance laws which can be solved using techniques like finite
volume method, which I will briefly describe later. Note that since we are solving the Maxwell’s
equations, we have to resolve the propagation of light which moves much faster than the fluid. This
makes the computations very expensive.

2.2 Magnetohydrodynamics

What is commonly called MHD is a single fluid description of plasma. While this can be derived from
the two fluid model using many physical arguments, it is simplest to just postulate the conservation
laws

@⇢

@t
+r · (⇢v) =0

@(⇢v)

@t
+r · (⇢v ⌦ v + pI) =J ⇥B + ⌧E

@E
@t

+r · [(E + p)v] =J ·E

together with the Maxwell equations. For a perfectly conducting fluid, the electric field in the
co-moving frame vanishes

E0 = E + v ⇥B = 0 =) E = �v ⇥B

3

Conservation laws for each species

Model contains waves in fluids and electromagnetic waves.



Ideal Magnetohydrodynamics

compressible flows with an extra force term due to the Lorentz force on charged particles
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Single fluid conservation laws

Perfectly conducting fluid (𝜂 = 0), 𝑬 vanishes in co-moving frame

Non-relativistic velocitiesMoreover, let us consider non-relativistic velocities

|v| ⌧ c

in which case the displacement current and electrostatic acceleration can be ignored, leading to
Ampere’s law

J =
1

µ0
r⇥B

Using the identity

(r⇥B)⇥B = r ·
✓
B ⌦B � 1

2
|B|2I

◆
� (r ·B)B

we can write the equations as a system of conservation laws

@⇢

@t
+r · (⇢v) =0

@(⇢v)

@t
+r · (⇢v ⌦ v + PI �B ⌦B) =0

@E
@t

+r · [(E + P )v � (v ·B)B] =0

@B

@t
+r · (v ⌦B �B ⌦ v) =0

where

P = p+
1

2
|B|2, E =

p

� � 1
+

1

2
⇢|v|2 + 1

2
|B|2

In addition we have to satisfy the constraint on the divergence

r ·B = 0

This constraint does not provide an additional equation, but is just a property of the model. The
induction equation implies that

@

@t
r ·B = r ·r⇥ (v ⇥B) = 0

so that
r ·B(x, 0) = 0 =) r ·B(x, t) = 0

Satisfying this condition in numerical computations is not automatic and can have severe implications
to the stability of the algorithm and the accuracy of the solutions.

4
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Displacement current is small

(Ampere’s Law)

Electrostatic force 𝜏𝑬 is also small, or quasi-neutral assumption 𝜏 = 0.

compressible flows with an extra force term due to the Lorentz force on charged particles
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These equations are coupled with Maxwell’s equations
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We have a system of 16 hyperbolic balance laws which can be solved using techniques like finite
volume method, which I will briefly describe later. Note that since we are solving the Maxwell’s
equations, we have to resolve the propagation of light which moves much faster than the fluid. This
makes the computations very expensive.

2.2 Magnetohydrodynamics

What is commonly called MHD is a single fluid description of plasma. While this can be derived from
the two fluid model using many physical arguments, it is simplest to just postulate the conservation
laws
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⌘J 0 = E0 = E + v ⇥B = 0 =) E = �v ⇥B

3
Ohm’s Law



Ideal MHD

Moreover, let us consider non-relativistic velocities

|v| ⌧ c

in which case the displacement current and electrostatic acceleration can be ignored, leading to
Ampere’s law
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we can write the equations as a system of conservation laws
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In addition we have to satisfy the constraint on the divergence

r ·B = 0

This constraint does not provide an additional equation, but is just a property of the model. The
induction equation implies that
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so that
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Satisfying this condition in numerical computations is not automatic and can have severe implications
to the stability of the algorithm and the accuracy of the solutions.
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Ideal MHD equations

Conservation law form
𝜕𝑈
𝜕𝑡 + 𝑑𝑖𝑣 𝐹 = 0
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Constraint on magnetic field

System of non-linear conservation laws (𝜇6 = 1)

Total pressure Total energy



Divergence constraint

Property of the solution
Does not provide an equation

Standard numerical methods may not satisfy this constraint.

Lorentz force is perpendicular to 𝑩

Affects accuracy and stability of the scheme.

Solutions must remain positive
𝜌 > 0, 𝑝 > 0

Positivity of density and pressure requires some discrete div-free condition to 
be satisfied (Kailiang Wu)

Parallel component
if ∇ ⋅ 𝐵 ≠ 0

Moreover, let us consider non-relativistic velocities
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in which case the displacement current and electrostatic acceleration can be ignored, leading to
Ampere’s law
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we can get a component of force along B unless r ·B = 0. This unphysical force is responsible for
spurious solutions and can leads to instabilities in the computations.
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Ideal MHD in one dimension
3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U
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+
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= 0

where
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P + ⇢u
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2
x
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uBz � wBx
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We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

Conservation laws

Divergence constraint

Flux jacobian matrix

has seven real eigenvalues and eigenvectors

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cs =

r
1

2

h
a2 + |b|2 �

p
(a2 + |b|2)2 � 4a2b2x

i
, cf =

r
1

2

h
a2 + |b|2 +

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢

⇢u

⇢v

⇢w

E
By

Bz

3

777777775

, F =

2

666666664

⇢u

P + ⇢u
2 � B

2
x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cf/s =

r
1

2

h
a2 + |b|2 ±

p
(a2 + |b|2)2 � 4a2b2x

i

where

a =

r
�p

⇢

is the sound speed.

5

Alfven speed Sound speed Fast/slow magnetosonic speeds

3 1-D MHD model

In the 1-D case, the divergence free condition

@Bx

@x
= 0 =) Bx = constant

The MHD system has the form
@U

@t
+

@F

@x
= 0

where

U =

2

666666664

⇢
⇢u
⇢v
⇢w
E
By

Bz

3

777777775

, F =

2

666666664

⇢u
P + ⇢u2 � B2

x

⇢uv � BxBy

⇢uw � BxBz

(E + P )u� (v ·B)Bx

uBy � vBx

uBz � wBx

3

777777775

We can check that this system is hyperbolic; the flux Jacobian

A =
@F

@U

has 7 real eigenvalues and corresponding linearly independent eigenvectors. The eigenvalues are

u� cf  u� ca  u� cs  u  u+ cs  u+ ca  u+ cf

where cs, cf are the slow and fast magnetosonic speeds and ca is the Alfven wave speed. The Alfven
wave speed is given by

ca =
|Bx|p

⇢

and the magnetosonic speeds are given by

cf/s =

r
1

2

h
a2 + |b|2 ±

p
(a2 + |b|2)2 � 4a2b2x

i
, b =

B
p
⇢

where

a =

r
�p

⇢

is the sound speed.

5



Shocks, etc. and weak solutions

The numerical solution of hyperbolic PDE is generally more involved due to the appearance of
shocks and other discontinuities in the solution even when starting with smooth initial data. Hence
we look for only weak solutions which satisfy an integral form of the equation
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◆
dxdt+
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U (x, 0)�(x, 0)dx = 0, 8� 2 C

1
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In particular, at a discontinuity moving at speed s, the solution must satisfy the RH jump condition

F+ � F� = s(U+ �U�)

4 Finite volume method

If we try to approximate solutions of hyperbolic PDE with classical Galerkin methods or central
di↵erence approximations

dUj

dt
+

Fj+1 � Fj�1

�x
= 0

then the solutions turn out to be highly oscillatory and the computations can break down quite
quickly. This is fundamentally because the solution contains waves which propagate in certain
directions but the stencil of the scheme is ignorant of this. For example, for the linear advection
equation
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then the schemes behave in a stable manner, e.g., we have stability in maximum norm and solution
is total variation bounded.

For non-linear system of equations, we have to identify the waves that arise in the solution and do
some trick like the above. A systematic approach was developed by the Russian mathematician S. K.
Godunov. This technique is called the finite volume method and is based on conservation principles.
Let us divide the spatial domain into non-overlapping finite volumes or cells Ij = [xj� 1

2
, xj+ 1

2
] and

satisfy the conservation over each cell
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dt
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2
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2
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Non-linear hyperbolic PDE: 
Cannot expect smooth solutions 
even for very smooth initial 
data.

Shock waves, contact waves, 
rarefactions can develop which 
are not smooth solutions.

We relax the notion of solution 
and look for weak solutions

No derivatives required in this notion of solution !!!

Weak solution: piecewise smooth solution satisfying RH 
jump conditions
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Numerical approximation

The numerical solution of hyperbolic PDE is generally more involved due to the appearance of
shocks and other discontinuities in the solution even when starting with smooth initial data. Hence
we look for only weak solutions which satisfy an integral form of the equation
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Central difference approximation

Partition space and time into intervals; 
finite dimensional approximation of 
unknown solution

Fails due to oscillatory solutions, loss of positivity, etc. !!!

