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Abstract

The main objective of this thesis is to study the global geometric properties of

a manifold embedded in Euclidean space, as it evolves under a stochastic flow of

diffeomorphisms. The processes driving the stochastic flows are chosen to be Gaus-

sian processes with stationary increments (in time). The most common class of

Gaussian processes with stationary increments is the family of fractional Brownian

motions with Hurst parameter H ∈ (0, 1). This family encompasses a wide variety of

processes with applications in the fields of oceanography, finance and telecommuni-

cations, to name a few. The fact that these processes possess stationary increments

implies that the corresponding noise process is a stationary process, and so one can

hope to obtain ergodic estimates.

In Part I of the dissertation, we study the evolution of a codimension one manifold

embedded in Euclidean space, under an isotropic and volume preserving Brownian

flow. In particular we obtain expressions describing the expected rate of growth

of the Lipschitz-Killing curvatures, or intrinsic volumes, of the manifold evolving

under the flow. These results shed new light on the some of the intriguing growth

properties of flows from a global perspective, rather than the local perspective, on

which there is much larger literature.

In Part II, we deviate from the setting of standard Brownian flows, whose analysis

was primarily based on the Markovian character of the flow, and move to stochas-

tic flows driven by fractional Brownian motion with Hurst parameter H ∈ (1
2
, 1).

Adopting a pathwise approach, we obtain estimates for the growth of the Hausdorff

measure of an m dimensional manifold embedded in Rn.
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Chapter 1

Introduction

A subject of recent research activity in stochastic processes has been the study

of the dynamics of randomly evolving manifolds under a stochastic flow. An ap-

preciable amount of progress has already been made by studying stochastic flows

where explicit calculations are possible. For example, isotropic Brownian flows have

been studied in Baxendale and Harris [6], Le Jan [20, 21], and isotropic and volume

preserving flows have been studied in Cranston and Le Jan [12].

Baxendale and Harris [6] studied, in detail, the characterization of a Brownian flow

using its covariance function. They also established results related to the two point

motion of the flow, and studied in detail the various dynamic properties of the

tangent vectors and tangent flows.

Since the beginning of the study of stochastic flows, probabilists and geometers have

been searching for appropriate parameters to characterize the flow, in particular its

dynamic properties. In the last two decades, researchers have shown considerable

interest in Lyapunov exponents as a tool to explain the asymptotic behavior of

some of the characteristics of the flow, as, for example, in the study of statistical

equilibrium and the two point motion of flows in Baxendale [5]. The first step in

relating the Lyapunov exponents to stochastic flows was probably made by Carverhill

[8, 9]. In [9], Carverhill proved a version of the multiplicative ergodic theorem

of Oseledec [31] for stochastic (Brownian) flows of diffeomorphisms of a compact

smooth manifold M establishing the existence of numbers λ1 > · · · > λk, called the

Lyapunov exponents, and random subspaces {V x,ω
i }k

i=1 of the tangent space TxM
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for any x in the manifold M , such that V x,ω
i ⊂ V x,ω

i+1 for 1 ≤ i ≤ k and that the i-th

Lyapunov exponent is determined by any v ∈ V x,ω
i \V x,ω

i−1 . (The ω in the superscript

emphasizes the randomness of the subspaces.)

About the same time Le Jan [20] also proved similar results, including an explicit

expression for the Lyapunov exponents of an isotropic Brownian flow defined on the

Euclidean space Rn.

It was long believed that the Lyapunov exponents could explain the recurrence

of the second fundamental form at any point of a manifold, evolving randomly

under a stochastic flow. Cranston [10], however, indicated that an extension to the

continuous case of the results obtained in Cranston and Le Jan [11] would show

that the intuition employed to explain the recurrence of the second fundamental

form using the Lyapunov exponents was not true. The above observation leads one

to believe that the finite time behavior of the geometric evolution of the flow may

be better studied by some other characteristics of the flow. This lead Cranston and

Le Jan in [12] to study the unfolding of the symmetric polynomials of the principle

curvatures, including the mean and the Gaussian curvature of an (n−1)-dimensional

manifoldM embedded in Rn, evolving under an isotropic and volume preserving flow

on Rn. They obtained an Itô formula for the symmetric polynomials of the principle

curvatures and hence deduced that while the vector of all the symmetric polynomials

of the principle curvatures is a diffusion, the same was not true for any proper subset

of the vector.

In Part I of this thesis, we extend this by looking at the dynamic behavior of

the Lipschitz-Killing curvatures of randomly evolving manifolds under isotropic

and volume preserving Brownian flows on Rn. The Lipschitz-Killing curvatures

{Lk(M)}dim(M)
k=0 , also known as curvature measures, can be regarded as extensions

of intrinsic volumes and hence can also be called generalized volumes. This is a

natural but significant extension of Cranston and Le Jan [12], as Lipschitz-Killing

curvatures can be represented as the average of the symmetric polynomials of the

principle curvatures over the manifold.

Unlike the information furnished by the random filtration obtained by studying

Lyapunov exponents, which basically give local information, Lipschitz-Killing cur-

vatures describe the global geometry of randomly evolving manifolds. This is yet
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another motivation to work with Lipschitz-Killing curvatures. Part I of the thesis

tackles this problem by studying the stochastic evolution of the Lipschitz-Killing

curvatures of a manifold evolving randomly under an isotropic and volume preserv-

ing Brownian flow. The results there, are an extension of the results in [12], and

have recently been published in [40].

Our main result in Chapter 4, will be a stochastic evolution equation for the

Lipschitz-Killing curvatures of a randomly evolving manifold under an isotropic

and volume preserving Brownian flow, an important consequence of which is an ex-

plicit, and quite simple, expression for their expected values as a function of time.

In simple words, let Mt be the image, under the flow Φt, of an (n− 1)-dimensional

compact smooth manifold M , embedded in Rn. Moreover, let Lm(Mt) denote the

m-th Lipschitz-Killing curvature of the manifold Mt, for 0 ≤ m ≤ (n− 1). Then we

shall prove the following result.

Theorem 1.0.1 Let Φt is an isotropic and volume preserving Brownian flow of C2

diffeomorphsims of Rn. Then, for 0 ≤ m ≤ n− 1, the expected rate of growth of the

Lipschitz-Killing curvatures is given by

E{Lm(Mt)} = Lm(M) exp(C t),

where C is a constant independent of t.

Chapter 2 is devoted towards setting up the notation and developing the required

background for the results that follow in the subsequent chapters. Throughout this,

and the following Chapter 3, we borrow heavily from the work of Cranston and Le

Jan [12]. Chapter 3 redevelopes many results from [12] which are needed to prove

the new results in Chapter 4.

An important feature of Brownian flows which is crucial for the analysis in Part I

is the Markovian character of the one point motion of the flows.

Part II, therefore. moves out of this setting to see what can be done in the somewhat

harder setting of non-Markovian, non-diffusive, flows.

More precisely, in Part II we study stochastic flows driven by fractional Brownian

motion with Hurst parameter H > 1/2. The reason behind the choice of fractional
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Brownian motion is two fold. Firstly, they are of independent interest, having

appeared in a number of applications (see [15, 35]). Secondly, while they are no

longer Markovian, their inherent Gaussian structure provides a framework in which

some calculations are still possible.

Fractional Brownian motion {BH(t), t ≥ 0} with Hurst parameter H ∈ (0, 1), is

the zero mean Gaussian process with stationary increments, which satisfies a scaling

property called self-similarity with index H. More precisely,

(BH(t)−BH(s))
L
= BH(|t− s|),

and

BH(t)
L
= tHBH(1),

for any s, t ≥ 0.

Note that for H = 1/2, BH is the standard Brownian motion, which is a Markov

process and also a martingale. However for H 6= 1/2, BH is neither a Markov

process nor a semi-martingale.

The study of fractional Brownian motion, the various ways of defining stochastic

integrals with respect to this process and the study of flows generated by fractional

Brownian motion with H > 1/2, forms the bulk of Part II.

Chapter 5 is mainly aimed at summarizing various properties of fractional Brownian

motion as a process, and providing a literature review of various attempts at defining

integrals with respect to this process. Then, in Chapters 6 and 7, we provide details

of two different ways of defining stochastic integrals with respect to fractional Brow-

nian motion, the Wiener integral and the pathwise approaches. Finally, in Chapter

8, we present the main result of Part II, namely the estimates on the growth of the

Hausdorff measure of randomly evolving manifolds under a stochastic flow driven

by fractional Brownian motion.

The main result of Part II can be stated, in short, as follows:

Theorem 1.0.2 Let Mt be the image under the fractional flow Φt of an m-dimensional

smooth manifold M , embedded in Rn for some m < n, and let Lm(Mt) be the m-

dimensional Hausdorff measure of the manifold Mt. Then there exist constants c1
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and C1, such that

sup
t∈[0,T ]

Lm(Mt) ≤ c1 Lm(M) 2C1 T ‖BH‖1/β
β,T .

where ‖BH‖β,T is the β-Hölder norm of the driving process BH , and βis a parameter

to be defined later.

The thesis concludes with a brief chapter on open problems and directions for future

research.
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Part I

Brownian flows

7



Chapter 2

Background

In this chapter, we shall introduce the notion of a stochastic flow and develop the

basic geometric aspects concerning Riemannian manifolds needed to study the con-

nection between the two.

2.1 Stochastic flows

We start with a family of random mappings Φst, 0 ≤ s ≤ t < ∞, of Rn into itself,

such that

• Φst, for each s ≤ t is a diffeomorphism of Rn into itself.

• Φut ◦ Φsu = Φst, for all s ≤ u ≤ t <∞.

• Φtt is the identity map on Rn for all t.

• Φs1t1 ,Φs2t2 , . . . ,Φsntn are independent if s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn.

• For each x ∈ Rn, Φst(x), Φ−1
st (x), DΦst(x) ≡

(∂Φi
st(x)

∂xj

)
and DΦ−1

st (x) are jointly

continuous in 0 ≤ s ≤ t <∞.

Such a family of random mappings is called a stochastic (Brownian) flow.

Writing Φt for Φ0t, we can construct a Brownian flow on Rn by solving the equation

xt = Φt(x) = x+

∫ t

0

∂Us(Φs(x)), (2.1)
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where ∂ denotes the Stratonovich interpretation of a stochastic derivative and Ut(x)

is a vector field valued Brownian motion with spatial covariance structure given by

EU i
t (x)U

j
t (y) = (t ∧ s)Cij(x− y), 1 ≤ i, j ≤ n, (2.2)

and where the Cij takes the specific form

Ckl(z) =

∫ ∞

0

∫
Sn−1

eiρ〈z,t〉(δk
l − tktl)σn−1(dt)F (dρ), (2.3)

for a nonnegative measure F on R+ and normalized Lebesgue measure σn−1 on Sn−1.

Furthermore we denote the various spatial derivatives of U as follows

W i
j =

∂U i

∂xj
, (2.4)

Bi
jk =

∂2U i

∂xj∂xk
. (2.5)

Writing 〈·, ·〉 for quadratic covariation, we have

〈dW i
j (t, y), dW

k
l (t, y)〉 = Cik

jl dt, (2.6)

where, Cik
jl can be obtained by taking the partial derivatives of the covariance func-

tion C (cf [1]). In our case, because of the specific choice of the covariance function

in (2.3), Cik
jl is given by

Cik
jl =

µ2

n(n+ 2)
[(n+ 1)δi

kδ
j
l − δi

jδ
k
l − δi

lδ
k
j ]. (2.7)

In [6] and [20] isotropic and volume preserving flows are characterised in terms of

the vector field U and the corresponding covariance function C.

A vector field {U(t, x) : t ∈ R+, x ∈ Rn} defined on the Euclidean space Rn, is

called an isotropic vector field if for Ty, a translation by y ∈ Rn, TyU(t, T−yx) and

U(t, x) have the same law, and moreover for R, an n-dimensional unitary matrix,

RU(t, R−1x) and U(t, x) are identical in law. A stochastic flow Φt is called isotropic

if its corresponding vector field is isotropic. For Gaussian vector fields the conditions

stated above boil down to the following condition on the spatial covariance function

C,

C(x) = G∗C(Gx)G,
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for any real orthogonal matrix G.

Subsequently, a necessary and sufficient condition for isotropy, in the case of Gaus-

sian vector fields, is that the partial derivatives of the covariance function at zero

have the form

Cik
jl = a δi

kδ
j
l + b δi

jδ
k
l + c δi

lδ
k
j ,

where a + c, a − c, a + c + nb are nonnegative. Moreover, a flow Φt is said to be

volume preserving if and only if

divU =
∑

i

W i
i = 0,

almost surely, or, equivalently, if

E(
∑

i

W i
i )

2 = 0.

Hence it follows that the covariance function determined by (2.7) is that of an

isotropic and volume preserving stochastic flow.

The particular choice of the covariance functions in (2.3), made also by Cranston

and LeJan [12], simplifies many of the computations to follow, as certain Itô correc-

tion terms disappear. The computations are still difficult but, under (2.3), become

feasible.

Furthermore, under the above assumpions, we have

〈dBi
jk(t, y), dW

p
q (t, y)〉 = 0

for any 1 ≤ i, j, k, p, q ≤ n and

〈〈dB(u, u), v〉, 〈dB(u, u), v〉〉 =
3µ4

n(n+ 2)(n+ 4)
[(n+ 3)‖u‖4‖v‖2 − 4〈u, v〉2‖u‖2]dt,

for all vectors u, v ∈ Rn.

Throughout the remainder of this thesis we shall assume, without further comment,

that the covariance function corresponding to U is determined by (2.3) and (2.7).

2.2 Tensors

Before we can turn to the geometry of the flow, which is of central importance for

us, we need to recall some terms from tensor analysis.
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A k-covariant, l-contravariant tensor T , is defined as a multilinear map,

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

×V × · · · × V︸ ︷︷ ︸
k copies

→ R,

where V is a finite dimensional vector space and V ∗ is the dual of V . Writing (k, l)-

tensors for k-covariant and l-contravariant tensors,we denote T k
l (V ) as the collection

of all (k, l)-tensors defined on V .

Let S ∈ T k
0 (V ) and T ∈ T l

0 . Then their tensor product

S ⊗ T : V × · · · × V︸ ︷︷ ︸
(k+l) copies

→ R

is defined as

(S ⊗ T )(X1, . . . , Xk+l) = S(X1, . . . , Xk)T (Xk+1, . . . , Xk+l).

Clearly, (S ⊗ T ) ∈ T k+l
0 . An illuminating example of a 3-covariant tensor is the

determinant of the corresponding vectors. This example also serves as an example

of an alternating tensor, in the sense that interchanging any of the arguments results

in a change in the sign of the determinant. More precisely, an alternating tensor

of order k is defined as a covariant k-tensor T on a finite dimensional vector space

with the property that

T (Xσ1 , . . . , Xσk
) = (−1)σT (X1, . . . , Xk), ∀σ ∈ S(k),

where S(k) is the symmetric group of permutations of k letters and (−1)σ denotes

the sign of the permutation σ. Similarly we define a symmetric tensor of order k as

a covariant k-tensor T on a finite dimensional vector space with the property that

T (Xσ1 , . . . , Xσk
) = T (X1, . . . , Xk), ∀σ ∈ S(k).

For k ≥ 0, we denote by Λk(V ) (respectively, Sym(T k
0 (V ))) the set of all alter-

nating (symmetric) covariant k-tensors. We can also define a natural projection

A : T k
0 (V ) → Λk(V ), by

(AT )(X1, . . . , Xk) =
1

k!

∑
σ∈S(k)

(−1)σT (Xσ(1), . . . , Xσ(k)).
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This definition helps in defining a crucial operation in tensor calculus, the wedge

product of alternating tensors, which is given by

α ∧ β =
(k + l)!

k! l!
A(α⊗ β).

Since α ∈ Λk(V ) and β ∈ Λl(V ), it follows that α ∧ β ∈ Λk+l(V ).

Writing Λm,n(V ) for the linear span of the image of Λm(V ) × Λn(V ) under the

operation ⊗, define Λ∗(V ) ⊗ Λ∗(V ) = ⊕∞
m,n=0Λ

m,n(V ). Then we can also define a

double wedge product for γ ∈ Λm,n(V ) and θ ∈ Λp,q(V ) by

(γ · θ)((u1, . . . , um+p), (v1, . . . , vn+q)) =

1

m! n! p! q!

∑
σ∈S(m+p), ρ∈S(n+q)

(−1)σ+ρ[γ((uσ1 , . . . , uσm), (vρ1 , . . . , vρn))

× θ((uσm+1 , . . . , uσm+p), (vρn+1 , . . . , vρn+q))]

so that (γ · θ) ∈ Λm+p,n+q(V ).

These constructions will turn out to be crucial for the tube formulae that we shall

meet later.

2.3 Riemannian manifolds

We let M be an (n − 1)-dimensional compact C2 manifold embedded in Rn. We

write TxM for the tangent space at point x ∈ M and T (M) =
⊔

x∈M TxM for the

tangent bundle. In general, a (smooth) k-dimensional vector bundle is a pair of

smooth manifolds E and M , together with a surjective map π : E → M , such that

the following conditions are satisfied.

• E is ((n− 1) + k) dimensional smooth manifold.

• π−1(x), for each x ∈ M , called the fiber of E over x, is endowed with the

structure of a vector space.

• For every x ∈ M , there exists a neighborhood U of x and a diffeomorphism

ϕ : π−1(U) → U×Rk such that π1(ϕ(π−1(U))) = U , where π1 is the projection

onto the first factor.
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• Finally, the restriction of ϕ to each fiber, ϕ : π−1(x) → {x} × Rk, is a linear

isomorphism.

Another related concept, a smooth section is defined as a smooth map σ : M → E

such that, π ◦ σ = IdM , where IdM is the identity map on M .

Going back to the previous section, recall that we defined all tensorial objects with

respect to a vector space V . We now move this to the context of manifolds so that

we can make use of tensor analysis in the setup of Riemannian manifolds. Writing

TxM for V , we replicate all the definitions of the previous section. Then we define

the bundle of (k,l)-tensors T k
l M on M as

T k
l M =

⊔
x∈M

T k
l (TxM)

where
⊔

denotes the disjoint union. Similarly, the bundle of k-forms is

ΛkM =
⊔

x∈M

Λk(TxM).

We also assume that M is a Riemannian manifold equipped with a Riemannian

metric. Formally, a Riemannian metric g on a smooth manifold M is a smooth

section of Sym(T 2
0 (M)), such that for each x ∈ M , gx is positive definite (i.e.,

gx(X,X) > 0 if 0 6= X ∈ TxM).

Loosely speaking a Riemannian metric determines an inner product on each tangent

space TxM . Therefore, we shall write gx(X, Y ) ≡ 〈X,Y 〉, a natural choice for

inner products. Enigmatic as it may appear now, this choice of notation is actually

very natural. Nevertheless, it is important to remember the dependence of the

Riemannian metric on the position in the manifold.

