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Maxwell Equations

Linear hyperbolic system

0B oD
— E=0 — -V xH=-J
o TV ’ ot .

B = magnetic flux density

FE = electric field

D = electric flux density
H = magpnetic field
J = electric current density

B =.H, D =c¢E, J=0cFE w, e € R¥3 symmetric

€ = permittivity tensor
1 = magnetic permeability tensor

o = conductivity

V-B=0, V-D=p (electric charge density), g[t) +V-J=0
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Ideal compressible MHD equations

Nonlinear hyperbolic system

Compressible Euler equations with Lorentz force

0
l+V-(p’u) =0

ot
8((5:)+V'(PI+,OU®U—B®B) =0
)
E+V-((E+P)v+(U~B)B) =0
0B
E—VX(UXB) = 0

Magnetic monopoles do not exist: — V- -B =0
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Divergence constraint

oB

i E=0
BN + V x
B
V-a——i—V-VxE:O
ot T
0
“VvV.-B=0
8tv
If
V-B=0 at t=0
then

V-B=0 for t>0

Rotated shock tube
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Guillet et al., MNRAS 2019

Discrete div-free = positivity

(Kailiang Wu)
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Objectives

® Based on conservation form of the equations
® Upwind-type schemes using Riemann solvers

e Divergence-free schemes for Maxwell’s and compressible MHD

» Cartesian grids at present
> Divergence preserving schemes (RT)
> Divergence-free reconstruction (BDM)

® High order accurate
> discontinuous-Galerkin

¢ Non-oscillatory schemes for MHD
> using limiters

e Explicit time stepping

e Based on previous work for induction equation
» J. Sci. Comp., Vol. 79, pp, 79-102, 2019
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Some existing methods

Exactly divergence-free methods
® Yee scheme (Yee (1966))
® Projection methods (Brackbill & Barnes (1980))
e Constrained transport (Evans & Hawley (1989))
® Divergence-free reconstruction (Balsara (2001))

Globally divergence-free scheme (Li et al. (2011), Fu et al, (2018))

Approximate methods
® Locally divergence-free schemes (Cockburn, Li & Shu (2005))
® Godunov's symmetrized version of MHD (Powell, Gassner et al., C/K)

® Divergence cleaning methods (Dedner et al.)
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MHD equations in 2-D

ou OF, OF,

=+ =2+ =L =0
ot Ox oy
[P ] [ J 1 [
PUz P+ pvi - Bg
PUy pvzvy — Bz By
| pvs . puzv, — BB, .
U=1e | To= (4P, - Bufw-m) | Tv ™=
Ba 0
By _Ez
L B- | L VB, —v,B, ]

where

1 2 p 1 2 1 2
= (B, By, B;), P = - , E= L 4+ = -
B = (B., By, B.) p+ 5B S gelel” 4 51

FE. is the electric field in the z direction

EZ = —(’U X %)z = ’Uyng — UggBy

Py
PUVy — By By
P+ pvi - Bs
puyv: — By B,

(€ + P)vy — By(v-

E.
0
vy B, —v.By

B)
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MHD equations in 2-D

Split into two parts
U=Ip pv, & B,]", B=(B.,By)

oU B OB, OE. dB, OE,
o TV FUB) =0 Ea eS0T o SR =0

The fluxes F' = (F,, F,) are of the form

PUg Py
P + pv2 — B2 pUzVy — By By
F, = PULUy — By By ’ F, - P+ pvg — BZ
pUzv, — BB, puyv, — By B,
(€ + P)vy — By(v - B) (E+ P)uy — By(v-*B)
v, B, —v,B, i i vyB, —v.B,
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Approximation of magnetic field

If we want V - B =0, it is natural to look for approximations in
H(div,Q) = {B € L*(Q) : div(B) € L*(Q)}

To approximate functions in H(div,€)) on a mesh T, with piecewise
polynomials, we need

‘B - m _continuous across element faces‘
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Approximation spaces: Degree k > 0
Map cell K to reference cell K = [—3.+3] x [-3,+3]

PT(&) = span{l,f,fZ, v ’ér}’ @r,s(gvn) = PT(&) ® Ps(n)

Hydrodynamic variables in each cell

k k
=3 3" ULi(€)(n) € Qi
i=0 j=0

Normal component of B on faces

on vertical faces : by ( Z a;p;(n) € Pr(n)

k
on horizontal faces : by( Z bip; (&) € Pr(&)
j=

{#:(&)} are orthogonal polynomials on [—% +%] with degree ¢; = 1.
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Approximation spaces: Degree k > 0

For &k > 1,define certain cell moments

+2 2
ay=au(B)i= o [ [ Beemo@o e, 0<isko osjs<k
+2
iy = Bia(By) = m”/ /l J(E W66, (ndedn, 0<i<h, 0<j<k-1
1
n)]?déd = [ (o)
Mij = [ . £dn =mymj, m; = . [9i(£)]7d¢
2 2 2

00, Boo are cell averages of B, B,

Solution variables

U}y, A}, {by(©} {5}

The set by, by, v, B are the dofs for the Raviart-Thomas space.
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RT reconstruction: by (n),b, (£), a, 8 — B(£,n)