Linear advection equation:

The numerical solution of hyperbolic PDE is generally more involved due to the appearance of
shocks and other discontinuities in the solution even when starting with smooth initial data. Hence
we look for only weak solutions which satisfy an integral form of the equation
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Stencil must be tailored to the waves in the problem !!!
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Figure 13.1: Discretization of space and time

For the time derivative, it is natural to use the forward difference scheme since we know
the current solution and want to compute the solution in the future

D+
t Un

j =
Un+1

j � Un
j

�t

Combining these two approximations, we obtain the forward time and central space (FTCS)
discretization

D+
t Un

j = µD+
x D�

x Un
j , n = 0, 1, 2, . . .

i.e.,

Un+1
j � Un

j

�t
= µ

Un
j�1 � 2Un

j + Un
j+1

h2

By solving for Un+1
j , we obtain the update equation

Un+1
j = (EhUn)j = �Un

j�1 + (1 � 2�)Un
j + �Un

j+1

where

� =
µ�t

h2

This is an explicit scheme since it has the form Un+1 = H(Un) where H is a known function
that can be evaluated directly.

13.3 Maximum principle
If �  1/2, then Un+1

j is given by a convex linear combination of Un
j�1, U

n
j , Un

j+1. Hence

min{Un
j�1, U

n
j , Un

j+1}  Un+1
j  max{Un

j�1, U
n
j , Un

j+1}

which implies that

min
k

Un
k  Un+1

j  max
k

Un
k , 8j

Simplest hyperbolic PDE

• Linear, scalar, convection (advection) equation for u(x, t)

@u

@t
+ a

@u

@x
= 0, x 2 R

with initial condition
u(x, 0) = u0(x)

• Exact solution
u(x, t) = u0(x� at)

x

u

t = 0 t = �t

a�t

a > 0

We can even put a
discontinuous initial condition
which is just transported at
speed a by the PDE.
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6.3 Finite volume scheme
Let us divide the domain into non-overlapping finite volumes (vertex-based or vertex-
centered)
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The finite volume scheme is
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with boundary conditions

u0 = 0, un = 1

Weak solution: Satisfy conservation 
law on each finite volume

The numerical solution of hyperbolic PDE is generally more involved due to the appearance of
shocks and other discontinuities in the solution even when starting with smooth initial data. Hence
we look for only weak solutions which satisfy an integral form of the equation
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In particular, at a discontinuity moving at speed s, the solution must satisfy the RH jump condition

F+ � F� = s(U+ �U�)

4 Finite volume method

If we try to approximate solutions of hyperbolic PDE with classical Galerkin methods or central
di↵erence approximations
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then the solutions turn out to be highly oscillatory and the computations can break down quite
quickly. This is fundamentally because the solution contains waves which propagate in certain
directions but the stencil of the scheme is ignorant of this. For example, for the linear advection
equation
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if we approximate the derivative based on sign of speed a
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then the schemes behave in a stable manner, e.g., we have stability in maximum norm and solution
is total variation bounded.

For non-linear system of equations, we have to identify the waves that arise in the solution and do
some trick like the above. A systematic approach was developed by the Russian mathematician S. K.
Godunov. This technique is called the finite volume method and is based on conservation principles.
Let us divide the spatial domain into non-overlapping finite volumes or cells Ij = [xj� 1
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Here Uj approximates the mean value of the solution in cell Ij
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and is the basic unknown in the method; note that we do not compute point values which are not
well defined for weak solutions. So the solution is represented by piecewise constant states separated
by some jumps. At each face xj+ 1
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and the question is how to compute the flux Fj+ 1
2
? Godunov solved this Riemann problem exactly

for the Euler equations. The solution is self-similar and contains shocks, rarefactions and contact
disconuities. The idea is to evolve these waves for a small duration �t so that waves from neigbouring
Riemann problems do not interact with one another, and then average the solution back to piecewise
constant states
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In the case of the MHD Riemann problem, we get the following type of waves:

u± cf fast shock/rarefaction wave
u± ca rotational discontinuity
u± cs slow shock/rarefaction wave

u contact discontinuity

The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.

5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
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Riemann problem at each
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Here Uj approximates the mean value of the solution in cell Ij

Un
j ⇡ 1

�x

Z x
j+1

2

x
j� 1

2

U (x, tn)dx

and is the basic unknown in the method; note that we do not compute point values which are not
well defined for weak solutions. So the solution is represented by piecewise constant states separated
by some jumps. At each face xj+ 1

2
we have a Riemann problem with initial data

U (x, tn) =

(
Un

j x < xj+ 1
2

Un
j+1 x > xj+ 1

2

and the question is how to compute the flux Fj+ 1
2
? Godunov solved this Riemann problem exactly

for the Euler equations. The solution is self-similar and contains shocks, rarefactions and contact
disconuities. The idea is to evolve these waves for a small duration �t so that waves from neigbouring
Riemann problems do not interact with one another, and then average the solution back to piecewise
constant states

Un+1
j =

1

�x

2

4
Z xj

x
j� 1

2

UR

✓
x� xj� 1

2

�t
;Un

j�1,U
n
j

◆
dx+

Z x
j+1

2

xj

UR

✓
x� xj+ 1

2

�t
;Un

j ,U
n
j+1

◆
dx

3

5

which can be written in the finite volume form

Un+1
j = Un

j � �t

�x
[F (UR(0;U

n
j ,U

n
j+1))� F (UR(0;U

n
j�1,U

n
j ))]
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5 Approximate Riemann solvers
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is self-similar and contains shocks, rarefactions and contact disconuities. The idea is to evolve these
waves for a small duration �t so that waves from neigbouring Riemann problems do not interact
with one another, and then average the solution back to piecewise constant states
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In the case of the MHD Riemann problem, we get the following type of waves:

u± cf fast shock/rarefaction wave
u± ca rotational discontinuity
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The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.
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Finite volume method

Here Uj approximates the mean value of the solution in cell Ij
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In the case of the MHD Riemann problem, we get the following type of waves:

u± cf fast shock/rarefaction wave
u± ca rotational discontinuity
u± cs slow shock/rarefaction wave

u contact discontinuity

The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.

5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
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5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
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Finite volume form

Evolve waves for small time Δ𝑡 (CFL condition)

RPàEvolveàAverage: Godunov finite volume scheme

210 Chapter 23. Godunov scheme

Figure 23.1: Waves from the Riemann problems in finite volume method
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The total solution is made up by patching the local Riemann problem solutions. At t = tn+1
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Step 2 (Projection): Using the Riemann solutions, we can compute the cell average at
time tn+1
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This gives the formula to obtain the solution at next time level. However, we would like to
get simpler expression for the scheme written in terms of a numerical flux function. Let us
integrate the conservation law over space-time slab (xj� 1
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If wR(⇠;ul, ur) is continuous at ⇠ = 0 then f(wR(⇠;ul, ur)) is continuous at ⇠ = 0. If
wR(⇠;ul, ur) is discontinuous at ⇠ = 0, then there is a stationary discontinuity at x = 0;
hence by RH condition

f(wR(0+; ul, ur)) = f(wR(0�; ul, ur))

Δ𝑡
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Here Uj approximates the mean value of the solution in cell Ij
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is self-similar and contains shocks, rarefactions and contact disconuities. The idea is to evolve these
waves for a small duration �t so that waves from neigbouring Riemann problems do not interact
with one another, and then average the solution back to piecewise constant states
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In the case of the MHD Riemann problem, we get the following type of waves:

u± cf fast shock/rarefaction wave
u± ca rotational discontinuity
u± cs slow shock/rarefaction wave

u contact discontinuity

The contact and rotational discontinuities are linear waves. The characteristic fields associated with
the slow and fast waves are neither genuinely non-linear or linearly degenerate; hence we can get
non-regular waves , like compound waves and overcompressive intermediate shocks.
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Figure 1: Waves in 1-D MHD Riemann problem

5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
solution, and moreover we only need the flux and not the full Riemann solution, we can try to obtain
an approximate solution to the Riemann problem. There are many ways to do this and I will discuss
two of them.

5.1 Linearized methods

In the method pioneered by Phil Roe, we replace the non-linear conservation law with the linear one
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+ A(Un

j ,U
n
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and solve the Riemann problem for this equation. The matrix A is constructed so that the problem
is still hyperbolic.

1. A(U ,U ) = A(U )

2. A(UL,UR) has all real eigenvalues and full set of eigenvectors.

3. A(UL,UR)(UR �UL) = F (UR)� F (UL)

8

412 BRIO AND WU 

Numerical solutions which were obtained for 800 grid points with Ax = 1 and 
At = 0.2 (CFL- 0.8) are shown after 400 time steps unless specified otherwise. 
Initial discontinuity is located in the middle of the computational interval. The 
problem was solved by several numerical schemes including the newly constructed 
second-order Roe-type scheme, which was extended to second order by Harten’s 
approach [S], the Lax-Friedrichs scheme [13], the Lax-Wendroff scheme with 
Lapidus-type viscosity [14]-[15], and the FCT scheme [16]. 

Figure 2 shows the results for the second-order upwind scheme using the Roe 
matrix in the form of A(V) with V given by (26) and (28)-(30). The solution con- 
sists of the following waves separated by constant states. The waves moving to the 
left are a fast rarefaction wave, denoted by FR in the figure, and a slow compound 
wave, denoted by SM. The waves moving to the right include a contact discon- 
tinuity, denoted by C, a slow shock (SS), and a fast rarefaction wave, FR. The 
solution was checked by calculating Riemann invariants across the rarefaction 

X 

FIG. 2. Second-order upwind scheme. 