Now we shall move on to an extremely crucial concept in differential geometry, that

of differentiating vector fields and the notion of a connection. Writing E(M) for the

space of smooth sections of E (from the definition of vector bundle), and T (M) for

the space of all the vector fields, a canonical connection in E is defined as a map

∇ : T (M)× E(M) → E(M),

written (X, Y ) 7→ ∇XY , satisfying the following properties:

13



• ∇XY is linear over C∞(M) in X, i.e.,

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M).

• ∇XY is linear over R in Y , i.e.,

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b ∈ R.

• ∇ satisfies product rule, i.e.,

∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M),

where Xf is interpreted as the derivative of f in the direction X.

∇XY is also called the covariant derivative of Y in the direction of X. It is notewor-

thy that even if we choose X, Y as vector fields taking values in the tangent bundle,

the usual derivative of Y in the direction X need not lie in the tangent bundle.

However, by projecting the resultant derivative onto the tangent space we get the

linear connection which does lie in the tangent space.

As we did for M , we also define a connection on the ambient manifold Rn. We write

∇ for the connection on the tangent bundle of M and ∇̃ for the connection on the

ambient space Rn.

Furthermore it is natural to request that a connection satisfy the following properties

in addition to the ones already mentioned. Connections that do so are called Levi

Civita connections.

• ∇ is torsion free, i.e., ∇XY −∇YX − [X, Y ] = 0, where [X, Y ]f = (XY )f −
(Y X)f , is the Lie bracket.

• ∇ is compatible with the metric 〈·, ·〉, i.e., X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

All the machinery developed so far goes into defining one of the central aspects of

Riemannian geometry, curvature. The Riemannian curvature operator is defined as

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

14



where X, Y are vector fields taking values in the tangent bundle of the manifold.

The Riemannian curvature tensor is defined as

R(X, Y, Z,W ) = 〈∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W 〉

= 〈R(X, Y )Z,W 〉,

where 〈·, ·〉 is the Riemannian metric.

Another important tool often used in differential geometry is the (scalar) second

fundamental form, defined as

Sν(X, Y ) = 〈(I − Π)∇̃XY, ν〉

= 〈∇̃XY −∇XY, ν〉, (2.8)

where Π : TxRn → TxM is orthogonal projection onto the tangent space of the

manifold, ν is the unit normal vector field on the manifold and X,Y are vector

fields taking values in the tangent bundle. Writing

S(X, Y ) = (I − Π)∇̃XY,

called the second fundamental form, we get

Sν(X, Y ) = 〈S(X, Y ), ν〉.

It follows from the definition of the second fundamental form that S(X, Y ) is or-

thogonal to the tangent space TxM for each x ∈M .

Remark 2.3.1 In the definition (2.8) of the scalar second fundamental form, we use

the fact that Π∇̃XY = ∇XY , without any explanation. Though it is not immediately

apparent from the definition of a connection, note that connections depend on the

underlying Riemannian metric. Some computations, together with the above fact,

imply Π∇̃XY = ∇XY. We direct interested readers to [22] for complete computations

and explanations.

Remark 2.3.2 Despite its name, the (scalar) second fundamental form should not

be confused with a differential form. It derives its name from the fact that it is a

bilinear form.
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We can use the (scalar) second fundamental form to induce a linear operator S(k)

on the exterior algebra Λk(TxM) for k ≤ (n − 1). This is done as follows. Define

S(1) as X → 〈S(X, ·), ν〉 = Sν(X, ·). This satisfies the condition of a linear operator

on Λ1(TxM). Then define S
(k)
ν as

S(k)
ν (u1 ∧ . . . ∧ uk, v1 ∧ . . . ∧ vk) =

∑
σ∈Sk

(−1)σ

k∏
j=1

Sν(uσ(j), vj),

where Sk is the collection of all k-permutations σ, and as earlier, we use (−1)σ for

the sign of the permutation. This gives rise to a linear operator u1 ∧ . . . ∧ uk →
S(k)(u1 ∧ . . . ∧ uk, ·), where u1, . . . , un−1 ∈ TxM is a basis of TxM .

The last, and the most important, remaining definition is that of the trace of S
(k)
ν .

For this, however, we need some more notations. Define the index set Ik by

Ik = {~m ∈ {1, . . . , n− 1}k : m1 < m2 < · · · < mk},

for 1 ≤ k ≤ (n− 1).

Then, for ~l ∈ Ik define

|~l| = l1 + · · ·+ lk,

α~l = ul1 ∧ · · · ∧ ulk , (2.9)

α
~l = (−1)|

~l|+ku1 ∧ · · · ∧ ûl1 ∧ · · · ∧ ûlk ∧ · · · ∧ un−1,

and

α = u1 ∧ · · · ∧ un−1,

where u1, . . . , un−1 is, as defined earlier, a basis of TxM and a vector labeled by a .̂

is understood to be omitted from the wedge product. Now, for ~l, ~m ∈ Ik, define

〈α~l, α~m〉 = det(〈uli , umj
〉), (2.10)

and, similarly, define

‖α‖ = det(〈ui, uj〉).

Now we are well armed, with all the tools required, to define the all important TrS(k)

as

TrS(k) = S(k)(α~l, α~m)〈α~l, α~m〉‖α‖−2,
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where the Einstein summation convention is used over the indices ~l, ~m ∈ Ik. An

interesting and quite useful property of the trace, which we shall use later, is that

TrS(k) is independent of the choice of basis.

We shall now explain why TrS(k) is important in the study of manifolds. As earlier,

we write ν for the unit normal vector field in M . Then for x ∈ M , and ν, the unit

normal vector field on the manifold M , the shape operator S∗x,ν(·) of M is defined

as a map,

S∗x,ν : TxM → TxM

such that,

S∗x,ν(Y ) = −∇̃Y ν,

where Y ∈ TxM . A simple calculation shows that the shape operator is a linear

operator on the tangent space of M at x. An extremely important property of the

shape operator is that

〈S∗ν(X), Y 〉 = −〈∇̃Xν, Y 〉

= 〈ν, ∇̃XY 〉

= 〈ν, (I − Π)∇̃XY 〉+ 〈ν,∇XY 〉︸ ︷︷ ︸
=0

= 〈S(X, Y ), ν〉

= Sν(X, Y ),

where X, Y are the vector fields taking values in the tangent bundle and the un-

derbraced part is zero as ∇XY lies in the tangent bundle, by definition, hence its

inner product with ν vanishes. This observation is a consequence of what is known

as the Weingarten equation. So we observe that the second fundamental form can

be retrieved from the shape operator.

Being a linear operator on the tangent bundle of the manifold, the shape operator

has eigenvalues and eigenvectors. The eigenvalues of the shape operator {λk}n−1
k=1

are called the principal curvatures and the corresponding eigenvectors are called the

principal curvature directions.

Writing u1, . . . , un−1 for the principal curvature directions at a point x ∈ M and

λ1, . . . , λn−1 for the corresponding principal curvatures, we find S∗ν(uj) = λjuj and,
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by using the property of the shape operator mentioned above we conclude that

〈S(uj, v), ν〉 = λj〈uj, v〉.

Now making use of the fact that the principal curvature direction vectors are or-

thogonal we find that,

S(k)(α~l, α~l) = λl1 . . . λlk .

Since TrS(k) is independent of the choice of the basis, we can, and so shall, evaluate

it for the principal curvature direction vectors. Therefore, we observe that

TrS(k) =
∑
~l∈Ik

λl1 . . . λlk
∆
= Pk(λ1, . . . , λn−1),

which is the k-th symmetric polynomial of the principal curvatures for 1 ≤ k ≤
(n− 1). Observe that the first symmetric polynomial is the mean curvature and the

last symmetric polynomial is the Gaussian curvature.

In the following section we shall see an example of why symmetric k-polynomials of

the principal curvatures are very important in differential geometry.

2.4 Tube formula and Lipschitz-Killing curvatures

Perhaps surprisingly, the problem of finding the volume of the tube around a man-

ifold, when the manifold is inflated by some amount, has its roots in statistics. In

stochastic processes, the tube formula is used to evaluate the maximal distributions

of Gaussian processes (cf [1]). The tube formula is credited to Hotelling ([19]) and

Weyl ([41]). This celebrated result gives the volume of the tube around a manifold

in terms of geometric invariants of the manifold itself. More precisely, if M is an

(n−1)-dimensional smooth manifold embedded in Rn and endowed with the canon-

ical Riemannian structure on Rn, then we shall define the tube of radius ρ around

M as

Tube(M,ρ) = {x ∈ Rn : d(x,M) ≤ ρ},

where

d(x,M) = inf
y∈M

‖x− y‖.
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Writing µ(Tube(M,ρ)) for the volume of the tube, Weyl’s tube formula states that

there exists a ρc ≥ 0, known as the critical radius, such that for ρ ≤ ρc, the volume

of the tube is given by

V ol(Tube(M,ρ)) =
n−1∑
i=0

ρn−iωn−iLi(M), (2.11)

where ωi is the volume of the i-dimensional unit ball and Li(M) denotes the ith-

Lipschitz-Killing curvature.

It is shown in [1] that the volume of the tube can be explicitly calculated by using

the tools we have seen in the previous sub-sections and a little more. Consequently,

given this calculation and then comparing coefficients of ρi on both the sides of

(2.11), one can obtain precise expression for Lipschitz-Killing curvatures Li(M).

In particular, it follows that the Lipschitz-Killing curvatures of a smooth (n − 1)-

dimensional hypersurface M embedded in Rn can be written as

Ln−k−1(M) = Kn,k

∫
M

∫
S(R)

Tr(S(k)
ν )

×1NxM(−ν)H0(dν)Hn−1(dx),

where, Kn,k = 1
(2π)(k+1)/2 Γ

(
(k+1)

2

)
, Hk(dx) is the k-dimensional Hausdorff measure,

and NxM is the normal cone to the manifold M at point x. Loosely speaking, a

normal cone NxM for x ∈ M , a smooth manifold, is the vector space generated by

the set of vectors normal to the tangent space. If the codimension of the manifold M

is 1, then it is easy to see that the normal cone NxM comprises of two unit vectors

pointing in opposite directions, which are orthogonal to the tangent space TxM .
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Chapter 3

Geometry of the flow

In the previous chapter we developed the background required for the geometric

analysis of stochastic flows. In this chapter we shall review and rederive some results

due to Cranston and Le Jan in [12] concerning the evolution of the scalar second

fundamental form Sν , the induced k-form S
(k)
ν and finally the trace of the induced

k-form. Essentially all the results we give here, together with their proofs, can be

found in [12]. Nevertheless we collect them here, sometimes with additional details,

since they are needed for what follows in Chapter 4, where we present new results.

Before we start proving theorems, we need some notations which are basically ex-

tensions of what we have already seen in previous chapter. Recall that we assumed

M to be an (n − 1)-dimensional manifold embedded in Rn and we have defined a

stochastic flow with its covariance function in Chapter 2. The special choice of the

covariance function made the stochastic flow volume preserving and isotropic.

We define Mt as {Φt(x) : x ∈ M} or equivalently Φt(M) and TxtMt as the tangent

space of Mt at xt and write u1, . . . , un−1 for a basis of TxM , and u1(t), . . . , un−1(t)

for a basis of TxtMt. At this point we require no connection between the uj and

uj(t).

Here is a quick overview of some of the geometric objects redefined for Mt:

• The orthogonal projection onto the tangent space is written as

Πt : TxtRn → TxtMt. (3.1)
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• The second fundamental form for Mt is denoted by

St(u(t), v(t)) = (I − Πt)∇̃u(t)(v(t)), (3.2)

and the scalar second fundamental form is given by

Sνt(u(t), v(t)) = 〈St(u(t), v(t)), νt〉, (3.3)

where u(t), v(t) ∈ TxtMt and νt is a unit normal vector field of Mt.

• Finally, the k-form S
(k)
νt induced by the second fundamental form is given by,

S(k)
νt

(v1(t) ∧ · · · ∧ vk(t), w1(t) ∧ · · · ∧ wk(t)) =
∑
σ∈Sk

(−1)σ

k∏
j=1

Sνt(vσ(j)(t), wj(t)),

(3.4)

where (−1)σ is as defined earlier, vi(t), wi(t) ∈ TxtMt, and Sk is the collection

of all k-permutations.

We know the exact expression for the Lipschitz-Killing curvatures for M , now we

shall define them for the moved manifold Mt. There is no change, whatsoever, in

the definition of the Lipschitz-Killing curvatures, but the constituent terms change

with the flow.

Ln−k−1(Mt) = Kn,k

∫
Mt

∫
S(R)

TrTxtMt(S(k)
νt

)

×1NxtMt(−νt)H0(dνt)Hn−1(dxt)

Although it is natural that the exterior integral here is over Mt, it will be convenient

for us to have the integral over the original manifold M , which we can obtain via a
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standard change of variables formula to be

Ln−k−1(Mt) = Kn,k

∫
M

∫
S(R)

TrTΦt(x)Φt(M)(S(k)
νt

)
√

det(〈ui(t), uj(t)〉)

×1NxtMt(−νt)H0(dνt)Hn−1(dx)

= Kn,k

∫
M

∫
S(R)

TrTΦt(x)Φt(M)(S(k)
νt

)‖αt‖

×1NxtMt(−νt)H0(dνt)Hn−1(dx)

= Kn,k

∫
M

∫
S(R)

S(k)
νt

(α~l,t, α~m,t)〈α
~l
tα

~m
t 〉‖αt‖−2‖αt‖

×1NxtMt(−νt)H0(dνt)Hn−1(dx)

= Kn,k

∫
M

∫
S(R)

S(k)(α~l,t, α~m,t)〈α
~l
tα

~m
t 〉‖αt‖−1

×1NxtMt(−νt)H0(dνt)Hn−1(dx). (3.5)

Now we are in a position to develop some results for isotropic and volume preserving

stochastic flows which we shall, in the following chapter, apply towards realising our

main goal, that of finding an Itô formula for Lipschitz-Killing curvatures.

3.1 Itô formula for the second fundamental form

Clearly, it follows from (2.1) that,

dDΦt(x) = ∂W (xt)DΦt(x), (3.6)

where we remind the reader that ∂ denotes the Stratonovich interpretation of a

stochastic derivative, D is the space derivative as mentioned earlier while defining

stochastic flows in Section 2.1 and, finally, d denotes the Itô interpretation of a

stochastic derivative. It is important to note that DΦt(x) is a full rank matrix and,

hence, is invertible due to the diffeomorphic nature of the flow Φt(x).

Assuming u ∈ TxM , we define

u(t) = DΦt(x)u.

Then by a simple calculation of the push-forward (see [23] for complete computa-

tions), it follows that u(t) ∈ TxtMt and moreover,

du(t) = ∂Wu(t) = dWu(t). (3.7)
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The correction term in the above expression is 1
2
dWdWut, which vanishes due to

the choice of the covariance function in (2.3) and (2.7). Furthermore, if we choose

{u1, . . . , un−1} as the basis for TxM , then it follows that {u1(t), . . . , un−1(t)} forms

a basis for TxtMt by a simple application of the push-forward.

Recalling that we are using ∇̃ for the canonical connection on Euclidean space, we

have the following result.

Lemma 3.1.1 Let u, v be vectors belonging to TxM and set u(t) = DΦt(x)u,

v(t) = DΦt(x)v. Then, u(t), v(t) ∈ TxtMt and

d∇̃u(t)(v(t)) = ∂W ∇̃u(t)(v(t)) + ∂B(u(t), v(t)).

Proof: Let u, v ∈ TxM . Extend v to a smooth vector field V in a neighbourhood

of x ∈M from which it follows that Vt(xt) = v(t). Set

Vt(y) = (DΦt)(Φ
−1
t (y))V (Φ−1

t (y)),

where y ∈Mt, which implies Φ−1
t (y) ∈M and hence V (Φ−1

t (y)) is well defined. Now

denote Zt ≡ ∇̃u(t)Vt(xt), then take γ to be a curve taking values on the manifold

M , with γ(0) = x, γ
′
(0) = u, thereafter, define γt(·) = Φt(γ(·)), so that γ

′
t(0) =

DΦt(γ(0))γ
′
(0) = DΦt(x)u = u(t). Then,

∇̃u(t)Vt = lim
s→0

s−1(V (γt(s))− Vt(γt(0)))

= lim
s→0

s−1(DΦt(γ(s))V (γ(s))−DΦt(x)v)

= lim
s→0

s−1[(DΦt(γ(s))−DΦt(x))V (γ(s))

+DΦt(x)(V (γ(s))− v)]

= D2Φt(x)(u, v) +DΦt(x)∇̃uv.

However, by (3.6),

dDΦt(x) = ∂WDΦt(x)

and

dD2Φt(x)(u, v) = ∂B(DΦt(s)u,DΦt(x)v) + ∂WD2Φt(x)(u, v).
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Therefore,

dZt = dD2Φt(x)(u, v) + dDΦt(x)∇̃uv

= ∂B(DΦt(s)u,DΦt(x)v) + ∂WD2Φt(x)(u, v) + ∂WDΦt(x)∇̃uv

= ∂B(u(t), v(t)) + ∂WD2Φt(x)(u, v) + ∂W (Zt −D2Φt(x)(u, v))

= ∂B(u(t), v(t)) + ∂WZt,

which proves the lemma. 2

From here on we shall always assume u(t) to be given by u(t) = DΦt(x)u, where

u ∈ TxM , unless mentioned otherwise.

Now recall, Πt : TxtR
n → TxtMt was defined as the orthogonal projection in (3.1).

Hence we can write

Πt = Yt(Yt
′Yt)

−1Yt
′,

where Yt = (u1(t), . . . , un−1(t)), is an n × (n − 1) matrix generated by the basis

{ui(t)}n−1
i=1 of TxtMt and Y ′

t is the transpose of Yt. Considering Πt as a matrix, we

have the following Itô formula for the orthogonal projection, describing the evolution

of Πt as a function of time t.

Lemma 3.1.2

dΠt = (I − Πt)∂WΠt + Πt∂W
′(I − Πt)

Proof: We have dYt = ∂WYt or equivalently dYt
′ = Yt

′∂W ′, where W ′ denotes the

transpose of W . Using the simple product rule we get,

∂(Yt
′Yt) = Yt

′∂W ′Yt + Yt
′∂WYt = Yt

′(∂W + ∂W ′)Yt. (3.8)

Since

(Yt
′Yt)(Yt

′Yt)
−1 = I,

where I is the identity matrix, we have

∂[(Yt
′Yt)(Yt

′Yt)
−1] = 0, (3.9)

24



and so, again by the product rule, we obtain

∂[(Yt
′Yt)(Yt

′Yt)
−1] = [∂(Yt

′Yt)](Yt
′Yt)

−1 + (Yt
′Yt)∂[(Yt

′Yt)
−1]. (3.10)

Using (3.9) and (3.10) we therefore have

∂(Yt
′Yt)

−1 = −(Yt
′Yt)

−1∂(Yt
′Yt)(Yt

′Yt)
−1.