Given b (n) € P and bf(&) € Py, ’ e ’
and set of cell moments
{aij, 0<i<k—1,0<j<k} 5 5 5
{Bij, 0<i<k, 0<j<k-1} -
(€

Find B, € Qg41,% and By € Qg g1 such that '
]

=

I

o=

1 [tz [t2
/ | Be(6moi(©)ds(mdsdn =z, 0<i<k—1 0<j<k

’NLij . 7% 1

1 +3 r+3 . ‘
[ Bene@e gy =5y, 0<i<h 0<j<k-1
R A )

(1) 3 unique solution. (2) Data div-free = reconstructed B is div-free.
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DG scheme for B on faces
On every vertical face of the mesh
2 b,
[ oo, [, ®
2
On every horizontal face of the mesh

2

1
Ay

” d¢z
“dn

¢idn —

E,:
E

[ 7(7251] - 7

g_i[ z¢z]— )

on face, 1-D Riemann solver

. : at vertex, 2-D Riemann solver
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DG scheme for B on cells

%) +2 +2 B
mij djét] _ /1 8 )dgdn
5 (T3 0B,
- 7Ay ,/; /; ) —— ¢i(§)¢;(n)d&dn

+3 p+3
+L/ / E(&0)$:i(€)¢;(n)dedn, 0<i<k—1, 0<j<k

Not a Galerkin method, test functions (Qj_; ;) different from trial
functions (Qp+1,%)

14 /35



DG scheme for U on cells

= ¢i(§)#;(n) € Qi

For each test function ®(§,n)

+2 +2 8Uc +2 1 o0d
/ / “d@"/ /;[ PG+ By gy 49
+3 . +3 .
LRG| e
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DG scheme for U on cells

un
Br
By
by
U Ue U
B I B¢ ps B
By By By
by
U
B;
B

F, = FI(UC,B;‘j,Bj), F, =F, (UC,B;B;)
Ef = F.((U° b, By), (U b, By)),  Fy =F,(U",b,,By),(Ub,,By))
Ff =F,(U°, B, b)), (U", B}, b))),  F, =F,(U° B;,b,), (U, B;,by))

Y

16 /35



Constraints on B

Definition (Strongly divergence-free)

We will say that a vector field B defined on a mesh is strongly
divergence-free if

® V- -B=0ineachcell K €7,
® B - n is continuous at each face F € T,

Theorem
(1) The DG scheme satisfies

% /K(V - B)¢dzdy =0, Vo € Qi

and since V- B € Q. = V - B = constant wrt time.
(2)IfV-B=0att=0 = V-B=0fort>0
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Constraints on B

But: Applying a limiter in a post-processing step destroys div-free
property !!!
Definition (Weakly divergence-free)

We will say that a vector field B defined on a mesh is weakly
divergence-free if

® [,; B-nds =0 for each cell K € Tj.
® B - n is continuous at each face F' € T,

Theorem
The DG scheme satisfies

d
— B -nds=0
dt Jox

Strongly div-free =—> weakly div-free.
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Constraints on B

B - nds = (a§ —ag)Ay + (b — by )Ax
oK

where aat are face averages of B, on right/left faces and ba—L are face

averages of By on top/bottom faces respectively.

Corollary

If the limiting procedure preserves the mean value of B - n stored on the

faces, then the DG scheme with limiter yields weakly divergence-free
solutions.
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Numerical fluxes

k + 1 point Gauss-Legendre quadrature on faces

~ (UUvBr[pjva)
Wi e
o (UP, B, b,)
®L.F, o
A z7Fy (ULbraBlf)‘(UR’bT’BZIIz)

(a) (b)
(a) Face quadrature points and numerical fluxes. (b) 1-D Riemann

problems at a vertical and horizontal face of a cell
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Numerical fluxes

To estimate F}, E., solve 1-D Riemann problem at each face quadrature
point

M | OF, Ut =uUU* b, BL) <0

+ =0, U(z,0) =
ot Oz (2,0) {Z/IR:L{(UR,bx,Bf) x>0
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HLL Riemann solver in 1-D

® Include only slowest and fastest waves: S;, < Sr
® |ntermediate state from conservation law
_ Seu" — St — (Fi' — Fr)
Sr —SL
® Flux obtained by satisfying conservation law over half Riemann fan
SR}—IL — SL}—f + SLSR(UR —UL)
Sr—SL

Z/{*

Fr=

® Numerical flux is given by

FL Sp>0
F»  otherwise

® Electric field from the seventh component of the numerical flux

EZ S >0
E-U"U") = —~(Fo)r = B Sr <0
L _ R _ R_pL
SnBy -5t Eg Sé“ SnBy =By) otherwise
R—®L
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2-D Riemann problem
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2-D Riemann problem

Strongly interacting state

1
B**:—[QSSB,"E—QSS Bl 4+ 25,S,B."Y —2S:8eB5°
T 2(Se = Suw)(Sn - Sa) LT e e

— Se(BLC = BI) + Su (B - ") - (Se = Su)(EL" — BL)]

1
B**:—[zs SnBl'® —28,SwB'™ 4+ 2558, BS"Y — 2555 B3¢
y 2<S€—Su1)(snfsg) e~rn y n w Yy s w Yy s e Y

+ Sa (B = BLY) = Ss(B° — BZY) + (Sn — 8s)(E2° = E)}
Jump conditions b/w #x and {nx, sx, xe, xw}
B = B = S,(By" — ByY)
Bl = B — Sy(By - ByY)
Er* = Ei° 4 Se(By — ByY)
Ei* = B3 + Su(By" — By*)
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2-D Riemann problem

Over-determined, least-squares solution (Vides et al.)