Brio-Wu



Approximate Riemann solver: Roe

Idea of P. L. Roe: replace non-
linear with linear conservation law
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5 Approximate Riemann solvers

The exact solution to the Riemann problem can be an expensive process as this involves solving some
algebraic equations by a Newton method. Since we are anyway interested only in an approximate
solution, and moreover we only need the flux and not the full Riemann solution, we can try to obtain
an approximate solution to the Riemann problem. There are many ways to do this and I will discuss
two of them.
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8Exactly solve the linear 
problem to estimate flux

For MHD
q Roe matrix for 𝛾 = 2 by (Brio & Wu)
q general case by (Cargo & Gallice, (1997))

Isolated discontinuities captured exactly in 1-D

Riemann problem
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The intermediate states are given by

U⇤
1 = Wr,1r1 +Wl,2r2 +Wl,3r3

U⇤
2 = Wr,1r1 +Wr,2r2 +Wl,3r3

It is easy to check that the jump in the intermediate states is
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Simple waves

The Riemann problem just consists of simple waves and the flux can be written down as

Fj+ 1
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2
(Fj + Fj+1)�
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2
Rj+ 1

2
|⇤j+ 1

2
|Lj+ 1

2
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The extra terms add some dissipation into the scheme but this arises naturally from the wave model.
For the Euler equations, such a matrix was constructed by Roe, and such schemes can exactly capture
isolated shocks and contact discontinuities. For MHD, it is possible to find a matrix for the case
� = 2 but not in general. What is done in practice is to use

A(UL,UR) = A(Ū ), Ū = some average of UL,UR

but this may not satisfy the third condition.

5.2 HLL scheme

Harten, Lax, van Leer proposed to model the Riemann solution by considering only the slowest and
fastest waves that arise in the solution. There is an intermediate state U⇤ between the two waves
which is found by integrating the conservation law over a space time region

U⇤ =
SRUR � SLUL � (FR � FL)

SR � SL

Then to obtain the flux, we integrate over one-half of the space-time region

F⇤ =
SRFL � SLFR + SLSR(UR �UL)

SR � SL

The scheme is very simple and can be applied to any system of equations; all we need are good
estimates of SL, SR.

5.3 Multi state solvers

The HLL solver is very robust but rather dissipative, especially for contact waves which are not
included in the wave model. Contact waves being linear waves are highly susceptible to numerical
di↵usion. Once they get smeared out, we lose them forever, unlike shocks, which can self-steepen
due to non-linearity. The HLLC solver was developed for Euler equations which included the contact
wave, so there are two intermediate states. These states are found by satisfying the jump conditions
across the waves and using conservation arguments. For MHD, there are 3-wave solvers developed
by Gurski (2004) and Li (2005) and a 5-wave solver by Miyoshi and Kusano.
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Intermediate state

Numerical flux

Very simple for any conservation law
Only need estimates of wave speeds: 𝑆J, 𝑆K

Contact wave not included.
Scheme diffuses contacts

Unþ1
i ¼ Un

i #
Dt
Dx

F Rð0;Un
i ;U

n
iþ1Þ

! "
# F Rð0;Un

i#1;U
n
i Þ

! "# $
;

where n and i indicate a time step and a cell number, respectively, and Rðx=t;Un
i ;U

n
iþ1Þ is the approximate

solution of the Riemann problem around the interface xi+1/2. In this form, the appropriate numerical fluxes
are obtained by applying the integral conservation laws (7) over the rectangle (xi, xi+1/2) · (tn, tn+1) as
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where Fiþ1=2 ¼ FðRð0;Un
i ;U

n
iþ1ÞÞ;Fi ¼ FðUn

i Þ, and Dt = tn+1 # tn. We note that the exact solution of the Rie-
mann problem Rexact produces the fluxes of the original Godunov scheme. The numerical fluxes Fi+1/2 ob-
tained by the other integral conservation laws over (xi+1/2, xi+1) · (tn, tn+1) must coincide with (8) due to the
consistency with the integral form of conservation laws over (xi, xi+1) · (tn, tn+1).

Particularly, Harten et al. [15]proposed one of the simplest Godunov-type scheme, the so-called HLL
approximate Riemann solver. The HLL Riemann solver is constructed by assuming an average intermedi-
ate state between the fastest and slowest waves. Consider a ‘‘subsonic’’ solution of the single-state approx-
imate Riemann problem at the interface between the left and right states, UL and UR, where the minimum
signal speed SL and the maximum signal speed SR are negative and positive, respectively (Fig. 1). By apply-
ing the integral conservation laws (7) over the Riemann fan, (DtSL, DtSR) · (0, Dt), the intermediate state is
given by

U& ¼ SRUR # SLUL # FR þ FL

SR # SL

: ð9Þ

After that, as denoted by (8), the integral over (DtSL, 0) · (0, Dt) gives the HLL fluxes,

F& ¼ SRFL # SLFR þ SRSLðUR #ULÞ
SR # SL

: ð10Þ

If both signal speeds are of the same sign, the fluxes must be evaluated only from the upstream side. There-
fore, in general, the HLL fluxes become

FHLL ¼
FL if SL > 0;

F& if SL 6 0 6 SR;

FR if SR < 0:

8
><

>:
ð11Þ

Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and
SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly
speaking, the upper and lower bounds of the signal speed in the system cannot be obtained without infor-
mation of the exact Riemann solution [2]. Particularly, the difficulty for the MHD equations may be

UL UR
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S  = x/tL S  = x/tR

x

t

Fig. 1. Schematic structure of the Riemann fan with one intermediate state.
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Multi-state Riemann solver

HLLC: include contact wave
(Toro, Spruce, Spears)

Intermediate states computed by satisfying jump conditions

For MHD: no unique way to determine intermediate states (Gurski (2004), Li (2005))

increased because bounded waves are capable of compound waves. Therefore, we should determine the
algorithm as exactly as possible so as not to underestimate the minimum and maximum signal speeds.
For example, Davis [7]gave those speeds as

SL ¼ min k1ðULÞ; k1ðURÞ½ %;
SR ¼ max km ðULÞ; km ðURÞ½ %;

ð12Þ

or Einfeldt et al. [9]used the algorithm as

SL ¼ min k1 ULð Þ; k1 URoe
! "# $

;

SR ¼ max km URoe
! "

; km URð Þ
# $

;
ð13Þ

where k1 and km are the smallest and largest eigenvalues of (1), and kj(U
Roe) denotes the eigenvalue of the

Roe matrix. Although these are not correct bounds of the signal speed [2], these algorithms seem to be
highly effective. Indeed, the HLL solver for the Euler equations with appropriate choices for SL and SR

is extremely robust since it satisfies an entropy inequality automatically [7]and ensures a positivity preserv-
ing property [9]. The robustness of the HLL solver is also expected for the MHD equations [16].

However, the HLL solver cannot resolve isolated discontinuities and, as a result, is quite dissipative be-
cause the solution of the Riemann problem is approximated by one intermediate state. Therefore, it is a
natural thought that the single-state approximation should be extended to a two-state approximation in
order to be more accurate while maintaining the nice properties.

4. Two-state HLL Riemann solver

4.1. HLLC Riemann solver for the Euler equations

In this subsection, we devote attention to the solver for the Euler equations, which are obtained by set-
ting the magnetic field to zero in (2). In [15], it was suggested that a two-state approximate Riemann solver
could be constructed to exactly resolve isolated contact discontinuities as well as isolated shocks although
that was not implemented practically. However, Toro et al. [29]proposed a simple implementation of the
two-state HLL Riemann solver for the Euler equations.

Consider the approximate Riemann problem in the Riemann fan which is separated into the left and the
right intermediate states, U&

L and U&
R, by the contact wave, SM, as shown in Fig. 2. Toro et al. [29]assumed

that the normal component of the velocity is constant over the Riemann fan, that is,

u&L ¼ u&R ¼ SM :

Particularly, Batten et al. [2]insisted that SM should be evaluated from the HLL average (9) as

UL UR

UL∗ UR∗

SL SRSM

x

t

Fig. 2. Schematic structure of the Riemann fan with two intermediate states.
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due to the arbitrariness of SM and b. The reformulation of the HLLC-type MHD solver inspired that the
extended HLLC-type solver which is accurate but oscillatory can be modified so as to smooth unwanted
oscillations while preserving the positivity of density and pressure [13]. In this solver, named as smooth
HLLCMHD solver, SM is given by the HLL average and b is computed from A*!1DW* = bA!1DW instead
of (36), where DW possesses the unit of momentum and a certain linearization as DU = A!1DW is assumed.
The smooth HLLC MHD solver is thought to be a positively conservative variant of the Linde solver.

The advantage of Linde!s method is that the algorithm of the solver is independent of the details of the
governing equations despite the exact resolution of isolated contact discontinuities. However, necessary and
sufficient conditions of b to eliminate numerical oscillations completely have not been presented yet, and
some class of Linde!s fluxes may generate unphysical oscillations. Therefore, the Linde solver should be ap-
plied for a complex system without detail knowledge of its characteristics rather than the well-known sys-
tem as the Euler equations and the MHD equations [21].

5. Multi-state HLL Riemann solver

5.1. HLLD Riemann solver for the MHD equations

The HLLC-type Riemann solvers for MHD as reviewed in the previous section may have some
inconsistency with respect to the jump conditions without a particular treatment. We suppose that the
HLLC-type solvers may include inconsistency between the assumption of constant normal velocity and
the two-state approximation of the intermediate states in the Riemann fan. Therefore, in this subsection,
the multi-state (more than two-state) HLL Riemann solver for the MHD equations is constructed based
on the same basic assumption as that in the HLLC Riemann solver for the Euler equations.