Hence,

dΠt = ∂Πt

= ∂WYt(Yt
′Yt)

−1Yt
′ + Y (Yt

′Yt)
−1Yt

′∂W ′ + Yt∂(Yt
′Yt)

−1Yt
′

= ∂WΠt + Πt∂W
′ − Y (Yt

′Yt)
−1∂(Yt

′Yt)(Yt
′Yt)

−1Yt
′

= ∂WΠt + Πt∂W
′ − Πt(∂W

′ + ∂W )Πt

= (I − Πt)∂WΠt + Πt∂W
′(I − Πt),

which is what we wanted to prove. 2

Now we define dPt, dQt, dλt, dµt as follows:

(I − Πt)∂W = (I − Πt)dW + dλt = dPt + dλt,

Πt∂W
′ = ΠtdW

′ + dµt = dQt + dµt.

Then,

dΠt = dPtΠt + dλtΠt + dQt(I − Πt) + dµt(I − Πt), (3.11)

where the correction terms indicated by λt, µt are expressed as

2dλt = d(I − Πt)dW,

and

2dµt = dΠtdW
′.

Following the expression of the second fundamental form in (3.2), we can rewrite it

as

St(u(t), v(t)) = ∇̃u(t)(v(t))− Πt∇̃u(t)(v(t)) = ∇̃u(t)(v(t))−Rt,

and it follows that Rt ∈ TxtMt.
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Theorem 3.1.1 The Itô formula for the second fundamental form is given by

dSt(u(t), v(t)) = (I − Πt)dB(u(t), v(t)) + (dPt − dQt)St(u(t), v(t))

+ d(λt − µt)St(u(t), v(t)) +
1

2
(dPt − dQt)

2St(u(t), v(t)),

where u(t), v(t) ∈ TxtMt and furthermore v(t) is extended to a vector field in a

similar way as in Lemma 3.1.1.

Proof:

dS(u(t), v(t)) = (I − Πt)∂∇̃u(t)v(t)− (∂Πt)∇̃u(t)v(t)

= (I − Πt)dB(u(t), v(t)) + (I − Πt)∂W ∇̃u(t)v(t)− (∂Πt)∇̃u(t)v(t)

= (I − Πt)dB(u(t), v(t)) + (I − Πt)∂WSt(u(t), v(t))

+ (I − Πt)∂WRt − (∂Πt)Rt︸ ︷︷ ︸
= 0

−(∂Πt)St(u(t), v(t))

= (I − Πt)dB(u(t), v(t)) + (I − Πt)∂WSt(u(t), v(t))

− (∂Πt)St(u(t), v(t))

= (I − Πt)dB(u(t), v(t)) + (I − Πt)∂WSt(u(t), v(t))

− Πt∂W
′St(u(t), v(t)),

where the underbraced part equals zero as a consequence of Lemma 3.1.2.

Replacing the Stratonovich derivative by the Itô derivative, which is done by intro-
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ducing a correction term, we obtain

dSt(u(t), v(t)) = (I − Πt)dB(u(t), v(t)) + (I − Πt)∂WSt(u(t), v(t))− Πt∂W
′St(u(t), v(t))

= (I − Πt)dB(u(t), v(t)) + (I − Πt)dWSt(u(t), v(t))

+
1

2
[d(I − Πt)dWSt(u(t), v(t)) + (I − Πt)dWdSt(u(t), v(t))]

− ΠtdW
′St(u(t), v(t))−

1

2
[dΠtdW

′St(u(t), v(t)) + ΠtdW
′dSt(u(t), v(t))]

= (I − Πt)dB(u(t), v(t)) + (I − Πt)dWSt(u(t), v(t))

+ dλtSt(u(t), v(t)) +
1

2
(I − Πt)dWdSt(u(t), v(t))

− ΠtdW
′St(u(t), v(t))− dµtSt(u(t), v(t))−

1

2
ΠtdW

′dSt(u(t), v(t))

= (I − Πt)dB(u(t), v(t)) + (dPt − dQt)St(u(t), v(t)) + (dλt − dµt)St(u(t), v(t))

+
1

2
[dPtdSt(u(t), v(t))− dQtdSt(u(t), v(t))]

= (I − Πt)dB(u(t), v(t)) + (dPt − dQt)St(u(t), v(t))

+ (dλt − dµt)St(u(t), v(t)) +
1

2
(dPt − dQt)

2St(u(t), v(t)),

which is what had to be proved. 2

The above expression involves correction terms which can be simplified by a specific

choice of an orthonormal basis of TxtRn.

Lemma 3.1.3 If ζt ∈ NxtMt is a semi-martingale, then

dλtζt =
(n− 1)µ2

2n(n+ 2)
ζtdt, (3.12)

dµtζt =
(n− 1)(n+ 1)µ2

2n(n+ 2)
ζtdt, (3.13)

1

2
(dPt − dQt)

2ζt = −n(n− 1)µ2

2n(n+ 2)
ζtdt. (3.14)

Proof: Using the earlier definitions and Theorem 3.1.2,

2dλt = d(I − Πt)dW = −(I − Πt)dWΠtdW − ΠtdW
′(I − Πt)dW

2dµt = dΠtdW
′ = (I − Πt)dWΠtdW

′ + ΠtdW
′(I − Πt)dW

′.
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Let’s choose an orthonormal basis {e1, . . . , en} for TxtR
n such that en ∈ NxtMt.

Then clearly,

Πt =
n−1∑
i=1

eiei
′,

(I − Πt) = enen
′.

Therefore,

2dλtζt = −(I − Πt)dWΠtdWζt − ΠtdW
′(I − Πt)dWζt

= −
n∑

i=1

enen
′dWeiei

′dWζt

−
n−1∑
i=1

eiei
′dW ′enen

′dWζt

= −
n−1∑
i=1

〈dW i
n, dW

n
i 〉ζt

= −
n−1∑
i=1

Cin
niζtdt

=
(n− 1)µ2

n(n+ 2)
ζtdt.

Here we have used the fact that 〈dW n
i , dW

n
n 〉 = 0, 1 ≤ i ≤ (n− 1) (from (2.6) and

(2.7)). Similarly we obtain the other two expressions. 2

A trivial consequence of the above lemma is the following.

Corollary 3.1.1

dSt(u(t), v(t)) = (I − Πt)dB(u, v) + (dPt − dQt)St(u(t), v(t))

− (n− 1)µ2

(n+ 2)
St(u(t), v(t))dt. (3.15)

Proof: Apply the results of Lemma 3.1.3 to Theorem 3.1.1. 2

We now choose a particularly convenient basis to work with. In particular, let

(u1, . . . , un) be an orthonormal basis of TxRn such that the first (n − 1) vectors
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form a basis of TxM . Then, as we saw earlier, {u1(t), . . . , un−1(t)} forms a basis for

TxtMt. Clearly this new set of vectors need not remain orthonormal, hence un(t)

need not belong to NxtMt. Therefore we define a unit normal vector

ν(t) =
(I − Πt)un(t)

‖(I − Πt)un(t)‖
. (3.16)

Theorem 3.1.2 With the above choice of the {uj}, let νt be the unit normal vector

field for Mt determined by (3.16). Then the Itô formula for νt is given by:

dνt = −dQtνt −
(n2 − 1)µ2

2n(n+ 2)
νtdt.

Proof: Let vn(t) = (I − Πt)un(t), so that νt = vn(t)‖vn(t)‖−1. We now start

developing expressions that we shall need to compute the Itô formula for νt. The

first is

dvn(t) = (d(I − Πt))un(t) + (I − Πt)dun(t)

= −(dΠt)un(t) + (I − Πt)∂Wun(t)

= −(I − Πt)∂WΠtun(t)− Πt∂W
′(I − Πt)un(t) + (I − Πt)∂Wun(t)

= (I − Πt)∂W (vn(t)− un(t))− Πt∂W
′vn(t) + (I − Πt)∂Wun(t)

= (I − Πt)∂Wvn(t)− (I − Πt)∂Wun(t)− Πt∂W
′vn(t) + (I − Πt)∂Wun(t)

= (I − Πt)∂Wvn(t)− Πt∂W
′vn(t)

= (I − Πt)dWvn(t) + 1
2
d(I − Πt)dWvn(t) + 1

2
(I − Πt) dW dvn(t)

− ΠtdW
′vn(t)− 1

2
dΠtdW

′ − 1
2
ΠtdW

′dvn(t)

= (dPt − dQt)vn(t) + (dλt − dµt)vn(t) + 1
2
(dPt − dQt)

2vn(t)

= (dPt − dQt)vn(t)− (n− 1)µ2

(n+ 2)
vn(t)dt.
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Itô’s formula gives us the second as

d‖vn(t)‖2 = 2〈vn(t), dvn(t)〉+ 〈(dPt − dQt)vn(t)〉

= 2〈vn(t), (dPt − dQt)vn(t)〉 − 2(n− 1)µ2

(n+ 2)
‖vn(t)‖2dt

+ 〈dW n
n vn(t)−

n−1∑
i=1

eidW
i
n〈vn(t), en〉〉

= 2‖vn(t)‖2dW n
n −

2(n− 1)µ2

(n+ 2)
‖vn(t)‖2dt

+ dW n
n dW

n
n ‖vn(t)‖2 +

n−1∑
i=1

dW i
ndW

i
n〈vn(t), en〉2

= 2‖vn(t)‖2dW n
n −

2(n− 1)µ2

(n+ 2)
‖vn(t)‖2dt

+
(n− 1)µ2

n(n+ 2)
‖vn(t)‖2dt+

n−1∑
i=1

(n+ 1)µ2

n(n+ 2)
‖vn(t)‖2dt

= 2‖vn(t)‖2dW n
n −

(n− 1)(n− 2)µ2

n(n+ 2)
‖vn(t)‖2dt.

Finally, the third is given by

d‖vn(t)‖−1 = d((‖vn(t)‖2)−1/2)

=
(−1)d‖vn(t)‖2

2(‖vn(t)‖2)3/2
+ (

3

8
)
d〈‖vn(t)‖2〉
(‖vn(t)‖2)5/2

= −‖vn(t)‖−1dW n
n +

(n− 1)(n− 2)µ2

2n(n+ 2)
‖vn(t)‖−1dt

+ (
3

8
)
4(n− 1)µ2

n(n+ 2)
‖vn(t)‖−1dt

= −‖vn(t)‖−1dW n
n +

(n− 1)(n+ 1)µ2

2n(n+ 2)
‖vn(t)‖−1dt.
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Hence, amalgamating the last three calculations, we find

dνt = d(
vn(t)

‖vn(t)‖
)

=
dvn(t)

‖vn(t)‖
+ vn(t)d‖vn(t)‖−1 + 〈dvn(t), d‖vn(t)‖−1〉

= ((dPt − dQt)vn(t)− (n− 1)µ2

(n+ 2)
vn(t)dt)‖vn(t)‖−1 + vn(t)(−‖vn(t)‖−1dW n

n

+
(n− 1)(n+ 1)µ2

2n(n+ 2)
‖vn(t)‖−1dt)− 〈(dPt − dQt)vn(t), ‖vn(t)‖−1dW n

n 〉

= −dQtνt −
(n− 1)2µ2

2n(n+ 2)
νt dt−

(n− 1)µ2

n(n+ 2)
νt dt

= −dQtνt −
(n2 − 1)µ2

2n(n+ 2)
νt dt,

which proves the theorem. 2

Now we are well equipped to compute the Itô formula for the scalar second funda-

mental form.

Theorem 3.1.3 Let u(t) = DΦtu and v(t) = DΦtv, for u, v ∈ TxM , and νt be the

unit normal vector field (3.16). Then,

dSνt(u(t), v(t)) = 〈dB(u(t), v(t)), νt〉+ Sνt(u(t), v(t))dW
n
n

− (n− 1)2µ2

2n(n+ 2)
Sνt(u(t), v(t))dt.

Proof: From (3.15) we know that

dSt(u(t), v(t)) = (I − Πt)dB(u(t), v(t)) + (dPt − dQt)St(u(t), v(t))

− (n− 1)µ2

(n+ 2)
St(u(t), v(t))dt.
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Using (2.6) and (2.7), we note that

−〈(dPt − dQt)St(u(t), v(t)), dQtνt〉 = 〈dQtSt(u(t), v(t)), dQtνt〉

= 〈St(u(t), v(t)), νt〉
n−1∑
i=1

dW i
ndW

i
n

= Sνt(u(t), v(t))
n−1∑
i=1

Cii
nndt

=
(n2 − 1)µ2

n(n+ 2)
Sνt(u(t), v(t))dt.

Now, using the relation (3.3) and standard bivariate Itô formula, we obtain

dSνt(u(t), v(t)) = 〈dSt(u(t), v(t)), νt〉+ 〈St(u(t), v(t)), dνt〉+ 〈dSt(u(t), v(t)), dνt〉

= 〈dB(u(t), v(t)), νt〉+ 〈(dPt − dQt)St(u(t), v(t)), νt〉

− (n− 1)µ2

(n+ 2)
〈St(u(t), v(t)), νt〉dt− 〈St(u(t), v(t)), dQtνt〉︸ ︷︷ ︸

= 0

− 〈St(u(t), v(t)), νt〉
(n2 − 1)µ2

2n(n+ 2)
dt− 〈(dPt − dQt)St(u(t), v(t)), dQtνt〉

= 〈dB(u(t), v(t)), νt〉+ 〈(dW n
nSt(u(t), v(t))

−
n−1∑
i=1

eidW
i
n〈St(u(t), v(t)), en〉), νt〉

− (n− 1)µ2

(n+ 2)
Sνt(u(t), v(t))dt−

(n2 − 1)µ2

2n(n+ 2)
Sνt(u(t), v(t))dt

+
(n2 − 1)µ2

n(n+ 2)
Sνt(u(t), v(t))dt

= 〈dB(u(t), v(t)), νt〉+ Sνt(u(t), v(t))dW
n
n −

(n− 1)2µ2

2n(n+ 2)
Sνt(u(t), v(t))dt,

which completes the proof. 2

Note that essentially the same proof gives the quadratic covariation terms.

Corollary 3.1.2 With the notation of the above theorem,

〈dSνt(ui(t), uj(t)), dSνt(uk(t), ul(t))〉 = 〈〈dB(ui(t), uj(t)), νt〉, 〈dB(uk(t), ul(t)), νt〉〉

+
(n− 1)µ2

n(n+ 2)
〈Sνt(ui(t), uj(t))Sνt(uk(t), ul(t))dt,

where ui(t) = DΦtui ∈ TxtMt.
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With this we end the preliminaries required for the next chapter, where we shall

prove the main result of Part I of the thesis.
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Chapter 4

Main result: Itô formula for the
Lipschitz-Killing curvatures.

In Chapters 2 and 3 we developed the foundation on which we build our main

result. However, before getting to this we shall present one more result each from

[12] and [20]. Although these results are related to those of Chapter 3, they are

presented in this chapter due to their importance for our main result, which appears

in Theorem 4.1.4. Some direct consequences of our main result are listed as a remark

and a corollary, immediately following Theorem 4.1.4.

4.1 Itô formula

We shall go back to [12] and [20], to prove the last two results necessary for our

main result. For this, we retain the notation of Chapters 2 and 3, and start with

{u1(t), . . . , un−1(t)}, a basis of TxtMt, and in the spirit of Section 2.3, define

α~lp
(t) = (−1)p+1ul1(t) ∧ · · · ∧ ûlp(t) ∧ · · · ∧ ulk(t), (4.1)

for 1 ≤ k ≤ (n− 1), where ~l ∈ Ik, ~lp ∈ Ik−1 and 1 ≤ p ≤ k.

Rewriting the above expression as

α~lp
(t) = (−1)p+1u

(p)
l1

(t) ∧ · · · ∧ u(p)
lk−1

(t), (4.2)

defines u
(p)
l .

We can now formulate the following result.
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Theorem 4.1.1 The Itô formula for the k-form S
(k)
νt , induced by the second funda-

mental form as in (3.4), is given by

dS(k)
νt

(α~l(t), α~m(t)) =
k∑

i,p=1

S(k−1)
νt

(α~lp
(t), α ~mi

(t))〈dB(ulp(t), umi
(t)), νt〉

+ kS(k)
νt

(α~l(t), α~m(t))dW n
n −

k(n− k)(n− 1)µ2

2n(n+ 2)
S(k)

νt
(α~l(t), α~m(t))dt

where α~l(t) = ul1(t) ∧ · · · ∧ ulk and α~m(t) is defined similarly.

Proof: Using Theorem 3.1.3, Corollary 3.1.2, and the multivariate Itô formula we

see that

dS(k)
νt

(α~l(t), α~m(t)) =
∑
σ∈Sk

(−1)σ

k∑
i=1

[
k∏

j=1,j 6=i

Sνt(ulσ(j)
(t), umj

(t))]〈dB(ulσ(i)
(t), umi

(t)), νt〉

+ kS(k)
νt

(α~l(t), α~m(t))dW n
n −

k(n− 1)2µ2

2n(n+ 2)
S(k)

νt
(α~l(t), α~m(t))dt

+
1

2

∑
σ∈Sk

(−1)σ

k∑
1≤i6=p≤k

[
k∏

j=1,j 6={i,p}

Sνt(ulσ(j)
(t), umj

(t))]

〈dBn(ulσ(i)
(t), umi

(t)), dBn(ulσ(p)
(t), ump(t))〉

+
k(k − 1)(n− 1)µ2

2n(n+ 2)
S(k)

νt
(α~l(t), α~m(t)) dt.

The fourth term of the sum vanishes as, for each σ ∈ Sk, there exists exactly one

η ∈ Sk such that, {σ(i), σ(p)} = {η(i), η(p)} and σ(j) = η(j) for j /∈ {i, p} and

(−1)σ = −(−1)η.

We simplify the first term as follows.

k∑
i,p=1

∑
σ∈Sk,σ(i)=p

(−1)σ[
k∏

j=1,j 6=i

Sνt(ulσ(j)
(t), umj

(t))]〈dB(ulp(t), umi
(t)), νt〉

=
k∑

i,p=1

[
∑

σ∈Sk−1

(−1)i+p(−1)σ{
k∏

j=1,j 6=i

Sνt(u
(p)
lσ(j)

(t), u(i)
mj

(t))}]〈dB(ulp(t), umi
(t)), νt〉

=
k∑

i,p=1

S(k−1)
νt

(α~lp
(t), α ~mi

(t))〈dB(ulp(t), umi
(t)), νt〉.

The third and the fifth terms combine to give the final expression. 2
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Before we move further in realising our main goal of obtaining an Itô formula for

the Lipschitz-Killing curvatures, we recall some of the results and notations from Le

Jan [20], which are essential for a thorough comprehension of our main result.