Consistency with 1-D solver
UMW = 3% = uL
Une = Y5¢ — uR

then

E¥ = E.U*, u?) = 1-D HLL

1 1
(B2 + B2+ B2 4 B) =7 Su(BY" - BYY) -

-8,

(B;" = ByY)

—I—iSe(B;e C BT+ S8.(B B
y
?
U = (U, b, 1) b = (Um0, b)
,,,,,,,, %:,,,,,i,,,,,,@,,77774>,
U = (U, b3, b) % = (U, 03,05)
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HLLC Riemann solver

1-D solver
® Slowest and fastest waves Sy, Sk, and contact wave Sy = u,
e Two intermediate states: U*L, U*E
* No unique way to satisfy all jump conditions: Gurski (2004), Li (2005)
e Common value of magnetic field B*/ = B*F
e Common electric field EX* = E*, same as in HLL

2-D solver
® Electric field estimate EZ* same as HLL

® Consistent with 1-D solver
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Limiting procedure

Given U"+1, bg—&-l’ bZ+1’ an-l—l’ Bn—&-l
@ Perform RT reconstruction = B(¢,n).

@® Apply TVD limiter in characteristic variables to {U (§,7n), B(§,n)}-
© On each face, use limited left/right B(§,n) to limit b, b,

b (1) « minmod (bz(n), By (5,7), By (=3, 1))

Do not change mean value on faces.
O Restore divergence-free property using divergence-free-reconstruction?

Strongly divergence-free: need to reset cell averages g, Boo
Weakly divergence-free: aqg, Boo are not changed

VB =di$1(§) + dap1(n)

!See https://arxiv.org/abs/1809.03816, to appear in JCP
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Divergence-free reconstruction

For each cell, find B(&,n) such that

By(%3,n) =by(n), Vne -} +3]
By(€,+5) = by (€), V&€ [~§,+3]
V-B&n) =0, V(En)el-33x[-13
We look for B in (Brezzi & Fortin, Section 111.3.2)

BDM(k) = P2 @ V x (zF1y) @ V x (zy*th)

® For k=0,1,2, we can solve the above problem

® For k > 3, we need additional information
> k=3 bl() — apgp = w1 = V x B(070)
» k=4: w;and byy — a1 = woy &~ 6%VxB, b11 —ap2 = w3 ~ %VXB
» wq, etc. are known from a, 3

® For more details, see https://arxiv.org/abs/1809.03816

28/35


https://arxiv.org/abs/1809.03816

Algorithm 1: Constraint preserving scheme for ideal compressible MHD

Allocate memory for all variables;

Set initial condition for U, b;, by, a, 3;

Loop over cells and reconstruct B, By;

Set time counter ¢t = 0;

while t < T do

Copy current solution into old solution;

Compute time step At;

for each RK stage do

Loop over vertices and compute vertex flux;

Loop over faces and compute all face integrals;
Loop over cells and compute all cell integrals;
Update solution to next stage;

Loop over cells and do RT reconstruction (b, by, a, 3) = B;
Loop over cells and apply limiter on U, B;

Loop over faces and limit solution b, by;

Loop over faces and perform div-free reconstruction;

end
t=1t+ At
end
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Numerical Results
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Smooth vortex
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Orszag-Tang test
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Rotated shock tube:

% error in B

128 cells, HLL

% error in By B,
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Blast wave: 200 x 200 cells

1000 r < 0.1
0.1 r>0.1

—
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Summary

® Div-free DG scheme using RT basis for B
® Multi-D Riemann solvers essential
» consistency with 1-d solver is not automatic; ok for HLL and
HLLC (3-wave); what about HLLD ?
® Div-free limiting needs to ensure strong div-free condition
» Reconstruction of B using div and curl
® Extension to 3-D seems easy, also AMR
® Extension to unstructured grids (use Piola transform)
® | imiters are still major obstacle for high order
> WENO-type ideas
» Machine learning ideas (Ray & Hesthaven)
® No proof of positivity limiter for div-free scheme
» Not a fully discontinuous solution

® Extension to resistive case: B, +Vx E=-V x (nJ), J =V x B

0B, 0 0B, 0 0B, OB,
=+ Ez z) = —r_— Ez_ z) = VU, Jzy = —r_ =
ot Ty Betnte) =0 g (Bemn) =0, L. = 5n =
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