Assume that the normal velocity is constant over the Riemann fan. Our assumption which is the same as
in the HLLC solver [2,29]leads to the following noticeable conclusions: The normal velocity in the Rie-
mann fan corresponds to the speed of the middle (entropy) wave. The total pressure is constant over the
Riemann fan. Slow shocks cannot be formed inside the Riemann fan. Rotational discontinuities propagat-
ing with the Alfvén waves, on the other hand, may be generated. The latter two conclusions suggest that, in
order to construct a more accurate HLL Riemann solver for MHD than the single-state HLL solver, the
Riemann fan may be divided into four intermediate states, U"

L;U
""
L ;U

""
R ; and U"

R, as illustrated in Fig. 3.
Therefore, we consider the approximate Riemann problem in the four-state Riemann fan separated by
one entropy and two Alfvén waves, SM and S"

L; S
"
R.

The choice of SM, in the present solver, is to evaluate the average normal velocity from the HLL average
(9) as Batten et al. [2], Gurski [13]and Li [19]did:

SM ¼
ðSR ! uRÞqRuR ! ðSL ! uLÞqLuL ! pTR

þ pTL

ðSR ! uRÞqR ! ðSL ! uLÞqL

; ð38Þ

∗∗ ∗∗

UL UR

UL∗
UL UR∗

UR

SL SRSRSL SM

x

t* *

Fig. 3. Schematic structure of the Riemann fan with four intermediate states.
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5-wave version (HLLD) developed by 
Miyoshi & Kusano (2005)

Includes Alfven waves which are also linear 
waves.



Higher order finite volume schemes

29.5 Linear case 265

Lemma 29.1 Let ṽ(x, tn) = vn
j + x�xj

�x �n
j with �j given by (29.3). Then

TV (ṽ) = TV (v)

Proof: We show that the jumps in ṽ have same as sign as jumps in (vj). Assume that

vj�1  vj  vj+1

Now

ṽj�1(xj� 1
2
) = vj�1 +

1

2
�j�1, ṽj(xj� 1

2
) = vj �

1

2
�j

Then

ṽj(xj� 1
2
) � ṽj�1(xj� 1

2
) =

1

2
(�vj� 1
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1
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(�vj� 1
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Since

�vj� 1
2

� 0 =) 0  �j�1  �vj� 1
2
, 0  �j  �vj� 1

2

Hence ṽj(xj� 1
2
) � ṽj�1(xj� 1

2
) � 0. If vj is a local extremum, then �j = 0.

29.5 Linear case
The limiter (29.3) seems too restrictive in practice, and can be relaxed to the following

�j =

(
s min{2|�v

j� 1
2
|, |�̂j |, 2|�v

j+ 1
2
|}, s = sign �v

j� 1
2

= sign �v
j+ 1

2
= sign �̂j

0, otherwise
(29.4)

The above slope ensures that

min(vj�1, vj , vj+1)  ṽj(x)  max(vj�1, vj , vj+1), x 2 [xj� 1
2
, xj+ 1

2
]

In this case, we cannot show that TV (ṽ) = TV (v) but for a linear PDE, we can still show
the TVD property of the scheme.

29.6 Linear case
Let us consider the linear PDE

@u

@t
+

@f

@x
= 0, f(u) = au, a > 0

From cell averages, reconstruct piecewise linear approximation

Need some non-linear limiter function to control numerical oscillations.

Higher order time accuracy using Runge-Kutta scheme.

First order: 𝑈 − 𝑈M = 𝑂 Δ𝑥 ;          Higher order: 𝑈 − 𝑈M = 𝑂 Δ𝑥P , 𝑝 > 1

5.4 Higher order accuracy and time integration

The basic finite volume scheme uses piecewise constant approximations which lead to a first order
scheme in �x for smooth solutions. To achieve high order accuracy, the natural approach is to
reconstruct a piecewise linear solution in each cell and then evolve this forward in time. Care has
to be taken to ensure that the reconstruction step does not introduce oscillations. One simple and
robust approach is to use a minmod function

U (x) = Uj +
1

�x
(x� xj)�j, �j = minmod(Uj �Uj�1,Uj+1 �Uj)

where

minmod(a, b) =

(
smin(|a|, |b|) s = sign(a) = sign(b)

0 otherwise

but there are more sophisticated approaches. This increases the spatial accuracy and the time
accuracy can be increased by using the high order Runge-Kutta scheme to evolve the solution forward
in time.

6 Two dimensional case

In 2-D, the MHD model has the form

@U

@t
+

@F

@x
+

@G

@y
= 0

Let us consider a Cartesian grid and we can write down a finite volume scheme

�x�y
dUj,k

dt
+ [Fj+ 1

2 ,k
� Fj� 1

2 ,k
]�y + [Gj,k+ 1

2
�Gj,k� 1

2
]�x = 0

The fluxes can be computed by solving the Riemann problem as in the 1-D case but now the condition
(B · n)L = (B · n)R may not hold; an averge value of B · n may be used in the Riemann solver.
However, we now have to worry about the divergence condition

@Bx

@x
+

@By

@y
= 0

We would like some finite di↵erence approximation of the divergence to be zero or small, but there
is no guarantee that standard numerical schemes will achieve this.
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MHD model in conservation form
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reconstruct a piecewise linear solution in each cell and then evolve this forward in time. Care has
to be taken to ensure that the reconstruction step does not introduce oscillations. One simple and
robust approach is to use a minmod function

U (x) = Uj + (x� xj)�j, �j = minmod(Uj �Uj�1,Uj+1 �Uj)

where

minmod(a, b) =

(
smin(|a|, |b|) s = sign(a) = sign(b)

0 otherwise

but there are more sophisticated approaches. This increases the spatial accuracy and the time
accuracy can be increased by using the high order Runge-Kutta scheme to evolve the solution forward
in time.

6 Two dimensional case

In 2-D, the MHD model has the form
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Let us consider a Cartesian grid and we can write down a finite volume scheme
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The fluxes can be computed by solving the Riemann problem as in the 1-D case. However, we now
have to worry about the divergence condition
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We would like some finite di↵erence approximation of the divergence to be zero or small, but there
is no guarantee that standard numerical schemes will achieve this.
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Projection methods

Use a standard scheme, say Godunov FV with Roe solver, to update solution
6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.

6.2 8-wave solvers

Recall that we had seven waves when we considered the MHD model in 1-D because Bx was constant,
and (Bx)L = (Bx)R in the Riemann problem. In multi-D, we cannot make this assumption and the
full set of equations
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= 0

has to be solved in the Riemann problem to estimate the flux. However, this system has an eigenvalue
which is always zero, and this is a problem since the mode corresponding to this eigenvalue is
undamped. Powell suggested to modify the MHD system by adding an extra term
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The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but
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Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.
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Recall that we had seven waves when we considered the MHD model in 1-D because Bx was constant,
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but

Correct 𝑩∗ by removing the divergence (Brackbill & Barnes (1980))

6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.

6.2 8-wave solvers
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and (Bx)L = (Bx)R in the Riemann problem. In multi-D, we cannot make this assumption and the
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Divergence contained here

Solve for the potential

6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.
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and (Bx)L = (Bx)R in the Riemann problem. In multi-D, we cannot make this assumption and the
full set of equations
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Solution at next time

6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.

6.2 8-wave solvers

Recall that we had seven waves when we considered the MHD model in 1-D because Bx was constant,
and (Bx)L = (Bx)R in the Riemann problem. In multi-D, we cannot make this assumption and the
full set of equations
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has to be solved in the Riemann problem to estimate the flux. However, this system has an eigenvalue
which is always zero, and this is a problem since the mode corresponding to this eigenvalue is
undamped. Powell suggested to modify the MHD system by adding an extra term
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Need to solve a matrix problem
Internal energy/temperature changed; add some correction
Conservation of magnetic flux is lost; does not affect results

6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy is
lost but a correction can be applied,

En+1 = E⇤ � 1

2
|B⇤|2 + 1

2
|Bn+1|2

and (3) conservation of magnetic flux is lost but numerical experience suggests that this is not
important.

6.2 Hyperbolic divergence cleaning

To avoid having to solve an elliptic equation, Dedner et al. proposed a hyperbolic model which tries
to damp divergence errors. It is based on adding a scalar pressure which acts like a generalized
Lagrange multiplier to enforce the divergence constraint. The model called mixed GLM-MHD, has
the form
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Hyperbolic divergence cleaning

6.1 Projection methods
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experience suggests that this is not important.

6.2 Hyperbolic divergence cleaning

To avoid having to solve an elliptic equation, Dedner et al. proposed a hyperbolic model which tries
to damp divergence errors. It is based on adding a scalar pressure which acts like a generalized
Lagrange multiplier to enforce the divergence constraint. The model called mixed GLM-MHD, has
the form

@⇢

@t
+r · (⇢v) =0

@(⇢v)

@t
+r · (⇢v ⌦ v + PI �B ⌦B) =0

@E
@t

+r · [(E + P )v � (v ·B)B] =0

@B

@t
+r · (v ⌦B �B ⌦ v) +r =0

@ 

@t
+ c2hr ·B =� c2h

c2p
 

11

Generalized Lagrange multiplier
where  now acts like a pressure in the induction equation. It satisfies a telegraph equation
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which causes the divergence errors to be propagated at speed ch and also dissipated with time. This
mixed GLM-MHD system is hyperbolic with 9 real eigenvalues

�ch, u� cf , u� ca, u� cs, u, u+ cs, u+ ca, u+ cf , +ch

The first and last eigenvalues carry jumps in (B ·n) and psi while the other eigenvalues are unchanged
from the MHD system.The parameter ch is set equal to the maximum wave speed in the whole
computational domain. The parameter cp = O(

p
ch) ensures that hyperbolic and parabolic time

scales are similar and is found to give grid independent solutions.