Let β(t) be an m-form written as β(t) = β1(t) ∧ . . . ∧ βm(t), and define

τ j
l β(t) = ej ∧ ı(el)β(t),

where ı(el)β(t) =
∑m

k=1(−1)k+1〈βk(t), e
l〉β1(t)∧· · ·∧β̂k(t)∧· · ·∧βm(t) and {βj(t)}m

j=1

are vectors in TxtMt with {ek}n
k=1 being the standard basis of Rn

Theorem 4.1.2 Let ξ(t) = ui1(t)∧ . . .∧uik(t) and ψ(t) = uj1(t)∧ . . .∧ujk
(t), where

uij(t) ∈ TxtMt. Then,

d〈ξ(t), ψ(t)〉 =
∑
l, j

(〈τ j
i ξ(t), ψ(t)〉+ 〈ξ(t), τ j

i ψ(t)〉)dW i
j (t)

+
k(n− k)µ2

n
〈ξ(t), ψ(t)〉dt,

where 〈·, ·〉 is as defined in (2.10).

Proof: We know from (3.7) that dui(t) = dWui(t). Then using the product rule of

differentiation,

dψ(t) =
k∑

j=1

ui1(t) ∧ . . . ∧ duij(t) ∧ . . . ∧ uik(t) + correction

=
∑

j

ui1(t) ∧ . . . ∧ {
n−1∑
p=1

epdu
p
ij
(t)} ∧ . . . ∧ uik(t) + correction

=
∑
j, p

ui1(t) ∧ . . . ∧ ep︸︷︷︸
jth

∧ . . . ∧ uik(t)du
p
ij
(t) + correction

=
∑
j, p

ui1(t) ∧ . . . ∧ ep︸︷︷︸
jth

∧ . . . ∧ uik(t){
n∑

l=1

dW p
l u

l
ij
(t)}+ correction

=
∑

j

∑
p, l

(−1)j+1ul
ij
(t)ep ∧ ui1(t) ∧ . . . ∧ ûij(t) ∧ . . . ∧ uik(t)dW

p
l + correction

=
∑
p, l

ep ∧ ı(el)ψ(t)dW p
l + correction

=
∑
p, l

τ p
l ψ(t)dW p

l + correction.
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Using (2.6) and (2.7) the corresponding correction term is given by

2(correction) =
∑

p, l, q, m

τ p
l τ

q
mψ(t)Cpq

lmdt

=
∑
p, q

((n+ 1)τ p
q τ

p
q ψ(t)− τ p

p τ
q
qψ(t)− τ p

q τ
q
pψ(t))

µ2dt

n(n+ 2)
.

In general,

τ p
l τ

q
m = (δq

l τ
p
m − ep ∧ eq ∧ ı(el)ı(em))ψ(t).

Exploiting the linearity of the wedge product we restrict our attention to ψ(t) of the

form ei1 ∧ . . . ∧ eik and find that

2(correction) =
((n+ 1)k − k2 − (n− k − 1)k)ψ(t)µ2dt

n(n+ 2)
= 0.

Utilising the above results, we obtain the Itô formula for 〈ξ(t), ψ(t)〉.

d〈ξ(t), ψ(t)〉 = 〈dξ(t), ψ(t)〉+ 〈ξ(t), dψ(t)〉+ 〈dξ(t), dψ(t)〉

=
∑
l, j

(〈τ l
jξ(t), ψ(t)〉+ 〈ξ(t), τ l

jψ(t)〉)dW l
j

+
∑

l, j, p, q

〈τ l
jψ(t), τ p

q ξ(t)〉C
lp
jqdt

=
∑
l, j

(〈τ l
jξ(t), ψ(t)〉+ 〈ξ(t), τ l

jψ(t)〉)dW l
j(t)

+ correction.

where the correction term can again be simplified by using the linearity of the wedge

product and hence by restricting ourselves to the wedge products of standard basis

vectors {ek}. Following this argument we observe

correction =
∑
l, j

((n+ 1)〈τ l
jψ(t), τ l

jξ(t)〉 − 〈τ l
lψ(t), τ j

j ξ(t)〉 − 〈τ l
jψ(t), τ j

l ξ(t)〉)
µ2dt

n(n+ 2)

=
µ2dt

n(n+ 2)
((n+ 1)k(n− k + 1)− k2 − k)

=
µ2dt

n(n+ 2)
k((n+ 1)(n− k + 1)− k − 1)

=
k(n− k)µ2dt

n
.

37



Hence the required result. 2

Applying the argument of (3.7) in (3.6), we write,

dDΦt(x) = ∂WDΦt(x) = dWDΦt(x).

Now a simple application of Theorem 4.1.2 will give us the following result:

d‖DΦt(x)‖ =
n∑

i,j=1

〈τ j
i β, e

1 ∧ · · · ∧ en〉dW i
j , (4.3)

where β =
∧n

i=1(DΦt)
(i) and (DΦt)

(i) denotes the ith column of the Jacobian matrix

DΦt(x).

Going back to the definition of τ j
i (·), we see that due to linearity of the inner

product and the wedge product, it suffices to simplify (4.3) using an orthonormal

basis {ek}n
k=1. Hence,

〈τ i
jβ, e

1 ∧ · · · ∧ en〉 = δij‖DΦt(x)‖.

Therefore, we can rewrite the Itô formula in (4.3) in a more comprehensible way as

d‖DΦt(x)‖ = ‖DΦt(x)‖
n∑

i=1

dW i
i .

If we now assume the flow to be divergence free, then

n∑
i=1

dW i
i = 0, a.s.

Therefore, for a divergence free flow, the Jacobian DΦt(x) is almost surely a con-

stant, which in our case is 1, as ‖DΦ0(x)‖ = 1 almost surely.

Note that it follows from this observation that divergence free property is equivalent

to the volume preserving characteristic of a flow. To see this, let M∗ be an n-

dimensional manifold with the ambient manifold being Rn and M∗
t = Φt(M

∗). For

example, take M∗ to be an open ball in R3. Then,

V ol(M∗
t ) =

∫
M∗

t

dxt =

∫
M∗

dx = V ol(M),
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which establishes equivalence between the divergence free and the volume preserving

properties.

In [20], Theorem 4.1.2 is a crucial step towards computing the Lyapounov exponents

of the flow. Another application of Theorem 4.1.2, needed for our main result, is

the following.

Corollary 4.1.1 Let α = u1(t) ∧ · · · ∧ un−1(t), where (u1(t), . . . , un−1(t)) is any

basis of TxtMt. Write ‖α(t)‖ = det(〈ui(t), uj(t)〉). Then

d‖α(t)‖−1 = ‖α(t)‖−1
(
−

n−1∑
i=1

dW i
i −

(n− 1)2µ2

2n(n+ 2)
dt

)
.

Proof: Applying Theorem 4.1.2 to ‖α(t)‖2 we find

d‖α(t)‖2 = ‖α(t)‖2
(
2

n−1∑
i=1

dW i
i +

(n− 1)µ2

n
dt

)
.

Now using the standard Itô formula and the relations (2.6) and (2.7) we obtain

d‖α(t)‖−1 = d(‖α(t)‖2)−
1
2

= − 1

2‖α(t)‖3
‖α(t)‖2

(
2

n−1∑
i=1

dW i
i +

(n− 1)µ2

n
dt

)
+

3‖α(t)‖4

8‖α(t)‖5

(
2

n−1∑
i=1

dW i
i

)2

= −1

2
‖α(t)‖−1

( n−1∑
i=1

dW i
i +

(n− 1)µ2

n
dt

)
+

3(n− 1)µ2

2n(n+ 2)
‖α(t)‖−1dt

= ‖α(t)‖−1
(
−

n−1∑
i=1

dW i
i −

(n− 1)2µ2

2n(n+ 2)
dt

)
.

This proves the result. 2

Now define,

Y (k)(t) = S(k)
νt

(α~l(t), α~m(t))〈α~l(t), α~m(t)〉‖α(t)‖−1, (4.4)

39



where Einstein’s summation convention is used over the indices ~l and ~m.

Finally, we compute the last ingredient necessary to obtain our main result. Al-

though the following result does not appear anywhere in the references but it can

simply be obtained as a consequence of Theorem 4.1.1, Theorem 4.1.2 and Corol-

lary 4.1.1.

Theorem 4.1.3

dY (k)(t) = [
k∑

i,p=1

S(k−1)
νt

(α~lp
(t), α ~mi

(t))〈dB(ulp(t), umi
(t)), νt〉]〈α

~l(t), α~m(t)〉‖α(t)‖−1

+ Y (k)(t)[kdW n
n −

n−1∑
i=1

dW i
i ]

+ S(k)
νt

(α~l(t), α~m(t))(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)〉)dW i
j‖α(t)‖−1

+
(n− k − 1)(n+ 1)(k + 1)µ2

2n(n+ 2)
Y (k)(t)dt, (4.5)

for 1 ≤ k ≤ n− 1, where α~l(t), α~lp
(t) and all other terms are as defined earlier.

Proof: From Theorem 4.1.2 and Corollary 4.1.1 we have

d〈α~l(t), α~m(t)〉 = (〈τ j
i α

~l(t), α
~l(t)〉+ 〈α~l(t), τ j

i α
~m(t)〉)dW i

j

+
(k + 1)(n− k − 1)µ2

n
〈α~l(t), α~m(t)〉dt,

d‖α(t)‖−1

‖α(t)‖−1
= −

n−1∑
i=1

dW i
i −

(n− 1)2µ2

2n(n+ 2)
dt.

Recall that,

Y (k)(t) = S(k)
νt

(α~l(t), α~m(t))〈α~l(t), α~m(t)〉‖α(t)‖−1.
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Hence, by the multivariate Itô formula,

dY (k)(t) = (dS(k)
νt

(α~l(t), α~m(t)))〈α~l(t), α~m(t)〉‖α(t)‖−1

+ S(k)
νt

(α~l(t), α~m(t))(d〈α~l(t), α~m(t)〉)‖α(t)‖−1

+ TrS(k)
νt

d‖α(t)‖−1

‖α(t)‖−1

+ 〈dS(k)
νt

(α~l(t), α~m(t)), d〈α~l(t), α~m(t)〉〉‖α(t)‖−1

+ 〈dS(k)
νt

(α~l(t), α~m(t)), d‖α(t)‖−1〉〈α~l(t), α~m〉(t)

+ S(k)
νt

(α~l(t), α~m(t))〈d〈α~l(t), α~m(t)〉, d‖α(t)‖−1〉

= I + II + III + IV + V + V I.

We shall simplify the above expression term by term.

The first term can be rewritten as a consequence of Theorem 4.1.1.

I =
k∑

i,p=1

S(k−1)
νt

(α~lp
(t), α ~mi

(t))〈dB(ulp(t), umi
(t)), νt〉〈α

~l(t), α~m(t)〉‖α(t)‖−1

+ k Y (k)(t)dW n
n −

k(n− k)(n− 1)µ2

2n(n+ 2)
Y (k)(t) dt. (4.6)

Using Theorem 4.1.2 we obtain

II =
n∑

i,j=1

S(k)
νt

(α~l(t), α~m(t))(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)〉) dW i
j‖α(t)‖−1

+
(k + 1)(n− k − 1)µ2

n
Y (k)(t) dt. (4.7)

An application of Corollary 4.1.1 gives us that

III = −Y (k)(t)
n−1∑
i=1

dW i
i −

(n− 1)2µ2

2n(n+ 2)
Y (k)(t) dt. (4.8)

Other terms are simplified along the similar lines using Theorem 4.1.1, Theorem 4.1.2

and Corollary 4.1.1.
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IV = k S(k)
νt

(α~l(t), α~m(t))
n∑

i,j=1

(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)) 〈dW i
j , dW

n
n 〉‖α(t)‖−1

= k S(k)
νt

(α~l(t), α~m(t))
n∑

i,j=1

(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τJ
i α

~m(t)〉)‖α(t)‖−1Cin
jn dt

=
kµ2

n(n+ 2)
S(k)(α~l(t), α~m(t))

n∑
i,j=1

(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)〉)

[(n+ 1)δi
nδ

j
n − δi

jδ
n
n − δi

nδ
j
n]‖α(t)‖−1 dt

=
kµ2

n(n+ 2)
S(k)(α~l(t), α~m(t))

n∑
i=1

(〈τ i
iα

~l(t), α~m(t)〉+ 〈α~l(t), τ i
iα

~m(t)〉)

[(n+ 1)δi
nδ

i
n − δi

iδ
n
n − δi

nδ
i
n]‖α(t)‖−1 dt

= −2k(n− k − 1)µ2

n(n+ 2)
Y (k)(t) dt. (4.9)

V = −k S(k)
νt

(α~l(t), α~m(t))
n−1∑
i=1

〈dW n
n , dW

i
i 〉〈α

~l(t), α~m(t)〉‖α(t)‖−1dt

= − kµ2

n(n+ 2)
S(k)

νt
(α~l(t), α~m(t))

n−1∑
i=1

〈α~l(t), α~m(t)〉‖α(t)‖−1[(n+ 1)δi
nδ

i
n − δi

iδ
n
n − δi

nδ
i
n] dt

=
k(n− 1)µ2

n(n+ 2)
Y (k)(t)dt. (4.10)

V I = −S(k)
νt

(α~l(t), α~m(t))

n,n−1∑
i,j=1,p=1

(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)〉)〈dW i
j , dW

p
p 〉‖α(t)‖−1

= − µ2

n(n+ 2)
S(k)

νt
(α~l(t), α~m(t))

n,n−1∑
i=1,p=1

(〈τ i
iα

~l(t), α~m(t)〉+ 〈α~l(t), τ i
iα

~m(t)〉)

[(n+ 1)δi
pδ

i
p − δi

iδ
p
p − δi

pδ
i
p]‖α(t)‖−1dt

= −2(n− k − 1)µ2

n(n+ 2)
Y (k)(t)dt. (4.11)

Adding the terms from (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), we get the re-

quired result. 2

We now have everything we need to present the main new result of Part I.
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Theorem 4.1.4 Let M be a smooth (n− 1)-dimensional manifold embedded in Rn

and Mt its image at time t under the stochastic, isotropic, and volume preserving

flow Φt described in Section 2.1. Let Lk be the Lipschitz-Killing curvatures defined

in (3.5), S
(k)
νt be the induced k-form defined in (3.4), where νt is the unit normal

vector field defined in (3.16), α
~l, α~lp

be as defined in (2.9) and (4.2) respectively and

Y (k) be as defined in (4.4). Furthermore, let W p
q and Bi

jk, defined in (2.4) and (2.5)

respectively, be the spatial derivatives of the vector field driving the flow. Then the

Itô formula for the Lipschitz-Killing curvatures is given by

dLn−k−1(Mt) =
[
Kn,k

∫
Mt

∫
S(R)

(
[

k∑
i, p=1

S(k−1)
νt

(α~lp
(t), α ~mi

(t))〈dB(ulp(t), umi
(t)), νt〉]

〈α~l(t), α~m(t)〉‖α(t)‖−1

+ Y (k)(t)[kdW n
n −

n−1∑
i=1

dW i
i ]‖α(t)‖

+
∑
i, j

S(k)(α~l, α~m)(〈τ j
i α

~l(t), α~m(t)〉+ 〈α~l(t), τ j
i α

~m(t)〉)dW i
j‖α(t)‖−1

)
× 1NxtMt(−νt)H0(dνt)Hn−1(dxt)

]
+

(n− k − 1)(n+ 1)(k + 1)µ2

2n(n+ 2)
Ln−k−1(Mt)dt, (4.12)

where Hk is the k-dimensional Hausdorff measure and NxtMt is the normal cone to

Mt at xt ∈Mt.

Proof: Using (3.5) and (4.4) we rewrite the Lipschitz-Killing curvatures as,

Ln−k−1(Mt) = Kn,k

∫
M

∫
S(R)

S(k)
νt

(α~l(t), α~m(t))〈α~l(t), α~m(t)〉‖α(t)‖−1

× 1NxtMt(−νt)H0(dνt)Hn−1(dx)

= Kn,k

∫
M

∫
S(R)

Y (k)(t)× 1NxtMt(−νt)H0(dνt)Hn−1(dx).

Hence,

dLn−k−1(Mt) = Kn,k

∫
M

∫
S(R)

(dY (k)(t))× 1NxtMt(−νt)H0(dνt)Hn−1(dx).

Now using Theorem 4.1.3 we obtain the desired result. 2
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Remark 4.1.1 It is clear from the results obtained by Cranston and Le Jan [12]

and the expression obtained in the above Theorem 4.1.4, that the vector of Lipschitz-

Killing curvatures is not a diffusion due to the presence of the first term in (4.12).

An immediate consequence of the above theorem is an exact expression for the mean

of Lipschitz-Killing curvatures.

Corollary 4.1.2 Under the conditions of Theorem 4.1.4,

E(Ln−k−1(Mt)) = Ln−k−1(M) exp
((n− k − 1)(n+ 1)(k + 1)µ2t

2n(n+ 2)

)
. (4.13)

In particular, for k = (n − 1), we have E(L0(Mt)) = L0(M), for all t, which is

what we expect, as L0(M) is the Euler characteristic of M and so is invariant under

diffeomorphisms.

Proof: In (4.12), we note that except for the last term, the other terms are zero

mean martingales. Therefore, taking expectations of (4.12), after taking the integral

over time t, will yield

E(Ln−k−1(Mt)) =
(n− k − 1)(n+ 1)(k + 1)µ2

2n(n+ 2)

∫ t

0

E(Ln−k−1(Ms))ds.

Solving this linear differential equation we obtain the required result. 2
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Part II

Fractional Brownian motion and
stochastic flows
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Chapter 5

Introduction and background

Continuing from where we left in the previous chapter, here we shall present some

similar results, but in a different setting, attempting to extend the results available

for the diffusive Brownian flow to non-diffusive flows. By non-diffusive flows, we

mean flows driven by a non-diffusive process, in particular, a fractional Brownian

motion.

The fractional Brownian motion {BH(t), t ≥ 0} with Hurst parameter H ∈ (0, 1),

is the zero mean Gaussian process with covariance function

E[BH(s)BH(t)] =
1

2

(
t2H + s2H − |t− s|2H

)
. (5.1)

Note that E|BH(t)−BH(s)|2 = |t− s|2H , and hence the process BH has stationary

increments. Moreover, when H = 1
2
, the process also has independent increments

and this case corresponds to the standard Brownian motion. A simple application

of a Garsia-Rodemich-Rumsey type of inequality, together with (5.1), implies that

the process BH has α-Holder continuous paths for all α ∈ (0, H). (See [17] for the

original inequality, or [30] for the application of the inequality to fractional Brownian

motion.) It is also important to note that the process BH , for H 6= 1
2
, is neither a

semimartingale nor a Markov process.