6.3 8-wave solvers

Recall that we had seven waves when we considered the MHD model in 1-D because Bx was constant,
and (Bx)L = (Bx)R in the Riemann problem. In multi-D, we cannot make this assumption and the
full set of equations
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has to be solved in the Riemann problem to estimate the flux. However, this system has an eigenvalue
which is always zero, and this is a problem since the mode corresponding to this eigenvalue is
undamped. Powell suggested to modify the MHD system by adding an extra term
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which in theory is zero but may not be zero at the numerical approximation level. The zero eigenvalue
is then eliminated and we get u as an eigenvalue with multiplicity two

u� cf  u� ca  u� cs  u = u  u+ cs  u+ ca  u+ cf
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Transports divergence

Damps divergence

Hyperbolic system: 9 real eigenvalues
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Hyperbolic divergence cleaning
662 DEDNER ET AL.

FIG. 3. Results for the peak in Bx obtained with the DW scheme on 65,536 triangles. (2D plots) Isolines of
Bx at times t = 0.0, t = 0.25, t = 0.5, t = 0.75, t = 1.0 (from left to right) for mixed GLM and hyperbolic GLM
ansatz, without correction, and with divergence source terms (from top to bottom). (3D plots) Bx at time t = 0.75
for mixed GLM and hyperbolic GLM ansatz, without correction, and with divergence source terms (from left to
right). (1D plots) L1jmp (left) and maxjmp (right) for all approaches.
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TABLE I
Initial Data for 2D Test Problems

Peak in Bx (γ = 5/3)
Computational domain: [−0.5, −0.5]× [1.5, 1.5]

Boundaries: periodic
ρ ux uy uz Bx By Bz p

1.0 1.0 1.0 0.0 r(x2 + y2)/
√
4π 0.0 1/

√
4π 6.0

r(s) := 4096 s4 − 128 s2 + 1

1D Riemann problem (γ = 5/3)
Computational domain: [−0.5, 0.5]× [−0.25, 0.25]

Boundaries: Neumann condition on left and right, periodic on top and bottom
ρ ux uy uz Bx By Bz p

x < 0 1.0 10.0 0.0 0.0 5/
√
4π 5/

√
4π 0.0 20.0

x > 0 1.0 −10.0 0.0 0.0 5/
√
4π 5/

√
4π 0.0 1.0

Shock reflection (γ = 1.4)
Computational domain: [−1, 1]× [−0.5, 0.5]

Boundaries: Dirichlet condition on top and left with constant data Ut and Ul ,
reflecting bottom (symmetry), and Neumann conditions on the right

Initial data: U0 = Ul

Data ρ ux uy uz Bx By Bz p

Ul 1.0 2.9 0.0 0.0 0.5 0.0 0.0 5/7
Ut 1.4598 2.7170 −0.4049 0.0 0.6838 −0.1019 0.0 1.2229

2D Riemann problem (γ = 5/3)
Computational domain: [−1, 1]× [−1, 1]

Boundaries: Dirichlet condition (numerical solution to 1D Riemann problems)
Quadrants: I, x > 0, y > 0; II, x < 0, y > 0; III, x < 0, y < 0; IV, x > 0, y < 0

Qdr. ρ ρux ρuy ρuz Bx By Bz e

I 0.9308 1.4557 −0.4633 0.0575 0.3501 0.9830 0.3050 5.0838
II 1.0304 1.5774 −1.0455 −0.1016 0.3501 0.5078 0.1576 5.7813
III 1.0000 1.7500 −1.0000 0.0000 0.5642 0.5078 0.2539 6.0000
IV 1.8887 0.2334 −1.7422 0.0733 0.5642 0.9830 0.4915 12.999

Kelvin–Helmholtz instability (γ = 1.4)
Computational domain: [0, 1]× [−1, 1]

Boundaries: periodic
ρ ux uy uz Bx By Bz p

1.0 u0x (x, y) u0y(x, y) 0.0 1.0 0.0 0.0 50.0
u0x (x, y) := 5(tanh(20(y + 0.5)) − (tanh(20(y − 0.5)) + 1)),
u0y(x, y) := 0.25 sin(2πx)(e−100(y+0.5)2 − e−100(y−0.5)2 )

and the Riemann problems. For the 1D Riemann problem we used the first-order DW and
MHD–HLLEM schemes. All other calculations were performed for both the second-order
DW scheme and the second-order MHD–HLLEM scheme (see Section 4). For the peak in
Bx and the 1D Riemann problem we used globally refined grids with different resolutions,
while for the other problems the grid was locally adapted. The time step was computed
according to (40) using ccfl := 0.3. The choice of contour levels is identical throughout
Fig. 3 and within each line of Figs. 5, 6, and 8. Since there are almost no visible differences

Propagation of divergence error

Toth (2000)



8-wave Riemann solver

In one dimension 𝐵Z J = 𝐵Z K but not true in multi-D

6.1 Projection methods

The idea here is to use some standard Godunov scheme to update the solution Bn ! B⇤ but

r ·B⇤ 6= 0

We will correct B⇤ by removing the divergence part. Any vector field can be decomposed as

B⇤ = r⇥A+r�

and the divergence is contained in the second part. Taking divergence on both sides

�� = r ·B⇤

Once the potential is obtained, we can update the solution

Bn+1 = B⇤ �r�

While this method leads to divergence-free solutions, (1) the solution of Poisson equation is more
expensive than that of explicit time integration schemes, (2) and the conservation of total energy
is lost but a correction can be applied, and (3) conservation of magnetic flux is lost but numerical
experience suggests that this is not important.
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which in theory is zero but may not be zero at the numerical approximation level. The zero eigenvalue
is then eliminated and we get u as an eigenvalue with multiplicity two

u� cf  u� ca  u� cs  u = u  u+ cs  u+ ca  u+ cf

The extra eigenvalue now corresponds to a transport of divergence
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We can build Riemann solvers using Roe, HLL, etc. ideas for this system and the resulting methods
are more stable compared to standard schemes. The explanation given is that any divergence that is
non-zero gets advected away and so does not cause numerical di�culties. However, we now have a
non-conservative system which can lead to incorrect jumps across shocks in some situations, though
in practice the methods work well and the solutions converge with mesh refinement.

6.3 Entropy stable schemes

The modification of MHD derived by Powell was actually proposed by Godunov much earlier but
based on other considerations. For hyperbolic conservation laws
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have an entropy function since the second law of thermodynamics must hold. There is a connection
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between the existence of an entropy function and the ability to symmetrize the conservation law by
a change of variables (Mock)
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which becomes an entropy condition under the constraint r ·B = 0. However the change of variables
fails to symmetrize the MHD equations !!!

Godunov showed that for PDE with constraints like ideal MHD, we can symmetrize the equations
by modifying the PDE to
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without explicitly demanding that the divergence constraint is satisfied. In fact the extra terms
added are identical to those used by Powell.
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Such fluxes where constructed for the first time for MHD in (Chandrashekar & Klingenberg, Gassner
et al.). For discontinuous solutions, the scheme must generate entropy and this can be achieved by
adding some dissipation to the flux
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Symmetrizability ⇔ Existence of convex entropy (Mock, Godunov)

For MHD, we have the thermodynamic entropy 𝑠 = ln(𝑝𝜌ab)
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Also, the change of variables 𝑼 → 𝑽 = 𝜂′(𝑼) fails to symmetrize the MHD model !!!

Godunov showed how to symmetrize conservation laws with an involution constraint
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Entropy equation follows without requiring divergence constraint

This modification is identical to Powell’s work !!!
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by modifying the PDE to

@U

@t
+

@F↵

@x↵
+ �

0(V )>r ·B = 0

where � is a homogeneous function such that

V · �0(V ) = �(V )

Now the change of variables U ! V = ⌘
0(U ) symmetrizes the PDE and leads to the entropy

condition
@⌘

@t
+

@f↵

@x↵
= 0, ⌘ = � ⇢s

� � 1
, f↵ = � ⇢sv↵

� � 1

without explicitly demanding that the divergence constraint is satisfied. In fact the extra terms
added are identical to those used by Powell.

We can build a finite volume scheme

dUj,k

dt
+

Fj+ 1
2 ,k

� Fj� 1
2 ,k

�x
+

Gj,k+ 1
2
�Gj,k� 1

2

�y
+ �

0(Vj,k)
>rh ·Bj,k = 0

which satisfies the entropy equation provided the numerical fluxes satisfy the condition (Tadmor)

(Vj+1,k � Vj,k) · Fj+ 1
2 ,k

= f
⇤
j+1,k � f

⇤
j,k � (�j+1,k � �j,k)(B̄x)j+ 1

2 ,k

where
f
⇤ = V · F + �Bx � f
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Entropy conserving scheme (following Tadmor’s ideas)

Such fluxes for MHD can be constructed (C & 
Klingenberg (2016), Winters & Gassner (2016))

For discontinuous solutions, need to generate 
entropy at jumps; numerical flux

Such fluxes where constructed for the first time for MHD in (Chandrashekar & Klingenberg, Gassner
et al.). For discontinuous solutions, the scheme must generate entropy and this can be achieved by
adding some dissipation to the flux

Fj+ 1
2 ,k

� 1

2
R|⇤|R>(Vj+1,k � Vj,k)

which is similar to the Roe scheme, and leads to an entropy inequality since the matrix R|⇤|R> is
SPD.

6.4 Divergence cleaning

6.5 Constrained transport methods

Constrained transport methods are designed to automatically keep some discrete approximation of
the divergence to be zero. This required use of staggered storage of the magnetic field variables.
Let us store the normal component of B on each face, as shown in the figure. Then the induction
equation
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+
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can be approximated on the faces
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If we measure the divergence as

(rh ·B)i,j =
(Bx)i+ 1

2 ,j
� (Bx)i� 1

2 ,j

�x
+

(By)i,j+ 1
2
� (By)i,j� 1

2

�y

then the update equations imply that

(rh ·B)n+1
i,j = (rh ·B)ni,j

because all the corner fluxes cancel out. How to compute the emf at the vertices ? There are many
approaches which make use of some interpolation of the available data or interpolate the solution of
1-D Riemann problems. We can also devise a 2-D Riemann solver to estimate the emf.
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Jumps in entropy variables generate entropy; 
compare with Roe scheme.

Stable scheme without exactly making the 
divergence zero.

Summation-by-parts DG schemes (Gassner et al.)
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(a) 128⇥ 128 (b) 256⇥ 256

(c) 512⇥ 512 (d) 1024⇥ 1024

Fig. 3. Density at t = 0.5 for Orszag-Tang test case on di↵erent meshes. The density range is
0.09 to 0.48

and 1024⇥ 1024. The Mach number contours are shown in figure (6). The circularly
rotating velocity field in the central portion is captured well in all the grids without
any distortion. Toth [47] reports that some dimensionally split schemes might lead
to loss of positivity which was not a problem with our unsplit scheme. However if
we do not add the source terms, then the computations were unstable due to loss of
positivity. The total entropy is shown in figure (5b) and we again observe a monotonic
decay which indicates that the fully discrete scheme is also entropy stable.

4.4. Smooth Alfvén waves. This test case is taken from [47] and consists of
a circularly polarized Alfvén wave which propagates at an angle of ↵ = 30o. The
domain is taken to be the rectangle defined by 0  x  1/ cos↵ and 0  y  1/ sin↵
with periodic boundary conditions on all sides. The constant � = 5

3 and the initial
condition is given as follows.

⇢ = 1, u = v?(� sin↵, cos↵, 0), p = 0.1

B1 = B|| cos↵�B? sin↵, B2 = B|| sin↵+B? cos↵, B3 = u3
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Fig. 10. Two-dimensional staggering in the constrained transport approach.

(∇ · B)n
i, j =

Bn
x,i+1/2, j − Bn

x,i−1/2, j

!x
+

Bn
y,i, j+1/2 − Bn

y,i, j−1/2

!y
, (3.39)

it is quite easy to show that an initial (∇ · B)n
i, j = 0 leads to (∇ · B)n+1

i, j = 0, with machine round-off error accuracy, i.e., the 
staggered approach maintains the constraint equation to machine round-off (see [17,51]).

Londrillo and Del Zanna [38] showed that the electric fields should be obtained as solutions of two-dimensional Riemann 
problems (defined at the edges) in order to obtain a stable numerical solution; fortunately, we have already derived a 2D 
HLL Riemann solver that can be easily applied in this situation. We note though that several alternative methods have been 
developed in [7,17,19,38,39,51], among others, but are not examined in this paper. Here, we propose a simple technique 
that consists in employing our two-dimensional HLL Riemann solver to obtain the electric fields as follows:

Ez,i+ 1
2 , j+ 1

2
= Ehll2D

z (wi+1, j+1, wi, j+1, wi, j, wi+1, j), (3.40)

with Ehll2D
z the two-dimensional upwinded function for the electric field. Given that only one value is calculated per cell 

edge at a time step, the face-centered magnetic field B satisfies the divergence constraint exactly. We wish to add that in 
this first approach, we still use the 1D HLLD [43] Riemann solver to estimate the conservative fluxes such that

φx,i+ 1
2 , j = φhlld

x (wi, j,wi+1, j) and φ y,i, j+ 1
2

= φhlld
y (wi, j,wi, j+1). (3.41)

4. Numerical results

The purpose of this section is to validate the new scheme with several multidimensional test problems on a uniform 
rectangular mesh. The numerical implementation of our solver and Balsara’s [4] (hereafter referred to as BAL2012) has been 
done in the HERACLES code [24] for astrophysical fluid flows. By having a common computational framework, we can fairly 
compare the accuracy and robustness of both methods.

We note that employing Simpson assembling at the cells’ faces for our solver yields almost the exact same results as 
BAL2012, for which this type of assembling is the default for second-order simulations, and thus, unless stated otherwise, 
we opt to display our method’s solutions with the manual assembling (3.34). All hydrodynamic tests were run with a CFL 
number of 0.9 and making use of the predictor–corrector scheme mentioned in Section 3.3.3. As for the choice of slope 
limiters, we applied the MC limiter [53] for all except the last (Section 4.4), where minmod [45] was utilized instead.

In addition, we refer the reader to [19] for details regarding the algorithm, based on the MUSCL-Hancock scheme [50,52], 
that is used in HERACLES to perform second-order numerical simulations of astrophysical magnetohydrodynamics. To esti-
mate the electric field, we have employed the method described in Section 3.3.4, depending on our 2D HLL Riemann solver. 
As in the hydrodynamic case, all MHD results were also obtained with a CFL of 0.90.

4.1. Accuracy analysis

We wish to estimate the rate at which the L1 error for the proposed scheme decreases as the numerical grid is refined. 
For this, we consider the initial density profile [29]

ρ0(x, y) = 1 + 0.2 sin
(
π(x + y)

)
, (4.1)

together with the velocities and pressure defined in Section 4.1 of [36], i.e., ux0 = 1, u y0 = −0.5 and p0 = 1. The simulation 
is run to time t = 4, which corresponds to the time it takes for the wave to be advected once around the periodic domain 
spanning [0, 2] × [0, 2]. The final state is then compared with the analytical one.

In Table 1, the accuracy results for our scheme are summarized. For both assembling methods being compared, the L1

density errors decrease as the numerical resolution increases and we are able to see that the lowest values are obtained 
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which is similar to the Roe scheme, and leads to an entropy inequality since the matrix R|⇤|R> is
SPD.

6.4 Divergence cleaning

6.5 Constrained transport methods

Constrained transport methods are designed to automatically keep some discrete approximation of
the divergence to be zero. This required use of staggered storage of the magnetic field variables.
Let us store the normal component of B on each face, as shown in the figure. Then the induction
equation
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then the update equations imply that
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i,j = (rh ·B)ni,j

because all the corner fluxes cancel out. How to compute the emf at the vertices ? There are many
approaches which make use of some interpolation of the available data or interpolate the solution of
1-D Riemann problems. We can also devise a 2-D Riemann solver to estimate the emf.

6.6 Discontinuous Galerkin methods

We have seen that to achieve higher order accuracy in finite volume methods, we have to reconstruct
a better representation of the solution in each cell. This can be avoided if we use finite element
methods which directly approximate the solution by piecewise polynomials. For hyperbolic problems,

14

Induction equation has 1-D form

which is similar to the Roe scheme, and leads to an entropy inequality since the matrix R|⇤|R> is
SPD.

6.4 Divergence cleaning

6.5 Constrained transport methods

Constrained transport methods are designed to automatically keep some discrete approximation of
the divergence to be zero. This required use of staggered storage of the magnetic field variables.
Let us store the normal component of B on each face, as shown in the figure. Then the induction
equation

@Bx

@t
+

@Ez

@y
= 0,

@By

@t
� @Ez

@x
= 0

can be approximated on the faces

(Bx)
n+1
i+ 1

2 ,j
� (Bx)ni+ 1

2 ,j

�t
+

(Ez)ni+ 1
2 ,j+

1
2
� (Ez)ni+ 1

2 ,j�
1
2

�y
= 0

(By)
n+1
i,j+ 1

2

� (By)ni,j+ 1
2

�t
�

(Ez)ni+ 1
2 ,j+

1
2
� (Ez)ni� 1

2 ,j+
1
2

�x
= 0

If we measure the divergence as

(rh ·B)i,j =
(Bx)i+ 1

2 ,j
� (Bx)i� 1

2 ,j

�x
+

(By)i,j+ 1
2
� (By)i,j� 1

2

�y

then the update equations imply that

(rh ·B)n+1
i,j = (rh ·B)ni,j

because all the corner fluxes cancel out. How to compute the emf at the vertices ? There are many
approaches which make use of some interpolation of the available data or interpolate the solution of
1-D Riemann problems. We can also devise a 2-D Riemann solver to estimate the emf.