In order to construct a non-diffusive flow, we start with a collection of independent
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fractional Brownian motions, {BH
γ }γ∈N and define, for some set I ⊂ N,

UI(x, t) =
∑
γ∈I

Uγ(x)B
H
γ (t), (5.2)

where {Uγ}γ∈N is a collection of deterministic vector fields defined on Rn such that,

for I = N, UN(·, ·) is an isotropic Gaussian vector field. For the moment, we do not

impose any conditions on the vector fields, although we shall add various conditions

as and when required.

Now we introduce a candidate for the evolution equation describing a stochastic flow

driven by a fractional Brownian motion by setting

Φt(x) = x+
∑
γ∈I

“

∫ t

0

Uγ(Φs(x)) dB
H
γ (s)”. (5.3)

For H = 1
2
, the integral appearing in the above expression can be interpreted as

either an Itô or a Stratonovich integral. When H 6= 1
2
, although the standard

semimartingale arguments cease to work, there is a plethora of literature available on

various ways to define an integral
∫ b

a
f(s) dBH(s), where f(s) denotes some random

process and BH the fractional Brownian motion. See, for instance, [2, 7, 13, 24, 16].

In the remaining part of this chapter, we shall present an overview of the various

available results on defining integrals with respect to fractional Brownian motion,

without rigorously defining the various terms involved. The details will be presented

in Chapters 6 and 7. In Chapter 8, we shall return to the main results of this part

of the thesis, and develop analogues of the results of Chapter 4, for non-diffusive

flows.

One of the earliest efforts at dealing with integral/differential equations driven by

fractional Brownian motion for H > 1
2

can be attributed to Lyons [25] in 1994. The

idea was primarily based on Young’s [42] striking analysis of integrals driven by

non-smooth functions. The existence and uniqueness of the solution of an integral

equation (5.3) was proven by using the p-variation of iterated integrals of the process

BH to derive Lipschitz type behaviour for various iterations in a Picard’s iteration

scheme. Later, in 1998, Lyons generalized the argument in [26] and extended the

theory to various other cases, including H = 1
2
. This was further generalized to the

case H > 1
4

by Unterberger [37].
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Around the same time, Zähle [43, 44], defined pathwise integrals of the form
∫ t

0
usdB

H(s),

for H > 1
2
, where u and BH were considered to be elements of fractional Sobolev

space. Apart from proving an Itô type formula, connections were established be-

tween the pathwise definition of the stochastic integral with various other interpre-

tations of integrals. Elsewhere, Ruzmaikina [33] independently, obtained similar

results by approximating the stochastic integral by a Riemann-Stieltjes sum.

Following the above method of using the pathwise definition of a stochastic integral

driven by fractional Brownian motion, Nualart and Răşcanu ([30]) proved existence

and uniqueness of the solutions of multidimensional stochastic differential equations

of the form

Xt = X0 +

∫ t

0

σ(s,Xs) dB
H(s) +

∫ t

0

b(s,Xs) ds,

where BH is a fractional Brownian motion with H > 1
2
, and the integral with respect

to BH is a pathwise Riemann-Stieltjes integral, as defined by Zähle and others.

Later, continuing in the same vein, Decreusefond and Nualart in [14] proved the

existence of a homeomorphic stochastic flow driven by fractional Brownian motion.

We shall have more to say about this in detail in Chapter 7.

While the pathwise approach towards defining integrals driven by fractional Brown-

ian motion was gaining momentum, Decreusefond and Üstünel ([16]), at essentially

the same time, approached the problem in an altogether different way by utilizing

the Gaussian character of fractional Brownian motion, and employing the stochastic

calculus of variations called the Malliavin calculus1. They extended the Malliavin

calculus, which was primarily designed for the Wiener process, to fractional Brow-

nian motion and developed the stochastic calculus for fractional Brownian motion.

This was further extended in [2], where stochastic calculus with respect to Volterra

processes of the form, Yt =
∫ t

0
K(t, s) dW (s), was developed, where W is a standard

Wiener process and K(t, s), a square integrable kernel, is called the Volterra kernel.

This covered the case of fractional Brownian motion for a specific choice of the kernel

K(·, ·). The analysis of the stochastic calculus for the fractional Brownian motion

was further refined in [3] by Nualart et.al., where some Lp estimates of the divergence

1For a quick introduction to Wiener space, we refer the reader to the appendix on “An Intro-
duction to Malliavin Calculus” in [39], whereas for an excellent detailed account on the same topic,
we refer the refer the reader to [38], and finally, to [27] for a more analytical treatment and its
various applications.
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integral were presented. Chapter 6 is devoted to the study of this approach towards

defining stochastic integrals, with the aim of convincing the reader that an attempt

to define a stochastic flows with the integral interpreted as a divergence operator

is unlikely to work. Subsequently, in Chapter 7, we shall present the background

required for defining pathwise integrals and we shall give a brief argument for the

existence and uniqueness of stochastic flows in a pathwise sense.

Finally, once we settle with a definition to interpret (5.3), we shall start analyz-

ing the evolution of the geometric characteristics of a randomly evolving manifold

under the flow, which will be the central theme of Chapter 8. The main goal is

to achieve reasonable upper bounds for the basic characteristics of the randomly

evolving manifolds, viz. the appropriate Hausdorff measure of the manifold. We

shall show that the (n−1)-dimensional Hausdorff measure of an (n−1)-dimensional

manifold evolving under an n-dimensional stochastic flow, exhibits a growth which

is almost surely bounded by an exponential function with the exponent depending

on the appropriate Hölder norm of the fractional Brownian motion.
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Chapter 6

Stochastic calculus of variations

As described in the previous chapter, there is a significant literature available on the

topic of defining integrals driven by fractional Brownian motion using the Malliavin

calculus or stochastic calculus of variations. (See [28] for a survey of the various

results available on this topic.) For a variety of technical reasons, we shall restrict

our attention to the case H > 1
2
. These are processes that are smoother than

standard Brownian motion.

This section is devoted to reviewing the results related to the divergence integral,

and trying to implement them to interpret the integral appearing in (5.3).

6.1 Preliminaries on fractional Brownian motion

and the Wiener integral

We shall start with S as the set of step functions on [0, T ], and denote HH as the

Hilbert space defined as the closure of S with respect to the inner product

〈1[0,s],1[0,t]〉HH
=

1

2

(
t2H + s2H − |t− s|2H

)
= RH(s, t).

Now consider a Gaussian field {BH(φ) : φ ∈ HH}, with its covariance function given

by
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E[BH(φ)BH(ψ)] = αH

∫ T

0

∫ T

0

φ(r)ψ(s)|r − s|2H−2 drds
∆
= 〈φ, ψ〉HH

. (6.1)

where αH = H(2H − 1).

Note that the map φ → BH(φ) defines an isometry between HH and the Gaussian

space H(B), which is the space of random L2 random variables of the form BH(φ).

It is customary to interpret BH(φ) as the divergence integral of φ ∈ HH with respect

to BH .

Remark 6.1.1 For the case H = 1
2
, the divergence integral is the Wiener integral,

and it is for this case that the standard Malliavin calculus was designed. Also note

that for this case (6.1) takes the familiar form

E[B1/2(φ)B1/2(ψ)] =

∫ T

0

φ(s)ψ(s) ds.

Remark 6.1.2 The Hilbert space HH is also called the reproducing kernel Hilbert

space for fractional Brownian motion with Hurst parameter H. Although in some

books the same space is also referred to as the Cameron-Martin space, we shall make

a distinction between these two spaces and we shall denote the later by H∗
H . A closer

look at these two spaces (see, for instance, [16] and [3]), shows that one is a mere

transformation of the other. We shall explain this with reasonable generality in the

following section. A typical element of HH is generally not a function, but rather a

distribution of negative order (see [2] or [32]). In fact the space HH coincides with

the space of distributions f such that s
1
2
−HI

H− 1
2

0+ (uH− 1
2f(u))(s) is a square integrable

function, where I
H− 1

2
0+ is the left-sided fractional integral of order H − 1

2
. This and

more about deterministic fractional calculus will constitute our next Chapter 7. An

appropriate definition of H∗
H will be formulated in the next section, which is devoted

to the study of the stochastic calculus of variations.

Remark 6.1.3 In the special case H = 1
2
, HH ≡ L2([0, T ]), and H∗

H is the space of

absolutely continuous functions on [0, T ] with square integrable derivatives.

The key to stochastic calculus for fractional Brownian motion, or Volterra processes

in general, is the representation (see [2], [28])
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BH(t) =

∫ t

0

KH(t, s) dB(s),

where B is a standard Brownian motion and KH(t, s) is the L2[0, T ] kernel given by

KH(t, s) = cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du,

for s < t and 0 otherwise, and cH is a normalizing constant such that

RH(s, t) =

∫ s∧t

0

KH(s, u)KH(t, u) du.

(This, by the way, proves that RH(t, s) is nonnegative definite.)

The kernel KH(·, ·) can itself be regarded as an operator in L2([0, T ]) defined via

the correspondence

(KHφ)(t) =

∫ t

0

KH(t, u)φ(u) du,

for φ ∈ L2([0, T ]).

Furthermore, it can also be used to define an operator K∗
H : S → L2([0, T ]), given

by

(K∗
H1[0,t])(s) = KH(t, s), (6.2)

which is extended as a linear isometry to all of HH . For our choice of H > 1
2
, the

action of the operator K∗
H can be expressed as,

(K∗
Hφ)(s) =

∫ T

s

φ(r)
∂KH

∂r
(r, s) dr.

The relationship between the operators KH and K∗
H , one as the adjoint of the other,

can be seen in the following lemma.

Lemma 6.1.1 For any φ ∈ S and h ∈ L2([0, T ]), we have∫ T

0

(K∗
Hφ)(t)h(t) dt =

∫ T

0

φ(t)(KHh)(dt),

where the integral on the right hand side is interpreted as a standard Riemann-

Stieltjes integral with respect to the function KHh.
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For the proof of this lemma and a general treatment of integrals with respect to

Gaussian processes, we refer the reader to [2].

An immediate consequence of the isometry K∗
H , between HH and L2([0, T ]) is the

transfer rule between the standard Wiener integral and the Gaussian process B(φ)

defined by (6.1), given by

BH(φ) = W (K∗
Hφ), (6.3)

for any φ ∈ HH , and where W (·) is the Wiener integral defined on L2([0, T ]).

Consequently, it is clear from (6.2) and (6.3) that the divergence integral with re-

spect to the fractional Brownian motion is an anticipative integral. Thus interpreting

the integral appearing in (5.3) as a divergence integral would result in an anticipa-

tive stochastic differential equation, which is difficult to solve except in some simple

cases. A brief argument explaining the difficulty in solving such stochastic differen-

tial equations will be the focus of our next subsection.

6.2 Malliavin calculus

As we mentioned above in Remark 6.1.2, corresponding to the Hilbert space HH

we can associate another space H∗
H , called the Cameron-Martin space, such that for

each element h∗ in H∗
H , there exists an h ∈ HH , such that

h∗(t) =

∫ t

0

KH(t, s)(K∗
Hh)(s) ds. (6.4)

Therefore the space H∗
H can also be identified as a Hilbert space with the inner

product induced by HH , i.e., for h∗, g∗ ∈ H∗
H

〈h∗, g∗〉H∗
H

∆
= 〈h, g〉HH

.

For a comprehensive study of the space H∗
H , we refer the reader to [16].

Now let us define E to be the set of smooth cylindrical random variables of the form

F (BH) = f(BH(φ∗1), . . . , B
H(φ∗n)), (6.5)

where n ≥ 1, f ∈ C∞b (Rn),, φ∗i ∈ H∗
H , and BH(φ∗i )

∆
= BH(φi), where φi is the element

in HH corresponding to φ∗i ∈ H∗
H . Recall that BH(φ) for φ ∈ HH was defined as a

Gaussian process with the covariance function given by (6.1).
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The above definition of cylindrical random variables can also be considered as a

map BH 7→ f(BH(φ∗1), . . . , B
H(φ∗n)) = F (BH) ≡ F . The idea being, to study the

calculus of variation with respect to the underlying “randomness” induced by BH .

Let W denote the Banach space of continuous functions from [0, 1] to R, and equip

it with the measure induced by fractional Brownian motion BH . Then it is natural

to expect that differentiation on this space is of a Fréchet kind. However, the

existence of such a derivative requires the mapping w 7→ F (w), for w ∈ W , to be

continuous in the norm topology of W . However, for most, at very least, F this is

not true. For instance, a general diffusion with reasonably smooth coefficients is not

continuous with respect to the underlying Brownian motion, due to the presence

of the correction term marking the difference between the Stratonovich and Itô

representations of the stochastic integral.

Moreover, the fact that almost all functionals in probability theory are defined up to

equivalence classes induced by the underlying measure suggests that an appropriate

definition of the derivative of the Wiener functionals must be well defined up to

the equivalence classes, given by the Cameron-Martin theorem, of the Wiener func-

tionals. (See [16] or [39], for an exact formulation of the Cameron-Martin theorem

for abstract Wiener space.) Hence, a Sobolev type of differentiation rule is better

suited, which is well-defined for these equivalence classes.

A standard way of defining derivatives in abstract spaces is by choosing a direction

in which the perturbation is introduced, and then defining the resultant limit as the

gradient in the chosen direction. However, since not all the directions are feasible,

as noted above, only the directions belonging to the Cameron-Martin space qualify

for defining the derivative. For a F defined as above, its gradient in the direction

h∗ ∈ H∗
H is given by

∇H
h∗F (w) =

d

dλ
F (w + λh∗)|λ=0 =

n∑
i=1

∂f

∂xi

(BH(φ∗1), . . . , B
H(φ∗n))〈h∗, φ∗i 〉H (6.6)

Considering this relationship as a linear, continuous functional on H∗
H , there exists a

map w 7→ (DHφ(w))(s) with values in HH , as a consequence of Riesz representation
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theorem, such that

∇H
h∗F (w) =

∫ T

0

∫ T

0

(DHF (w))(s)h(r)|r − s|2H−2 drds, (6.7)

where h is the element in HH corresponding to h∗ ∈ H∗
H .

We shall use the symbols (DHF )(h) and ∇H
h F , interchangeably. Comparing the

expressions in (6.6) and (6.7), we shall write

DHF =
n∑

i=1

∂f

∂xi

(BH(φ∗1), . . . , B
H(φ∗n))φi. (6.8)

This derivative operator is a closable operator from Lp(Ω) into Lp(Ω;HH) for any p ≥
1, which means that if for a sequence of random variables {Fn}n≥1 ⊂ E converging

to zero in Lp(Ω), {DHFn}n≥1 is a Cauchy sequence in Lp(Ω;HH), then {DHFn}n≥1

also converges to zero in Lp(Ω;HH). We refer the reader to Proposition B.3.1. in

[39], for a proof of the above fact in the case of H = 1
2
, which in principle works for

H > 1
2

too.

Writing Dk
H for the iteration of the derivative operator, we define the Sobolev space

Dk,p
H as the closure of E with respect to the norm given by

‖F‖p
k,p = E|F |p +

k∑
i=1

E‖Di
HF‖

p

H⊗i
H

. (6.9)

Similarly, given a Hilbert space V we shall denote by Dk,p
H (V ) the corresponding

Sobolev space of V -valued random variables.

We have now reached the main point of this section, that of defining the divergence

operator δH , which in simple words is defined as the adjoint of the derivative operator

given by the duality relationship

E(FδH(u)) = E〈DHF, u〉HH
,

where u is an element in the domain of the operator δH , which is defined as the class

of u ∈ L2(Ω;HH) such that

|E〈DHF, u〉HH
| ≤ cu‖F‖L2(Ω),

for any F ∈ E .
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Remark 6.2.1 The divergence operator defined above using the duality relationship

has its roots in the Gauss divergence theorem, which establishes a relationship be-

tween the gradient and the divergence operators, one as the negative of the dual of

the other.

Remark 6.2.2 It is customary to write δH(u) =
∫ T

0
u(s)δBH(s), and to make it

clearer, we note that BH(φ) = δH(φ), for deterministic φ ∈ HH , and for non

deterministic (random) φ, the divergence (integral), for H = 1
2
, coincides with the

generalized Itô stochastic integral introduced by Skorohod for non adapted integrands

(see [36]).

Some of the basic properties of the divergence operator δ are listed below:

• The space D1,2
H (HH) is contained in the domain of the divergence operator δH .

• For any u ∈ D1,2
H (HH) we have

E(δH(u))2 = E‖u‖2
HH

+ E〈DHu, (DHu)
∗〉HH⊗HH

, (6.10)

where (DHu)
∗ is the adjoint of (DHu) in the Hilbert space HH ⊗HH .

• For any F ∈ D1,2
H and any u in the domain of δH such that Fu and FδH(u) +

〈DHF, u〉HH
are square integrable, the Fu is in the domain of δH and

δH(Fu) = FδH(u)− 〈DHF, u〉HH
.

Embedded in the Hilbert space HH is the Banach space |HH | whose norm is given

by

‖φ‖|HH | =

∫
[0,t]2

|φ(s)| |φ(r)| |r − s|2H−2 dr ds.

Along similar lines we can define |HH |⊗|HH |, and as before this will define a Banach

space with respect to the norm ‖ · ‖|HH |⊗|HH |. Clearly, this space is isometric to a

subspace of HH ⊗HH and it is identified with this subspace. We are interested in

this space as it forms a natural basis for the analysis that we are soon going to start.

Our main objective is to be able to interpret the integral appearing in (5.3) as

a divergence integral. The two most common and robust methods of obtaining
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existence proofs, namely the Banach fixed point theorem and Picard’s iteration,

both hinge on the Lipschitz behavior of the functional involved, which in our case is

the divergence operator. (Note that a contraction also exhibits Lipschitz behavior.)

This is precisely what is missing in this set up. We shall see this in the following

illustration of the Picard’s iteration scheme.

Let us assume that U(x, t) = U(x)BH(t), and define xn(t) iteratively as follows

xn(t) = x+

∫ t

0

U(xn−1(t)) δBH(s),

with x0 ≡ x. Then,

|xn+1(t)− xn(t)| =
∣∣∣ ∫ t

0

(U(xn(s))− U(xn−1(s))) δBH(s)
∣∣∣. (6.11)

Now we require an Lp bound on the right hand side of above expression involving

terms like |xn(t)− xn−1(t)| only.

By an immediate consequence of Meyer’s inequalities (see, for instance [27]), for

p ≥ 1, a process u ∈ D1,p
H (|HH |) belongs to the domain Dom(δH) of the divergence

in Lp(Ω), and we have

E|δ(u)| ≤ CH,p

(
‖Eu‖p

|HH | + E‖Du‖p
|HH |⊗|HH |

)
.

This together with (6.10), implies that it is not likely that our requirement of the

bound on the right side of (6.11) is fulfilled, unless there are bounds available for

the gradient DHF in terms of F for any F ∈ E . This, of course, is not generally

the case. Hence interpreting the integral in (5.3) as a divergence integral is not

possible, due to our inability to find answers to questions concerning the existence

of a solution.

Remark 6.2.3 It is worth noting here that, at least for some simple U , it is pos-

sible to construct the integral equation using the divergence integral. For example,

for U(x) = x, a simple chaos expansion of the solution exists, whereas for the case

of general U , the solution can be shown to exist for small t, using the Taylor series

expansion of U around 0, and hence reducing it to the linear case, with the added

conditions that the higher order terms in the Taylor series expansion do not con-

tribute much. (See [4].) However, neither of these cases are of any help in our

scenario.
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Chapter 7

A pathwise approach

Another natural way to define the integrals with respect to fractional Brownian mo-

tion is the pathwise approach using the deterministic fractional calculus. Primarily,

as noted in the introduction, this method is based on Young’s way of defining in-

tegrals with respect to Hölder functions. Although there is a plethora of literature

available on this topic, we shall closely follow Zähle’s approach as it appeared in

[43], and we shall borrow heavily from Nualart’s various papers on the subject.

We start by listing some of the basic formulae required from the deterministic frac-

tional calculus, and the fractional spaces associated with them.

For a, b ∈ R, a < b, let Lp(a, b), p ≥ 1, be the space of Lebesgue measurable functions

f : [a, b] → R with ‖f‖Lp(a,b) <∞, where

‖f‖Lp(a,b) =

{
(
∫ b

a
|f(x)|p dx)

1
p , if 1 ≤ p <∞

ess sup |f(x)| : x ∈ [a, b], if p = ∞.

The left sided fractional Riemann-Liouville integral of f ∈ L1(a, b) of order α > 0

is given by

Iα
a+f(x) =

1

Γ(α)

∫ x

a

(x− y)α−1f(y) dy,

for almost all x ∈ (a, b), where Γ(α) is the standard Euler function. Similarly, the

right sided fractional integral is defined, for almost all x ∈ (a, b), as

Iα
b−f(x) =

(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y) dy,

where (−1)−α = e−iπα. If we consider the fractional integral Iα
a+ (or Iα

b−) as an

operator with domain Lp(a, b), then the range space is denoted by Iα
a+(Lp(a, b)) (or
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Iα
b−(Lp(a, b))). Clearly, for α = 1, Iα

a+ is the standard left integral operator, and a

simple calculation yields that limα→0(I
α
a+f)(x) = f(x−) = limε↓0 f(x − ε), for each

x ∈ (a, b). An immediate consequence of the definition of the fractional integral is

the following property:

Iα
a+(Iβ

a+f) = Iα+β
a+ f, (7.1)

for all α, β > 0. With some obvious variations wherever needed, all the above

properties are true for the right sided fractional integrals too and they are listed as

follows:

(I1
b−f)(x) = (−1)

∫ b

x

f(y) dy,

lim
α→0

(Iα
b−f)(x) = f(x+)

= lim
ε↓0

f(x+ ε), and

Iα
b−(Iβ

b−f) = Iα+β
b− f, ∀α, β > 0

(See [43] for these and more on fractional calculus.)

In order to better understand the linear spaces Iα
a+(Lp(a, b)), we can write f ∈

Iα
a+(Lp(a, b)) if and only if f ∈ Lp(a, b) and limε→0

∫ x−ε

a
f(x)−f(y)
(x−y)1+α dy exists in Lp(a, b)

as a function in x ∈ (a, b). Furthermore, if pα < 1 then Iα
a+(Lp(a, b)) = Iα

b−(Lp(a, b)) ⊂
Lq(a, b), with q = p/(1− pα), and if pα > 1 then f ∈ Iα

a+(Lp(a, b)) implies that f is

(α − 1/p)-Hölder continuous function on the interval (a, b). These and many more

such results can be found in [34].

Having defined a fractional integral, we now define a fractional derivative as the

inverse of the fractional integral operator, whenever it is well defined. In other words,

each element f in Iα
a+(Lp(a, b)) has a corresponding φ ∈ Lp(a, b), such that Iα

a+φ =

f , which is unique in Lp(a, b) and agrees almost everywhere with the appropriate

fractional derivative of f . More precisely, the left sided Riemann-Liouville derivative,

also called the Weyl derivative, of αth-order of f ∈ Iα
a+(Lp) is defined as:

Dα
a+f(x) =

( 1

Γ(1− α)

d

dx

∫ x

a

f(y)

(x− y)α
dy

)
1(a,b)(x)

=
1

Γ(1− α)

( f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)1+α
dy

)
1(a,b)(x). (7.2)

Equivalently, we can write Dα
a+ = D(I1−α

a+ f), where D is the standard derivative op-

erator. Similarly, we can define the right sided Weyl derivative as Dα
b− = D(I1−α

b− f),
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and

Dα
b−f(x) =

( (−1)α−1

Γ(1− α)

d

dx

∫ b

x

f(y)

(y − x)α
dy

)
1(a,b)(x)

=
(−1)α

Γ(1− α)

( f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)1+α
dy

)
1(a,b)(x). (7.3)

As in the case of the integral operators, there is an analogue of the composition

formula, given, for all α, β > 0, by

Dα
a+(Dβ

a+f) = Dα+β
a+ f. (7.4)

A similar formula also holds for the right sided derivatives, and is given by,

Dα
b−(Dβ

b−f) = Dα+β
b− f, (7.5)

as long as all the fractional derivatives are well defined.

We note that the linear spaces Iα
a+(Lp(a, b)), for various choices of α and p, are

Banach spaces equipped with the norms

‖f‖Iα
a+(Lp(a,b)) = ‖f‖Lp(a,b) + ‖Dα

a+f‖Lp(a,b),

and a similar norm is defined on the space Iα
b−(Lp(a, b)).

Using the methods of fractional calculus, one can extend the standard integration

by parts formula to the more general case of Lp functions. Hence the generalized

integration by parts formula can be written as∫ b

a

f(x)Iα
a+g(x)dx = (−1)α

∫ b

a

g(x)Iα
b−f(x)dx, (7.6)

where f ∈ Lp(a, b), g ∈ Lq, p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 + α, p, q > 1, and

1/p+1/q = 1+α. A similar formula, called the second integration by parts formula,

holds true for derivative operators, and is given as

(−1)α

∫ b

a

Dα
a+f(x)g(x)dx =

∫ b

a

f(x)Dα
b−g(x)dx, (7.7)

where f ∈ Iα
a+(Lp(a, b)), g ∈ Iα

b−(Lq(a, b)), p ≥ 1, q ≥ 1, 1/p+ 1/q ≤ 1 + α.

Let f(a+) = limε↓0 f(a + ε), and g(b−) = limε↓0 f(b − ε), whenever the limit exists

and is finite, and define

fa+(x) = (f(x)− f(a+))1(a,b)(x),

gb−(x) = (g(x)− g(b−))1(a,b)(x).
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Using these definitions and the machinery developed above, an extension of the

Stieltjes integral, called the generalized Stieltjes integral, of f with respect to g is

defined as ∫ b

a

f(x)dg(x) = (−1)α

∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x)dx

+ f(a+)(g(b−)− g(a+)), (7.8)

where fa+ ∈ Iα
a+(Lp(a, b)) and gb− ∈ I1−α

b− (Lq(a, b)) for some p, q ≥ 1, 1/p + 1/q ≤
1, 0 ≤ α ≤ 1. Furthermore, if we impose the condition αp < 1, then fa+ ∈
Iα
a+(Lp(a, b)) implies f ∈ Iα

a+(Lp(a, b)), in which case (7.8) can be rewritten as∫ b

a

f(x)dg(x) = (−1)α

∫ b

a

Dα
a+f(x)D1−α

b− gb−(x)dx. (7.9)

This representation is sometimes also referred to as the forward integral represen-

tation due to the choice of left and right sided derivatives for f and g respectively.

By interchanging this choice of the left and the right-sided fractional derivatives in

(7.9), for the integrand and the integrator respectively, we get what is called the

backward integral representation, given by∫ b

a

f(x) dg(x) = (−1)α

∫ b

a

Dα
b−fb−(x)D1−α

a+ ga+(x) dx

+ f(b−)(g(b−)− g(a+)) (7.10)

if fb− ∈ Iα
b−(Lp), ga+ ∈ I1−α

a+ (Lq) for some p, q ≥ 1, 1/p+ 1/q ≤ 1, 0 ≤ α ≤ 1.

Remark 7.0.4 It is important to note here that in view of (7.4), (7.5), (7.6) and

(7.7), the definition (7.8), or equivalently (7.9), is independent of the choice of α.

Next we define Cλ(0, T ; Rd), the space of λ-Hölder continuous functions, with λ ∈
(0, 1], as the space of Rd valued functions for some fixed d ∈ N, the space of natural

numbers, equipped with the norm given by

‖f‖λ := ‖f‖∞ + sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|λ

<∞,

where ‖f‖∞ = supt∈[0,T ] |f(t)|.

In [43], Zähle proved that the conditions of the definitions (7.8) and (7.9) are met

if f ∈ Cλ(0, T ; R) and g ∈ Cµ(0, T ; R) for λ + µ > 1, in which case the integral
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defined in (7.8) or (7.9) coincides with the Riemann-Stieltjes integral. Now we state

the following well known result concerning the Hölder coefficient and exponent of

fractional Brownian motion with Hurst parameter H.

Lemma 7.0.1 For {BH(t) : t ∈ [0, T ]}, a fractional Brownian motion with Hurst

parameter H ∈ (0, 1), there exists a positive random variable ηε,T , for each 0 < ε < H

and T > 0, such that E(|ηε,T |p) <∞ for all p ∈ [1,∞) and for all s, t ∈ [0, T ]

|BH(t)−BH(s)| ≤ ηε,T |t− s|H−ε a.s.,

where ηε,T = CH,εT
H−εξT , with the Lq(Ω) norm of ξT bounded by cε,qT

ε for q ≥ 2
ε
.

(For a proof of this, we refer the reader to [30].)

Hence, the integrals with respect to the fractional Brownian motion can be proven

by the results obtained in [43]. In the same article, the corresponding stochastic

calculus is also developed with an appropriate formula for change of variables. These

existence results can naturally be extended to the case of vector valued integrands.

For the following definitions, we shall assume α < 1
2
.

DefineWα,∞
0 (0, T ; Rd), as the space of measurable functions f : [0, T ] → Rd equipped

with the norm given by

‖f‖α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ t

0

|f(t)− f(s)|
|t− s|α+1

ds
)
<∞. (7.11)

A trivial observation following from this definition is that

Cα+ε(0, T ; Rd) ⊂ Wα,∞
0 (0, T ; Rd) ⊂ Cα−ε(0, T ; Rd), (7.12)

for all 0 < ε < α.

Together with Wα,∞
0 (0, T ; Rd), another space which will form the backbone of the

analysis that will follow, is defined as W 1−α,∞
T (0, T ; R), the space of measurable

functions g : [0, T ] → R, such that its corresponding norm is given as

‖g‖1−α,∞,T := sup
0<s<t<T

( |g(t)− g(s)|
(t− s)1−α

+

∫ t

s

|g(y)− g(s)|
|t− s|2−α

dy
)
<∞. (7.13)

62



The corresponding embedding result is

C1−α+ε(0, T ; R) ⊂ W 1−α,∞
T (0, T ; R) ⊂ C1−α(0, T ; R), (7.14)

for all ε > 0. Moreover, if g ∈ W 1−α,∞
T (0, T ; R), then g|(0,t) ∈ I1−α

t− (L∞(0, t)) for all

t ∈ (0, T ).

Now consider the integral
∫ t

0
fdg for g ∈ W 1−α,∞

T (0, T ; R) and f such that

‖f‖α,1 =

∫ T

0

|f(s)|
sα

ds+

∫ T

0

∫ s

0

|f(s)− f(y)|
(s− y)1+α

dyds <∞. (7.15)

Then the conditions for the existence of the integral for all t ∈ [0, T ] are trivially

satisfied, and using (7.2) and (7.3) the integral can be bounded as follows:∣∣∣ ∫ T

0

fdg
∣∣∣ =

∣∣∣ ∫ T

0

Dα
0+f(s)D1−α

T− gT−(s)ds
∣∣∣

≤
∫ T

0

|Dα
0+f(s)| · |D1−α

T− gT−(s)|ds

=
1

Γ(1− α)Γ(α)

∫ T

0

∣∣∣f(s)

sα
+ α

∫ s

0

f(s)− f(y)

(s− y)1+α
dy

∣∣∣
×

∣∣∣g(T )− g(s)

(T − s)1−α
+ α

∫ T

s

g(y)− g(s)

(y − s)2−α
dy

∣∣∣ ds
≤ ‖f‖α,1 Λα(g),

where the last inequality is the result of (7.15) and

Λα(g) =
1

Γ(1− α)
sup

0<s<t<T
|D1−α

t− gt−(s)|

≤ 1

Γ(1− α)Γ(α)
‖g‖1−α,∞,T . (7.16)

Now recall the vector fields defined in (5.2), with following additional conditions:

(A1) |U i
γ(x)| ≤ Mγ, ∀x ∈ Rn and γ ∈ N, where U i

γ denotes the i-th component of

the γ-th vector field.

(A2) Writing ‖ · ‖2 for the Euclidean norm in Rd, for the appropriate d, we require,

|U i
γ(x)− U i

γ(y)| ≤M
(1)
γ ‖x− y‖2, ∀x, y ∈ Rn and γ ∈ N.

(A3) DenotingWγ(x) as the spatial derivative of Uγ(x), we also require that, |W i
γ, j(x)−

W i
γ, j(y)| ≤M

(2)
γ ‖x− y‖2, ∀x, y ∈ Rn and γ ∈ N, where W i

γ, j(·) is the (i, j)-th

element of the matrix Wγ(·).
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(A4) Finally, M (1) =
∑

α∈NM
(1)
α < ∞, M (2) =

∑
α∈NM

(2)
α < ∞, and M (3) =∑

α∈NM
(3)
α <∞.

Consider the following deterministic integral equation in Rn

ψt(x) = x+
∑
γ∈I

∫ t

0

Uγ(ψs(x))dgγ(s), (7.17)

where gγ ∈ W 1−α,∞
T (0, T ; R).

Then, under (A1)− (A4) on the vector fields, existence and uniqueness of a solution

of (7.17), in the space C1−α(0, T ; Rn) is proven in [30] for |I| <∞. We shall present

the idea of the proof in short without delving too deeply into the technical aspects

of the proof.

First, an operator GI
x is defined on W α,∞

0 (0, T ; Rn), for fixed 0 < α < 1/2, by setting

(GI
xf)(t) = x+

∑
γ∈I

∫ t

0

Uγ(f(s))dgγ(s),

for f ∈ Wα,∞
0 (0, T ; Rn) and gγ ∈ W 1−α,0

T (0, T ; R). Then, it is proven that GI
x :

W α,∞
0 (0, T ; Rn) → W α,∞

0 (0, T ; Rn) is a contraction. The rest of the proof hinges on

a simple application of Banach fixed point theorem. The resultant solution is then

shown to have (1− α)-Hölder continuous paths.

In fact, the existence and uniqueness of the solution can be proven under far weaker

conditions, but that prevents the solution from being a diffeomorphism in Rn, while

we are interested in the flow properties of smooth flows (see [14] for details).

Finally, the existence and uniqueness of the flow of diffeomorphisms defined in (5.3),

using the above interpretation of the integral, is established by using the fact that

the sample path of BH belongs to the space W 1−α,∞
T (0, T ; R) for α ∈ (1 − H, 1

2
).

Appropriate estimates of the solution of the flow equation are also obtained in [30],

which are improved on in [29].

So far we surveyed two ways of constructing stochastic integrals with respect to frac-

tional Brownian motion, and have, hopefully presented enough evidence to convince

the reader that the pathwise method seems more amenable for the construction of

stochastic flows.
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Chapter 8

The flow and its geometric
properties

In this chapter, we shall use the approach developed in [29] for getting estimates

on some of the basic geometric characteristics of the flow defined in (5.3), with the

integral interpreted as in the previous chapter.

We start with recalling the class of vector fields {Uγ}γ∈N defined in (5.2), and restate

the corresponding assumptions as follows.

(A1) |U i
γ(x)| ≤ Mγ, ∀x ∈ Rn and γ ∈ N, where U i

γ denotes the i-th component of

the γ-th vector field.

(A2) Writing ‖ · ‖2 for the Euclidean norm in Rd, for the appropriate d, we require,

|U i
γ(x)− U i

γ(y)| ≤M
(1)
γ ‖x− y‖2, ∀x, y ∈ Rn and γ ∈ N.

(A3) DenotingWγ(x) as the spatial derivative of Uγ(x), we also require that, |W i
γ, j(x)−

W i
γ, j(y)| ≤M

(2)
γ ‖x− y‖2, ∀x, y ∈ Rn and γ ∈ N, where W i

γ, j(·) is the (i, j)-th

element of the matrix Wγ(·).

(A4) Finally,M =
∑

γ∈NMγ <∞,M (1) =
∑

γ∈NM
(1)
γ <∞, andM (2) =

∑
γ∈NM

(2)
γ <

∞.

We consider the flow

Φt(x) = x+
∑
γ∈I

∫ t

0

Uγ(Φs(x)) dB
H
γ (s), (8.1)
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where I is a fixed but generic subset of N, such that |I| <∞, where |I| denotes the

cardinality of the set I, and the integral appearing in the expression is interpreted

in the pathwise sense defined in the previous chapter.

Beginning in a similar way as in Part I, with M , an m-dimensional smooth manifold

embedded in the n-dimensional Euclidean space, we denote TxM as the tangent

space of M at x ∈ M . Let v ∈ TxM . Then its push-forward under the flow Φt is

given as

vt = DΦt(x)v,

and vt ∈ TxtMt.

From here on we shall write xt for Φt(x). Another notational nuance that we shall

often use in the subsequent proofs is the following definition of the norm for a Rd

valued process y defined on the interval [a, b],

‖y‖µ,a,b = sup
a≤c≤d≤b

‖y(c)− y(d)‖2

|c− d|µ
, (8.2)

with the understanding that ‖y‖µ,b
∆
= ‖y‖µ,0,b, and that for µ = ∞, this norm is

defined as the sup norm.

8.1 Main technical result

In the build up to the main result of Part II of this thesis, which will be presented

in Section 8.2, we shall state and prove a technical result, which will form the crux

of this section.

Theorem 8.1.1 Under the assumptions stated in (A1)−(A4), and for α = 1−H+δ,

β = H − ε, such that (1−H) < α < 1/2 and δ > ε, there exist a constant c and a

random variable CT , such that

sup
r∈[0,T ]

‖vr‖2 ≤ sup
r∈[0,T ]

‖vr‖1

≤ c 2CT T ,

where ‖vr‖2 and ‖vr‖1 denote the l2 and l1 norms, respectively, of the vector vr as an

element in Rn. The random variable CT depends on α, β, n, I, and {‖BH
γ ‖β,T ,Mγ,M

(1)
γ ,M

(2)
γ }γ∈I ,
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with ‖BH
γ ‖β,T the Hölder norm of the process BH

γ . Furthermore,

E[CT ]β ≤ C · E[‖BH‖β,T ],

where the constant C depends only on α, β, n, |I| and {Mγ,M
(1)
γ ,M

(2)
γ }γ∈I .