6.6 Discontinuous Galerkin methods

We have seen that to achieve higher order accuracy in finite volume methods, we have to reconstruct
a better representation of the solution in each cell. This can be avoided if we use finite element
methods which directly approximate the solution by piecewise polynomials. For hyperbolic problems,

14

Define finite difference scheme on
the faces

Remaining variables 
stored at cell center



Constrained transport schemes

Measure divergence at cell center

which is similar to the Roe scheme, and leads to an entropy inequality since the matrix R|⇤|R> is
SPD.

6.4 Divergence cleaning

6.5 Constrained transport methods

Constrained transport methods are designed to automatically keep some discrete approximation of
the divergence to be zero. This required use of staggered storage of the magnetic field variables.
Let us store the normal component of B on each face, as shown in the figure. Then the induction
equation

@Bx

@t
+

@Ez

@y
= 0,

@By

@t
� @Ez

@x
= 0

can be approximated on the faces

(Bx)
n+1
i+ 1

2 ,j
� (Bx)ni+ 1

2 ,j

�t
+

(Ez)ni+ 1
2 ,j+

1
2
� (Ez)ni+ 1

2 ,j�
1
2

�y
= 0

(By)
n+1
i,j+ 1

2

� (By)ni,j+ 1
2

�t
�

(Ez)ni+ 1
2 ,j+

1
2
� (Ez)ni� 1

2 ,j+
1
2

�x
= 0

If we measure the divergence as

(rh ·B)i,j =
(Bx)i+ 1

2 ,j
� (Bx)i� 1

2 ,j

�x
+

(By)i,j+ 1
2
� (By)i,j� 1

2

�y

then the update equations imply that

(rh ·B)n+1
i,j = (rh ·B)ni,j

because all the corner fluxes cancel out. How to compute the emf at the vertices ? There are many
approaches which make use of some interpolation of the available data or interpolate the solution of
1-D Riemann problems. We can also devise a 2-D Riemann solver to estimate the emf.

6.6 Discontinuous Galerkin methods

We have seen that to achieve higher order accuracy in finite volume methods, we have to reconstruct
a better representation of the solution in each cell. This can be avoided if we use finite element
methods which directly approximate the solution by piecewise polynomials. For hyperbolic problems,

14
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How to estimate the emf at the cell corner ?
• Interpolation of primary data
• Interpolate solution of 1-D Riemann problems
• Solve 2-D Riemann problem
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Figure 29. Rotated shock tube test. The relative error on the parallel magnetic
field Bk in the rotated shock tube test of Tóth (2000) is shown for the DG-3
method with the Powell and hyperbolic cleaning schemes in the top and
centre panel. The bottom panel shows the solution obtained with Athena,
with the 3rd order CTU (constrained transport) method. For the Powell
method, between the left and right fast shocks (x = ⌥0.4), the value of Bk
deviates with respect to the exact solution due to the nonconservative source
terms. Apart from oscillations at the discontinuities, the Powell scheme
results in systematic o�sets of Bk of order . 5%. The hyperbolic cleaning
scheme features no such systematic o�sets, but produces damped oscillations
which overtake the fast shocks as the divergence gets advected away.

6 DISCUSSION

6.1 High-order schemes for astrophysics

Our tests have shown some promising results for higher-order
schemes in astrophysical simulations, and for MHD in particular.
We now discuss how the combination of DG with adaptive mesh re-
finement could allow very e�cient computations in smooth regions
of the flow with high order convergence, while finely capturing the
shocks and discontinuities with spatial refinement.

We can interpret order/resolution convergence plots such as
Fig. 4 from two complementary points of view: looking at a given
spatial resolution on the x axis, we can increase the order to reduce
the solution error. But at a fixed error on the y axis, we may also
increase the order and correspondingly reduce the spatial resolution.
We argue that this second vision is more relevant to many types of
simulations in astrophysics, as the spatial truncation errors need
only be smaller or comparable to other types of errors, stemming
from uncertainties in the physical models, missing physics, subgrid
recipes, etc. We can therefore see order convergence as a way of
getting away with fewer cells in smooth problems, to the extent that
we can e�ciently “patch” smooth regions of the flow with coarser
cells.

Cell-based adaptive mesh refinement provides a suitable
framework to do this, as it allows cell-by-cell resolution adaptiv-
ity to match the local feature size. In a number of our test problems,
we found higher-order to better resolve features close to the grid
resolution. The vortex problem of Fig. 4 illustrates the advantage

of higher orders for capturing features which are barely resolved by
the grid (shaded area): at 322 resolution, the 2nd order scheme is
not yet resolving the vortex, whereas the DG-4 method has already
achieved its theoretical 4th order convergence. The same conclu-
sion holds in the presence of shocks, as illustrated by the Shu-Osher
MHD shock tube in Fig. 9 where we see a significant improvement
from DG-2 to DG-3. The loop advection problem further shows
that sharp features (such as singular field derivatives appearing in
the MHD current) can also be captured within one cell by mod-
erately increasing the spatial order: going from 2nd to 3rd or 4th

order dramatically improves the loop sharpness, while reducing the
dissipation of magnetic energy.

Compared to Lagrangian methods, a major issue with AMR
Eulerian grid codes is that they require su�cient grid resolution
to avoid dissipation due to bulk flow velocities; i.e. they are only
Galilean invariant for solutions su�ciently resolved to make ad-
vection errors negligible. Because spatial resolution translates into
tighter CFL constraints on the timestep, a compromise has to be
reached between advection errors and compute time in practice.
The advected Orszag–Tang test of Section 5.3.4 demonstrates that
not only do higher order schemes help reduce advection errors and
restore Galilean invariance, but for smooth regions of the flow, it
can actually be beneficial to increase the order while reducing spa-
tial resolution. Note that these test problems present MHD shocks,
and it is encouraging to see that these positive features remain, even
though we find that they can be sensitive to the details of the limiter
settings.

The combination of higher order methods with adaptive mesh
refinement therefore seems particularly powerful. We note that for
most astrophysical situations, spatial refinement will likely be re-
quired, because of the presence of shocks which are inherently first-
order features, but also whenever the fluid is self-gravitating. One
may therefore ask what scheme order will turn out to be the optimal
choice for a given problem. While we discussed positive e�ects of
higher orders, in practice we expect diminishing returns. From the
above discussion, it is clear the optimal global scheme order will
depend on the volume filling fraction and geometry of shocks and
other discontinuities, as well as the acceptable truncation error, both
of which are very problem-dependent. Higher orders will only be
helpful to the extent that we can e�ciently patch smooth regions
of the flow with coarser and coarser cells. In addition, the compu-
tational cost of DG becomes prohibitive for large orders, in part
because of the expensive quadrature operations, but also because of
the more restrictive CFL condition (27). We note that this CFL con-
straint can be relaxed within the DG framework, for example using
so-called PNPM schemes (Dumbser et al. 2008), where N moments
are evolved dynamically as in DG, whereas high-order spatial re-
construction is used up to order M � N to recover the remaining
moments; however this comes at the cost of a more extended pattern
of ghost cells, as with purely reconstruction-based schemes.

Time integration for RKDG schemes is also both computa-
tionally and memory-expensive at high temporal orders, as Runge-
Kutta methods require multiple steps with intermediate storage.
These memory and computational requirements may be reduced
using other time integration schemes such as ADER (see 6.4.2).
Note that even though we match the RK time integration order to
the spatial order of the scheme (up to RK4) in most of our runs,
this is only done to ensure that the time integration errors do not
contaminate the convergence tests of Section 5.2. In practice, high-
order RK time integration may be unnecessary, for example when
the CFL criterion enforces very small time steps due to high plasma
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Ii�1 Ii Ii�1

Figure 7.1: Nodal solution representation

• k = 0: There is only one dof per element which is the cell average value, so
the basis functions are piecewise constant

�i,0(x) =

�
1 x 2 Ii

0 otherwise

• k = 1: There are two dof per element; we can choose the two end points as
the nodes, xi,0 = xi- 1

2
, xi,1 = xi+ 1

2

�i,0(x) =

8
<

:

x
i+ 1

2
-x

�xi
x 2 Ii

0 otherwise
, �i,1(x) =

8
<

:

x-x
i- 1

2

�xi
x 2 Ii

0 otherwise

• k = 2: There are three dof per element; we can choose the end points and the
middle point as the nodes, xi,0 = xi- 1

2
, xi,1 = xi, xi,2 = xi+ 1

2

�i,0(x) =
(x- xi,1)(x- xi,2)

(xi,0 - xi,1)(xi,0 - xi,2)
, �i,1(x) =

(x- xi,0)(x- xi,2)

(xi,1 - xi,0)(xi,1 - xi,2)
,

�i,2(x) =
(x- xi,0)(x- xi,1)

(xi,2 - xi,0)(xi,2 - xi,1)

• In general: We choose k+ 1 distinct nodes {xi,0, xi,1, . . . , xi,k} ⇢ Ii

�ij(x) =
(x- xi,0) . . . (x- xi,j-1)(x- xi,j+1) . . . (x- xi,k)

(xi,j - xi,0) . . . (xi,j - xi,j-1)(xi,j - xi,j+1) . . . (xi,j - xi,k)

2 Mapped nodal basis functions

It is efficient to compute the shape functions on a reference cell. Let us map cell Ii
to [-1,+1] by

⇠ =
x- xi
1
2
�xi

, x =
1- ⇠

2
xi- 1

2
+

1+ ⇠

2
xi+ 1

2

Piecewise discontinuous 
polynomial approximation

Jumps help to stabilize the method

Compact stencil, good for parallel computing

Chapter 3
DG scheme in 1-D

Let us consider a general conservation law of the form

@u

@t
+

@f

@x
= 0

and try to construct the DG scheme for this problem.