Remark 8.1.1 For a better understanding of the results of Theorem 8.1.1, we note

that for the case |I| = 1, these results boil down to the following

sup
r∈[0,T ]

‖vr‖2 ≤ c 2C T ‖BH‖1/β
β,T ,

for some constants c and C, dependent only on the various uniform bounds and the

Lipschitz coefficients corresponding to the vector field.

Remark 8.1.2 The results listed in this chapter hold true for any I ⊂ N as long

as the cardinality of the set satisfies |I| < ∞. However, extensions of these results

to the case I = N, though possible, require unnatural conditions on the summability

of the constants appearing in Assumptions (A1) − (A3). For instance, extending

Lemma 8.1.1 to the case I = N will require∑
γ∈NM

(1)
γ ‖BH

γ ‖β,T∑
γ∈NM

(2)
γ ‖BH

γ ‖β,T

<∞.

A sufficient condition for which can be stated as

∑
γ∈N

M
(1)
γ

M
(2)
γ

<∞,

which does not seem to have a straightforward meaning in terms of the vector fields

{Uγ}γ∈N.

The idea of the proof of Theorem 8.1.1 is to break up the interval [0, T ] into smaller

units ∆, on which reasonable estimates of ‖vr‖2 are possible, and then to glue the

intervals together to obtain the required result. However, in the process, we shall

require estimates on the flow, which are presented in the following lemma, for which

we rely on the results obtained in [29].
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Lemma 8.1.1 Let M , M (1) be constants as defined in Assumptions (A1) − (A4),

and 0 ≤ s ≤ t ≤ T be such that

(t− s)−β >
nα(2α+ β − 1)

2(1− α)(1− 2α)(α+ β − 1)Γ(α)Γ(1− α)

∑
γ∈I

M (1)
γ ‖BH

γ ‖β,T ,

where α = 1−H + δ, β = H − ε, such that (1−H) < α < 1/2 and δ > ε. Then for

xt defined in (8.1) there exists a random variable K∗
s,t such that∫ t

s

‖xt − xr‖2

(t− r)1+α
dr ≤ K∗

s,t(t− s)β−α. (8.3)

Furthermore, K∗
s,t can be bounded above by another random variable, independent of

s and t, with finite moments of order greater than 1, as long as (t − s) is chosen

sufficiently small.

Remark 8.1.3 Note that under the aforementioned conditions concerning α and β,

we have α+ β > 1, and β > α.

Proof: Writing U i
γ(·) for the i-th component of the vector Uγ(·) and choosing {ei}n

i=1

as the canonical basis of Rn, we have

〈(xt − xs), ei〉 =
∑
γ∈I

∫ t

s

U i
γ(xr) dB

H
γ (r),

which is true by linearity of the operation, and where 〈·, ·〉 denotes the standard

Euclidean inner product. Hence for α ∈ (1−H, 1
2
),

|〈(xt − xs), ei〉| =
∣∣∣ ∑

γ∈I

∫ t

s

U i
γ(xr) dB

H
γ (r)

∣∣∣
=

∣∣∣ ∑
γ∈I

∫ t

s

Dα
s+U

i
γ(xr)D

1−α
t− BH

γ,t−(r) dr
∣∣∣

≤
∑
γ∈I

∫ t

s

|Dα
s+U

i
γ(xr)| · |D1−α

t− BH
γ,t−(r)| dr
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To obtain a bound on the second term in the integrand, choose β < H, such that

α+ β > 1, so that using (7.3), we have

|D1−α
t− BH

γ,t−(r)| =
∣∣∣(−1)1−α

Γ(α)

(BH
γ (t)−BH

γ (r)

(t− r)1−α
+ α

∫ t

r

BH
γ (u)−BH

γ (r)

(u− r)2−α
du

)∣∣∣
≤ 1

Γ(α)

( |BH
γ (t)−BH

γ (r)|
|t− r|1−α

+ α

∫ t

r

|BH
γ (u)−BH

γ (r)|
(u− r)2−α

du
)

=
1

Γ(α)

( |BH
γ (t)−BH

γ (r)|(t− r)β

(t− r)β(t− r)1−α

+ α

∫ t

r

|BH
γ (u)−BH

γ (r)|
(u− r)β

(u− r)α+β−2du
)

≤ 1

Γ(α)

(
‖BH

γ ‖β,T (t− r)α+β−1 + α‖BH
γ ‖β,T

(t− r)α+β−1

α+ β − 1

)
= k1(α, β)‖BH

γ ‖β,T (t− r)α+β−1, (8.4)

where k1(α, β) = (2α+β−1)
(α+β−1)Γ(α)

.

To bound the first term we use (7.2) and assumptions (A1)− (A2), to see that

|Dα
s+U

i
γ(xr)| =

1

Γ(1− α)

∣∣∣ U i
γ(xr)

(r − s)α
+ α

∫ r

s

(U i
γ(xr)− U i

γ(xθ))

(r − θ)1+α
dθ

∣∣∣
≤ 1

Γ(1− α)

( |U i
γ(xr)|

(r − s)α
+ α

∫ r

s

|U i
γ(xr)− U i

γ(xθ)|
(r − θ)1+α

dθ
)

≤ cα

( Mγ

(r − s)α
+ α

∫ r

s

M
(1)
γ ‖xr − xθ‖2

(r − θ)1+α
dθ

)
≤ cα

(
Mγ(r − s)−α +M (1)

γ,α‖x‖s,r,1−α(r − s)1−2α
)
, (8.5)

where cα = Γ(α)−1 and M
(1)
γ,α =

αM
(1)
γ

(1−2α)
.
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Therefore, combining the above two estimates , we get

|〈(xt − xs), ei〉| ≤ cαk1(α, β)
∑
γ∈I

‖BH
γ ‖β,T

∫ t

s

(
Mγ(r − s)−α(t− r)α+β−1

+M (1)
γ,α‖x‖s,r,1−α(r − s)1−2α(t− r)α+β−1

)
dr

≤ cαk1(α, β)
∑
γ∈I

‖BH
γ ‖β,T (t− s)α+β−1

∫ t

s

(
Mγ(r − s)−α

+M (1)
γ,α‖x‖s,r,1−α(r − s)1−2α

)
dr

= cαk1(α, β)
∑
γ∈I

‖BH
γ ‖β,T

(
Mγ(t− s)β(1− α)−1

+ M̃ (1)
γ,α‖x‖s,t,1−α(t− s)1−α+β(2− 2α)−1

)
.

Let

Mα = (1− α)−1
∑
γ∈I

Mγ‖BH
γ ‖β,T , (8.6)

and

M̃ (1)
α = (2− 2α)−1

∑
γ∈I

M (1)
γ,α‖BH

γ ‖β,T . (8.7)

Then

‖(xt − xs)‖1 =
n∑

i=1

|〈(xt − xs), ei〉|

≤ cαnk1(α, β)
(
Mα(t− s)β + M̃ (1)

α ‖x‖s,t,1−α(t− s)1−α+β
)
.

Equivalently,

‖(xt − xs)‖1

(t− s)1−α
≤ cαnk1(α, β)

(
Mα(t− s)α+β−1

+ M̃ (1)
α ‖x‖s,t,1−α(t− s)β

)
. (8.8)

(Recall that α+ β > 1.)
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Now using the above estimate together with (8.2), and the fact that ‖·‖2 is bounded

above by ‖ · ‖1, we have

‖x‖s,t,1−α = sup
s≤u≤v≤t

‖(xv − xu)‖2

(v − u)1−α

≤ sup
s≤u≤v≤t

‖(xv − xu)‖1

(v − u)1−α

≤ sup
s≤u≤v≤t

cαnk1(α, β)
(
Mα(v − u)α+β−1

+ M̃ (1)
α ‖x‖u,v,1−α(v − u)β

)
≤ cαnk1(α, β)

(
Mα(t− s)α+β−1

+ M̃ (1)
α ‖x‖s,t,1−α(t− s)β

)
. (8.9)

Now choosing s, t such that

(t− s)−β > cαnk1(α, β)M̃ (1)
α , (8.10)

(8.9) can be rewritten as

‖x‖s,t,1−α ≤ cαnk1(α, β)Mα(t− s)α+β−1

1− cαnk1(α, β)M̃
(1)
α (t− s)β

= Ks,t(t− s)α+β−1. (8.11)

Therefore, ∫ t

s

‖xt − xr‖2

(t− r)1+α
dr =

∫ t

s

‖xt − xr‖2

(t− r)1−α
(t− r)−2α dr

≤ ‖x‖s,t,1−α

∫ t

s

(t− r)−2α dr

≤ Ks,t
(t− s)β−α

(1− 2α)

= K∗
s,t(t− s)β−α,

where K∗
s,t = Ks,t

(1−2α)
, thus establishing (8.3). The final claim, that K∗

s,t can be

bounded by a random variable independent of s and t will be proven later. 2

Proof of Theorem 8.1.1: Taking the space derivative of (8.1), the existence of

which is ensured by Theorem 3.2 in [29], we have

DΦt(x) = I +
∑
γ∈I

∫ t

0

Wγ(Φs(x))DΦs(x) dB
H
γ (s),
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where the matrix Wγ(·) = (W i
γ,j(·))i,j denotes the spatial derivative of the vector

field U .

Now using the definition of the pushforward of a vector, we can write the evolution

equation of the tangent vector as follows

vt = v +
∑
γ∈I

∫ t

0

Wγ(xs)vsdB
H
γ (s).

Recall that ‖vt‖1 =
∑n

i=1 |〈vt, ei〉|, where 〈·, ·〉 is the standard Euclidean inner prod-

uct, and {ei}n
i=1 denotes the canonical basis of Rn. Since,

〈vt, ei〉 = x+
∑
γ∈I

∫ t

0

〈Wγ(xr)vr, ei〉dBH
γ (r),

we have

|〈vt, ei〉 − 〈vs, ei〉| =
∣∣∣ ∑

γ∈I

∫ t

s

〈Wγ(xr)vr, ei〉dBH
γ (r)

∣∣∣
=

∣∣∣ ∑
γ∈I

∫ t

s

Dα
s+〈Wγ(xr)vr, ei〉D1−α

t− BH
γ,t−(r)dr

∣∣∣
≤

∑
γ∈I

∫ t

s

|Dα
s+〈Wγ(xr)vr, ei〉| · |D1−α

t− BH
γ,t−(r)|dr.

The above inequality holds for any choice of s and t, but we are interested in pairs

for which (t− s) is sufficiently small. To this end, note first that from (8.4) we can

bound the second integrand by

|D1−α
t− BH

γ (r)| = k1(α, β)‖BH
γ ‖β,T (t− r)α+β−1.
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Now using (7.2) and Assumptions (A2)-(A4), the first integrand can be bounded as

|Dα
s+〈Wγ(xr)vr, ei〉| ≤ 1

Γ(1− α)

[ |〈Wγ(xr)vr, ei〉|
(r − s)α

+ α

∫ r

s

|〈Wγ(xr)vr, ei〉 − 〈Wγ(xθ)vθ, ei〉|
(r − θ)1+α

dθ
]

≤ 1

Γ(1− α)

[∑n
j=1 |W i

γ,j(xr)〈vr, ej〉|
(r − s)α

+ α

∫ r

s

|〈Wγ(xr)vr, ei〉 − 〈Wγ(xθ)vθ, ei〉|
(r − θ)1+α

dθ
]

≤ 1

Γ(1− α)

[
M (1)

γ

n∑
j=1

|〈vr, ej〉|
(r − s)α

+ α

∫ r

s

|〈Wγ(xr)vr, ei〉 − 〈Wγ(xθ)vr, ei〉|
(r − θ)1+α

dθ

+ α

∫ r

s

|〈Wγ(xθ)vr, ei〉 − 〈Wγ(xθ)vθ, ei〉|
(r − θ)1+α

dθ
]

=
1

Γ(1− α)

[
M (1)

γ

n∑
j=1

|〈vr, ej〉|
(r − s)α

+ α

∫ r

s

|
∑n

j=1(W
i
γ,j(xr)〈vr, ej〉 −W i

γ,j(xθ)〈vr, ej〉)|
(r − θ)1+α

dθ

+ α

∫ r

s

|
∑n

j=1(W
i
γ,j(xθ)〈vr, ej〉 −W i

γ,j(xθ)〈vθ, ei〉)|
(r − θ)1+α

dθ
]

≤ 1

Γ(1− α)

[
M (1)

γ

n∑
j=1

|〈vr, ej〉|
(r − s)α

+ α

∫ r

s

∑n
j=1 |W i

γ,j(xr)−W i
γ,j(xθ)| · |〈vr, ej〉|

(r − θ)1+α
dθ

+ α

∫ r

s

∑n
j=1 |W i

γ,j(xθ)| · |〈vr, ej〉 − 〈vθ, ei〉|
(r − θ)1+α

dθ
]

≤ 1

Γ(1− α)

[
M (1)

γ

n∑
j=1

|〈vr, ej〉|
(r − s)α

+ αM (2)
γ

n∑
j=1

|〈vr, ej〉|
∫ r

s

‖xr − xθ‖2

(r − θ)1+α
dθ

+ αM (1)
γ

n∑
j=1

∫ r

s

|〈vr, ej〉 − 〈vθ, ei〉|
(r − θ)1+α

dθ
]
.

Now using the result proven in Lemma 8.1.1, for r such that s < r < t, with (t− s)

satisfying the condition (8.10), we have∫ r

s

‖xr − xθ‖2

(r − θ)1+α
dθ ≤ K∗

s,r(r − s)β−α.
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Hence,

|Dα
s+〈Wγ(xr)vr, ei〉| =

n∑
j=1

[ |〈vr, ej〉|
(r − s)α

(M (1)
γ + αM

(2)
γ K∗

s,r(r − s)β

Γ(1− α)

)
+

αM
(1)
γ

Γ(1− α)

∫ r

s

|〈vr, ej〉 − 〈vθ, ej〉|
(r − θ)1+α

dθ
]

=
n∑

j=1

[
aγ,1

|〈vr, ej〉|
(r − s)α

+
αM

(1)
γ

Γ(1− α)

∫ r

s

|〈vr, ej〉 − 〈vθ, ej〉|
(r − θ)1+α

dθ
]

≤
n∑

j=1

[
aγ,1|〈vr, ej〉|(r − s)−α + bγ,1‖〈v·, ej〉‖s,t,β(r − s)β−α

]
,

where

aγ,s,r,1 =
M

(1)
γ + αM

(2)
γ K∗

s,r(r − s)β

Γ(1− α)
, (8.12)

and

bγ,1 =
αM

(1)
γ

(β − α)Γ(1− α)
. (8.13)

Note that aγ,s,r,1 ≤ aγ,s,t,1, for s ≤ r ≤ t.
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Writing as,r,1 =
∑

γ∈I aγ,s,r,1‖BH
γ ‖β,T and b1 =

∑
γ∈I bγ,1‖BH

γ ‖β,T , and using the

above estimates for the integrands, together with (8.4) and Remark 8.1.3, we have

|〈(vt − vs), ei〉| ≤ k1(α, β)

∫ t

s

n∑
j=1

(
as,r,1|〈vr, ej〉|(r − s)−α(t− r)α+β−1

+ b1‖〈v·, ej〉‖s,t,β(r − s)β−α(t− r)α+β−1
)
dr

≤ k1(α, β)(t− s)α+β−1

∫ t

s

n∑
j=1

(
as,r,1|〈vr, ej〉|(r − s)−α

+ b1‖〈v·, ej〉‖s,t,β(r − s)β−α
)
dr

≤ k1(α, β)(t− s)α+β−1

∫ t

s

n∑
j=1

(
as,r,1‖〈v·, ej〉‖s,t,∞(r − s)−α

+ b1‖〈v·, ej〉‖s,t,β(r − s)β−α
)
dr

≤ k1(α, β)(t− s)α+β−1

n∑
j=1

(
as,t,1‖〈v·, ej〉‖s,t,∞

(t− s)1−α

1− α

+ b1‖〈v·, ej〉‖s,t,β
(t− s)1+β−α

1 + β − α

)
= k1(α, β)

n∑
j=1

(
as,t,2‖〈v·, ej〉‖s,t,∞(t− s)β

+ b2‖〈v·, ej〉‖s,t,β(t− s)2β
)
,

where as,t,2 = as,t,1(1− α)−1 and b2 = b1(1− α+ β)−1.

Therefore,

‖〈v·, ei〉‖s,t,β = sup
s≤r≤θ≤t

|〈(vθ − vr), ei〉|
(θ − r)β

≤ k1(α, β)
n∑

j=1

sup
s≤r≤θ≤t

(
ar,θ,2‖〈v·, ej〉‖r,θ,∞

+ b2‖〈v·, ej〉‖r,θ,β(θ − r)β
)

≤ k1(α, β)
n∑

j=1

(
as,t,2‖〈v·, ej〉‖s,t,∞

+ b2‖〈v·, ej〉‖s,t,β(t− s)β
)
.
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As a consequence of the above estimate we have

n∑
i=1

‖〈v·, ei〉‖s,t,β ≤ n k1(α, β)
n∑

j=1

(
as,t,2‖〈v·, ej〉‖s,t,∞

+ b2‖〈v·, ej〉‖s,t,β(t− s)β
)
. (8.14)

For further analysis we shall require that

(t− s)−β > nk1(α, β)b2. (8.15)

Thereby, for (t− s) satisfying conditions (8.10) and (8.15), we can rewrite (8.14) as

n∑
i=1

‖〈v·, ei〉‖s,t,β ≤ n k1(α, β) as,t,2

n∑
i=1

‖〈v·, ei〉‖s,t,∞

(1− n k1(α, β) b2 (t− s)β)
.

Hence,

n∑
i=1

|〈vt, ei〉| ≤
n∑

i=1

(
|〈vs, ei〉|+ |〈vt, ei〉 − 〈vs, ei〉|

)
≤

n∑
i=1

(
|〈vs, ei〉|+ ‖〈v·, ei〉‖s,t,β(t− s)β

)
≤

n∑
i=1

(
|〈vs, ei〉|+ n k1(α, β) as,t,2

‖〈v·, ei〉‖s,t,∞(t− s)β

(1− n k1(α, β) b2 (t− s)β)

)

Clearly, for any r ∈ [s, t] we have

n∑
i=1

|〈vr, ei〉| ≤
n∑

i=1

(
|〈vs, ei〉|+ n k1(α, β) as,r,2

‖〈v·, ei〉‖s,r,∞(r − s)β

(1− n k1(α, β) b2 (r − s)β)

)
.