1 Mesh and approximation space

Divide domain ⌦ = [0, 1] into disjoint cells Ii = [xi- 1
2
, xi+ 1

2
] using the parition

0 = x 1
2
< x 3

2
< . . . < xN+ 1

2
= 1

as shown in figure (3.1). Define the cell center and cell size as

xi =
1

2
(xi- 1

2
+ xi+ 1

2
), �xi = xi+ 1

2
- xi- 1

2
, h = max

i
�xi

Define the space of broken polynomials

Vk
h = {v 2 L2(⌦) : v|Ii 2 Pk(Ii), 1 6 i 6 N}

Note that these functions can be discontinuous on the boundary of the elements as
shown in the figure (3.2). Define the left and right limits

vh(x
-) = lim

✏&0
vh(x- ✏), vh(x

+) = lim
✏&0

vh(x+ ✏)

1
2 N + 1

2
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Figure 3.1: Mesh for DG scheme
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Figure 3.2: Discontinuous solution

2 Semi-discrete DG scheme

Multiply conservation law by a smooth test function v
Z

Ii

✓
@u

@t
+

@f

@x

◆
vdx = 0

and integrate by parts on flux derivative term
Z

Ii

@u

@t
vdx-

Z

Ii

f(u)
@v

@x
dx

+ f(xi+ 1
2
, t)v(x-

i+ 1
2

)- f(xi- 1
2
, t)v(x+

i- 1
2

) = 0

We now want to replace u with uh and v with vh, and uh, vh belong to finite
dimensional spaces usually comprising of polynomials. At x = xi+ 1

2
, uh may be

discontinuous, i.e., uh(x
-
i+ 1

2

, t) 6= uh(x
+
i+ 1

2

, t). In this case, how to compute the flux
f(xi+ 1

2
, t) ? Following the finite volume method, we will approximate this flux by a

numerical flux function denoted by

f̂i+ 1
2
(t) = f̂(uh(x

-
i+ 1

2

, t), uh(x
+
i+ 1

2

, t))

leading to

3.1 Definition (Semi-discrete DG scheme) Find uh(·, t) 2 Vk
h such that for all vh 2 Vk

h

Z

Ii

@uh

@t
vhdx-

Z

Ii

f(uh)
@vh
@x

dx

+ f̂i+ 1
2
(t)vh(x

-
i+ 1

2

)- f̂i- 1
2
(t)vh(x

+
i- 1

2

) = 0
(3.1)

The initial condition is obtained by an L2 projection onto the finite element
solution space Vk

h, i.e.,
Z

Ii

uh(x, 0)vh(x)dx =

Z

Ii

u(x, 0)vh(x)dx, 8 vh 2 Vk
h

Note that the numerical flux couples the solution in Ii to those in the neighbouring
elements.

Entire polynomial is evolved forward in time
Fluxes across elements obtained from Riemann solvers
Very high order accuracy can be achieved



Discontinuous Galerkin Method

Gauss-Legendre nodes for
Lagrange basis 𝑩 ⋅ 𝒏 J ≠ 𝑩 ⋅ 𝒏 K

use 8-wave Riemann solver

Locally divergence-free basis for 𝑩
(Li et al., Pablo et al.)

• ∇ ⋅ 𝑩 = 0 inside each cell.
• But 𝑩 ⋅ 𝒏 J ≠ 𝑩 ⋅ 𝒏 K
• Use 8-wave Riemann solver or 

entropy stable fluxes.

Guillet et al.

As a second method, a rectangular integration method, is included for comparison 
purposes.  This method, called herein equidistant numerical integration (ENI), is based on 
equally spaced evaluation points.  In comparison to GLQ, the kernel function values are not 
weighted.  The spacing between adjacent evaluation points is n-1 λ∆  in the East-West-
direction (n-1 ϕ∆  in the North-South-direction), and the distances of the outermost evaluation 
points from the cell boundary are (2n)-1 λ∆  and (2n)-1 ϕ∆ , respectively.  The arithmetic 
average of the n2 point kernel values (Eq. 18), as computed at the equally spaced evaluation 
points, is used as numerical mean kernel estimate: 

ENIS = ' '2
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Fig 1 Arrangement of evaluation points across the cell as a function of parameter n. Top: 
GLQ. Bottom: ENI. 

Figure 1 shows the arrangement of the GLQ and ENI evaluation points across the cell 
as a function of parameter n, ranging from 1 to 6.  Any cell shown represents the two-
dimensional integration domain [ 1 2λ λ ] × [ 1 2ϕ ϕ ].  Both methods have in common that the 

evaluation points never coincide with the cell boundaries 1 2, ,λ λ 1 2,ϕ ϕ .  In case n=1, the 
evaluation point is located at the cell centre and both methods are identical, which is 
degeneration to the approximation of using just the centre-of-cell point kernel as mean kernel 
estimate.  For n ≥ 2, the GLQ point arrangement deviates from the equally spaced ENI 
evaluation points, showing the locations of the (transformed) zero-crossings of the n-th order 
Legendre polynomial (cf. Appendix A1).   

To analyse the convergence behaviour of both methods, Eqs. (26) and (27) were 
evaluated as a function of n, ranging from 1 (centre-of-cell case) to 100, for a 1 arc-min cell 
in the direct vicinity of the innermost zone. Figure 2 shows the convergence error, given by   
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Discontinuous Galerkin Methods

Divergence-free reconstruction (Balsara)

B
+ x
(y
)
∈
P
k

B
− x
(y
)
∈
P
k

B−

y (x) ∈ Pk

B+
y (x) ∈ Pk

Bx(x, y) =?

By(x, y) =?

Find 𝐵Z, 𝐵h such that
∇ ⋅ 𝑩 = 0

𝑩 ⋅ 𝒏 agrees with value on face

𝑩 is Brezzi-Douglas-Marini polynomial.
Beyond third order (k>2), need information
of ∇×𝑩 to perform reconstruction (Hazra et al.)

Hybrid DG scheme on faces/cells

Figure 7: Total internal reflection of a compact electromagnetic beam by a dielectric
slab on a mesh of 350⇥ 425 cells. Top row: initial condition, middle row: k = 3, bottom
row: k = 4
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Total internal reflection of 
electromagnetic wave by 
Maxwell’s equation

4’th order div-free scheme (Hazra
et al. (2019))

Only using H(div) elements



Discontinuous Galerkin Methods

Approximation of magnetic field

Bx 2 Q2,1 By 2 Q1,2

Location of dofs of Raviart-Thomas polynomial for k = 1

Bx 2 Q3,2 By 2 Q2,3

Location of dofs of Raviart-Thomas polynomial for k = 2
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Constraint preserving DG schemes
(C, J. Sci. Comp., 2018 for 
induction equation)

𝑩 is Raviart-Thomas polynomial

Hybrid DG scheme on faces and 
cells; Petrov-Galerkin type

∇ ⋅ 𝑩 = 0 everywhere, 𝑩 ⋅ 𝒏 cts.

(a)(k = 1) without Fu/Shu limiter (b) (k = 1) with Fu/Shu limiter

(c)(k = 2) without Fu/Shu limiter (d) (k = 2) with Fu/Shu limiter

(e)(k = 3) without Fu/Shu limiter (f) (k = 3) with Fu/Shu limiter

Figure 1: Contour plots of
q
B2

x +B2
y for loop advection test using 128 ⇥ 64 mesh at

time t = 1; 10 contours.
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Rotated
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Magnetic
loop
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Positivity property

Blast wave: 200⇥ 200 cells

⇢ = 1, v = ( 0, 0, 0), B =
1p
4⇡

(100, 0, 0), p =

(
1000 r < 0.1

0.1 r > 0.1

B
2
x +B

2
y v

2
x + v

2
y

34 / 35

q Cannot prove positivity of globally div-free DG scheme.
q Multi-dimensional stencil due to corner fluxes complicates analysis.

Positivity needs some div-
free property to hold 
(Kailiang Wu)

Locally div-free basis
Godunov’s MHD model
èPositive scheme 
(Wu & Shu, 2019)

RTDG div-free scheme



Summary

MHD model poses special challenges in its numerical solution.

Being hyperbolic conservation law, Godunov’s approach using approximate 
Riemann solvers provides a robust strategy.

Ideas based on entropy stability theory and constrained transport lead to useful 
schemes, even at high order of accuracy, using discontinuous Galerkin method.

Constrained transport approaches are very elegant; DG for high order accuracy.

There are issues in Riemann solver design, especially for 2-D Riemann solvers, 
which are not well understood.

Designing provably positive schemes is difficult due to the need to satisfy a multi-
dimensional constraint involving the divergence.

Limiting solution without degrading accuracy still poses challenges. How to decide 
where/when to limit the solution ? Techniques of machine learning are proving to be 
usefull (Ray & Hesthaven).



Thank You

Collaborators: Dinshaw Balsara, Thomas Guillet, Arijit Hazra, Christian 
Klingenberg, Rakesh Kumar, Juan Pablo, Volker Springel.

Orszag-Tang
Vortex

Second order
div-free RTDG
scheme