Now using the fact that s < r < t, so that ‖〈v·, ei〉‖s,r,∞ ≤ ‖〈v·, ei〉‖s,t,∞ and

as,r,2 ≤ as,t,2, we have

n∑
i=1

‖〈v·, ei〉‖s,t.∞ ≤
n∑

i=1

(
|〈vs, ei〉|

+ n k1(α, β) as,t,2
‖〈v·, ei〉‖s,t,∞(t− s)β

(1− n k1(α, β) b2 (t− s)β)

)
. (8.16)

Finally, we shall require (t− s) to satisfy

(t− s)−β > nk1(α, β) [as,t,2 + b2], (8.17)
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to allow us to rewrite (8.16) as

n∑
i=1

‖〈v·, ei〉‖s,t,∞

[
1− n k1(α, β) as,t,2 (t− s)β

(1− n k1(α, β) b2 (t− s)β)

]
≤

n∑
i=1

|〈vs, ei〉|.

We shall note that for (t− s) sufficiently small, the inequality (8.17) does hold true,

as as,t,2 is a decreasing function of (t− s).

This, in turn implies,

n∑
i=1

sup
0≤r≤t

|〈vr, ei〉| =
n∑

i=1

max{ sup
0≤r≤s

|〈vr, ei〉|, ‖〈v·, ei〉‖s,t,∞}

≤
n∑

i=1

max{ sup
0≤r≤s

|〈vr, ei〉|,
|〈vs, ei〉|[

1− nk1(α,β)as,t,2(t−s)β

(1−nk1(α,β)b2(t−s)β)

]}
≤

n∑
i=1

max{ sup
0≤r≤s

|〈vr, ei〉|,
sup0≤r≤s |〈vr, ei〉|[

1− nk1(α,β)as,t,2(t−s)β

(1−nk1(α,β)b2(t−s)β)

]}
=

n∑
i=1

sup0≤r≤s |〈vr, ei〉|[
1− nk1(α,β)as,t,2(t−s)β

(1−nk1(α,β)b2(t−s)β)

]
= S

n∑
i=1

sup
0≤r≤s

|〈vr, ei〉|, (8.18)

where S =
[
1− nk1(αβ)as,t,2(t−s)β

(1−nk1(α,β)b2(t−s)β)

]−1

.

Next we divide the interval [0, T ] into p pieces of size ∆ = (t − s), with ∆ being

small enough, so that none of the above estimates are negated, and we shall write

a∆,2 for as,t,2, as as,t,2 depends on s, t only through the difference (t− s) = ∆.

More precisely, in view of (8.10), (8.15) and (8.17), we require ∆ to satisfy the

following condition

∆−β > nk1(α, β) ·max[cαM̃
(1)
α , b2, (a∆,2 + b2)]

= n k1(α, β) ·max[cαM̃
(1)
α , (a∆,2 + b2)].

For example, we can choose

∆−β = 3n k1(α, β) ·max[cαM̃
(1)
α , (a∆,2 + b2)], (8.19)

and thus, for this specific choice of ∆, we have S ≤ 2.
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To ensure the existence of such a ∆, we start with

∆−β
0 = 3n k1(α, β) cα M̃

(1)
α ,

then, if

∆−β
0 ≥ 3n k1(α, β) (a∆0,2 + b2), (8.20)

we shall choose ∆ = ∆0, else, we solve the following equation

∆−β
0 ≥ 3n k1(α, β) (a∆0,2 + b2),

in the range ∆ ≤ ∆0. It is now easy see that the solution to this equation is ensured

since the left side increases to infinity as ∆ → 0, whereas the right side, which is

larger than the left side at ∆ = ∆0, decreases as ∆ decreases to zero.

Using the above notation, and repeatedly applying the technique used in (8.18), we

can write

sup
t∈[0,T ]

|vt| = sup
t∈[0, p∆]

[
n∑

i=1

|〈vt, ei〉|]

≤
n∑

i=1

sup
t∈[0, p∆]

|〈vt, ei〉|

≤ Sp

n∑
i=1

|〈v, ei〉|,

where

p =
T

∆

= T
(
3nk1(α, β) ·max[cαM̃

(1)
α , (a∆,2 + b2)]

)1/β

= T CT ,

and

CT =
(
3n k1(α, β) · [(cαM̃ (1)

α ) ∨ (a∆,2 + b2)]
)1/β

).

Proof of Lemma 8.1.1 continued: To prove the final claim of Lemma 8.1.1, note

that for specific choice (t− s) = ∆, together with (8.6) and (8.11) we have

K∗
s,t =

Ks,t

(1− 2α)

≤ 3

2(1− 2α)
· cα n k1(α, β)Mα

=
3

2(1− 2α)
· cα n k1(α, β)

∑
γ∈I

Mγ‖BH
γ ‖β,T

1− α
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and, so there exists a constant K(α, β), dependent only on α and β, such that

K∗
s,t(t− s)β ≤ K(α, β)

∑
γ∈I Mγ‖BH

γ ‖β,T

2
∑

γ∈I M
(1)
γ ‖BH

γ ‖β,T

≤ K(α, β)
∑
γ∈I

Mγ

M
(1)
γ

.

Consequently, a∆,2 can also be bounded above by a constant a2, hence we shall re-

place a∆,2 by a2, in the following discussion. 2

Note that,

(CT )β ≤ 3n cα k1(α, β)
∑
γ∈I

(M̃ (1)
α,γ + a2,γ + b2,γ)‖BH

γ ‖β,T ,

where M̃
(1)
α,γ, a2,γ, and b2,γ are the coefficients of ‖BH

γ ‖β,T in the constants M̃
(1)
α , a2

and b2, respectively.

Now using the bound on S available due to the specific choice of ∆, we get the

desired result. 2

8.2 The main result

The results obtained in the previous section, finally bring us to the main result of

this part of the thesis.

The estimates in Theorem 8.1.1, in turn imply similar bounds on the Hausdorff

measure of the m-dimensional manifold Mt, evolving under the flow Φt. More pre-

cisely, let {vx
i }m

i=1 be an orthonormal basis of the tangent space TxM , at the point

x ∈ M , then writing Lm(Mt) for m-th Lipschitz-Killing curvature of Mt, we have

the following result.

Theorem 8.2.1 Let M be a C2, m dimensional manifold, evolving under the flow

Φt defined in (8.1). Then under the conditions (A1)− (A4), and for α = 1−H + δ,

β = H − ε, such that (1−H) < α < 1/2 and δ > ε, there exists a constant c1, and
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a random variable C1,T , such that

sup
t∈[0,T ]

Lm(Mt) ≤ c1 Lm(M) 2C1,T T ,

where the function C1,T depends on α, β, n, I, and {‖BH
γ ‖β,T ,Mγ,M

(1)
γ ,M

(2)
γ }γ∈I ,

with ‖BH
γ ‖β,T the Hölder norm of the process BH

γ for β < H, such that

E[C1,T ]β ≤ C1 · E[‖BH‖β,T ],

with constant C1 dependent only on α, β, n, |I| and {Mγ,M
(1)
γ ,M

(2)
γ }γ∈I .

Proof: Consider the pushforwards {vx
i,t}m

i=1 of tangent vectors {vx
i }m

i=1 under the

flow Φt. Then by using a simple formula for change of variables on a manifold, as

in (3.5), we get

L(Mt) =

∫
Mt

H(dy)

=

∫
M

‖αx(t)‖H(dx),

where ‖αx(t)‖ =
√
| det(〈vx

i,t, v
x
j,t〉)|. By the Cauchy-Schwartz inequality we know

that

〈vx
i,t, v

x
j,t〉 ≤ ‖vx

i,t‖2 ‖vx
i,t‖2.

Therefore, using Theorem 8.1.1 and the above expression, we get

sup
t∈[0,T ]

‖αx(t)‖ ≤ m!( sup
t∈[0,T ]

‖vx
i,t‖)m

≤ cm! 2m C T ‖BH‖1/β
β,T ,

which proves the required result. 2

We end this chapter with the following remark on the growth of the random variables

CT and C1,T , appearing in the above results.

Remark 8.2.1 The rate of growth of the β-th moment of the random variable C1,T

appearing in Theorem 8.2.1, together with some rough calculations, implies that the

magnitude of C1,T is of the order T 1+ε0, for some ε0 small enough.
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Chapter 9

Future research and open
problems

As can be gathered from the remark following Theorem 8.2.1, we do not believe

that the bounds obtained in the previous chapter are sharp. In this chapter we shall

present a few ideas aimed at improving the results obtained in the previous chapter,

together with the some problems associated with implementing them.

9.1 On improving Theorem 8.2.1

Consider the case |I| = 1 in the definition (8.1) of a fractional Brownian flow. Then

equation (8.19) can be restated as

∆−β = 3n k1(α, β) ‖BH‖β,T ·max[cαM̃
(1)
α , (a∆,2 + b2)], (9.1)

where M̃
(1)
α , a∆,2 and b2 are constants.

Now a careful reading of the proofs of Theorem 8.1.1 and Lemma 8.1.1 yields that

‖BH‖β,T in (9.1) can be replaced by

Y (β,∆, BH)
∆
= max{‖BH‖β,i∆,(i+1)∆ : 0 ≤ i ≤ T/∆},

where ‖BH‖β,i∆,(i+1)∆ is the β Hölder norm of BH in the interval [i∆, (i+ 1)∆].

Clearly, not only is it true that

‖BH‖β,T ≥ Y (β,∆, BH),
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but one expects that the right hand side, which is a local quantity is considerably

smaller than the global quantity on the left hand side. Making this replacement

should improve the bounds in Theorem 8.1.1, and hence in Theorem 8.2.1, but

it seems that following this approach is not going to bear any fruit. For a start,

after replacing ‖BH‖β,T by Y (β,∆, BH) in (9.1), a rough calculation yields that the

solution to the new equation does not exist for each realization of the process BH .

9.2 Ergodicity

Note that, even in the light of Lemma 7.0.1, it is inappropriate to compare the results

of Theorem 8.2.1 with the ones obtained in Part I. For a start, Theorem 8.2.1 is a

uniform, almost sure bound, whereas the results of Part I, in case of an isotropic

Brownian flow, are results explaining the average behavior. Actually similar almost

sure bounds can be obtained in the case of stochastic flows driven by standard

Brownian motion by studying the Lyapunov exponents of the flow. However flows

driven by fractional Brownian motions are not known to have an invariant measure,

and hence are not known to exhibit ergodic behavior. Thus arguments concerning

the Lyapunov exponents do not work in this case.

In [18], the ergodicity of stochastic differential equations driven by additive fractional

noise is proven. In particular, let f : Rn 7→ Rn, satisfying some regularity conditions,

and define the process

xt = x+

∫ t

0

f(xs) ds+ σ BH(t), x ∈ Rn, (9.2)

where BH is an n-dimensional fractional Brownian motion with Hurst parameter

H, and σ a constant, invertible n×n matrix. Then it is proven that the solution to

the above stochastic differential equation converges to a unique stationary solution

in an appropriate norm. It is noteworthy that the result is true for all H ∈ (0, 1).

The idea of the proof is to build a stochastic dynamical system over an appropriate

noise space, and then with some compactness arguments to show the existence of

an invariant measure for the system. Finally, the result is achieved by a coupling

construction.

Note that the stochastic differential equation (9.2), is driven by an additive noise,
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whereas the systems that we have studied are driven by a multiplicative noise.

However, if it were possible to extend the ergodic properties of the solution of (9.2)

to the case involving multiplicative noise, this would be a major step in the direction

of improving the results obtained in Part II. But, as is noted by the author towards

the end of [18], the case of multiplicative noise is considerably more involved than

the additive case and requires better estimates.

Therefore, one of the directions of future research in this field would be to try to prove

ergodicity for the flow described in (8.1). A good starting point would be to take

a compact state space, so as to stop the flow from blowing up. With appropriate

conditions on the vector fields, the flow will traverse almost all the points in the

space, and hence can be believed to exhibit ergodicity.
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1 wxt

xivwz

zegztznd zerixi ly dwin`pic `ed miihqkehq mikildz megza dpexg`l xwgpd `yep

zenixfa xwira cwnzn df megza xwgnd .zihqkehq dnixf zgz i`xw` ote`a

zeitexhefi` zeipe`xa zenixf ,`nbecl .miyxetn miaeyig mixyt`zn oda zeihqkehq

zexneyd zeitexhefi` zenixfe ,[20, 21] Le Jan ,[6] Baxendale and Harris-a exwgp

.[12] Craston and Le Jan-a exwgp gtp

yeniy zxfra zipe`xa dnixf ly oeit`d z` exwg [6] Baxendale and Harris

ly zecewp izy zrepz iabl ze`vez ecqi md ,ok enk .dly ztzeyn zepeyd zivwpeta

.zewiyn zenixfe miwiyn mixehwe ly dwin`pic ly mipey mipiit`n exwge ,dnixfd

`evnl eqip dixhne`ibe zexazqd xwgn iyp` zeihqkehq zenixf ly xwgnd zligzn

mipyd mixyra .dwin`pic ipiit`n hxtae ,zenixf oiit`l ick mini`zn mixhnxt

z` xiaqdl liaya ilkk Lyapunov exponents-a xkp oiipr e`xd mixweg zepexg`d

ieey ly xwgna `nbecl ,dnixfd ly mipiit`ndn dnk ly zihehtniq`d zebdpzdd

oey`xd crvd .[5] Baxendale -a zenixf ly zecewp izy zrepze ihqihhq lwyn

Carverhill ici lr dyrp zeihqkehq zenixf oial Lyapunov exponents oia xeyiwa

xear [31] Oseledec ly iltk icebx` htyn ly `qxb giked Carverhill [9]-a .[8, 9]

jez M dwlg zihwtnew drixi ly minfitxene`tic ly zeihqkehq zeipe`xa zenixf

-izze ,Lyapunov exponents mi`xwpd ,λ1 > ... > λk mixtqn ly meiw d`xdy ick

V x,ω
i ⊂ -y jk ,M drixia x lk xear TxM wiynd agxnd ly mi`xw` {V x,ω

i }k
i=1 agxn

v ∈ V x,ω
i \ V x,ω

i−1 ici lr xcben i-i-d Lyapunov exponent -de 1 ≤ i ≤ k xear V x,ω
i+1

.(miagxnd-izz ly zei`xw`d z` yibcdl d`a ω-d) .edylk

xear yxetn iehia llek ,zenec ze`vez giked [20] Le Jan onfd eze`a jxra

1



icilwie`d agxnd lr zxcbend zitexhefi` zipe`xa dnixf ly Lyapunov exponents

.Rn

z` xiaqdl ozip Lyapunov exponents ici lry dziid megza zlaewnd drcd

zgz i`xw` ote`a zgztznd drixi ly dcewp lka dipyd ziceqid zipazd ly zepypd

sivxd dxwnl dagxddy jk lr riavd [10] Cranston ,z`f zexnl .zihqkehq dnixf

dliaedy divi`ehpi`dy d`xn [11] Cranston and Le Jan -a elawzpy ze`vezd ly

Lyapunov exponents-a yeniy jez dipyd ziceqid zipazd ly zepypd ly xaqdl

mipiit`n oegal ipeibd xzeiy wiqdl ozip lirl meyxd lr jnzqda .dpekp `l dziid

-xhne`ibd zegztzdd ly iteq onfa zebdpzdd z` xewgl ick dnixfd ly mixg`

zegztzdd z` xewgl [12] Cranston and Le Jan z` liaed xacd .dnixfd ly zi

zinenwre zrvenn zinenwr llek ,zeipexwr zeinenwr ly miixhniqd minepiletd ly

zitexhefi` dnixf zgz zgztznd ,Rn-a zpkeynd zicnn-(n− 1) drixi ly ziqe`b

zeinenwr ly miixhniqd minepiletd xear Itô zgqep elaiw md .Rn -a gtp zxney

-enwrd ly miixhniqd minepiletd lk ly xehweedy zexnly ewiqd dfne zeipexwr

.xehweed ly dveaw zz lk xear oekp epi` xacd ,difetic deedn zeipexwrd zein

zebdpzda oeir ici lr ef d`vez miaigxn ep` div`hxqicd ly oey`xd wlga

zgz zi`xw` zegztznd zerixi ly Lipschitz − Killing-d zeinenwr ly zin`pic

Lipschitz−-d zeinenwrd l` qgizdl ozip .Rn lr gtp zxneye zitexhefi` zipe`xa dnixf

migtp ly zeagxd xeza ,zeinenwr zecink mb zerecid ,{Lk(M)}dim(M)
k=0 Killing

-nyn j` zirah dagxd idef .millken migtp mb `xwidl zeleki od okle miiqpixhpi`

Lipschitz−-d zeinenwrd z` bviil ozip xy`k ,[12] Cranston and Le Jan ly zizer

.drixid lrn zeipexwr zeinenwr ly miixhniq minepilet ly rvennk Killing

ly cenil ici lr zbyend zi`xw` div`xhlit ici lr wteqnd rcind znerl

Lipschitz−-d zeinenwrd ,inewn rcin wx oexwra mipzep xy` ,Lyapunov exponents

efe .i`xw` ote`a zegztznd zerixid ly zilaelbd dixhne`ibd z` zex`zn Killing

xeztl miqpn ep` .Lipschitz −Killing zeinenwr mr cearl ztqep divaihen hlgda

drixi ly Lipschitz−Killing zeinenwr ly zihqkehq zegztzda oeir ici lr ef dira

zixwird d`vezd .gtp zxneye zitexhefi` zipe`xa dnixf zgz zi`xw` zgztznd

-wr xear zihqkehq zegztzd ly dgqepd `id divhxqicd ly oey`xd wlga eply

-efi` zipe`xa dnixf zgz zi`xw` zgztznd drixi ly Lipschitz −Killing zeinen

divwpetk odly zelgezd xear heyt yxetn iehia jkn d`vezke ,gtp zxneye zitexh



zihwtnew zicnn-(n−1) drixi ly dpenzd `id Mt-y gipp ,zeheyt milina .onfd ly

zinenwrd z` Lm(Mt)-a onqp ,z`fn dxzi .Φt dnixf zgz Rn-a zpkeynd M dwlg

mileki ep` if` .0 ≤ m ≤ (n− 1) xear ,Mt drixid ly zi-m-d Lipschitz−Killing-d

.d`ad d`vezd z` gikedl

.Rn ly C2 minfitxene`tic ly gtp zxneye zitexhefi` zipe`xa dnixf Φt didz 1.0.1 htyn
Lipschitz − Killing-d zeinenwrd ly dginvd avw zlgez 0 ≤ m ≤ (n − 1) xear if`

ici lr dpezp
E{Lm(Mt)} = Lm(M) exp(Ct),

.t-a ielz izlae reaw C xy`k

ziaewxn dpekz `ed oey`xd wlgd xear rixknd zeipe`xa zenixf ly aeyg oiit`n

.dnixfd ly zccea dcewp zrepz ly

xzei dxwna zeyridl leki dn wecal miqpn ep` divhxqicd ly ipyd wlga

ep` ipyd wlga ,xnelk .difetic deedn dpi`e ziaewxn dpi` dnixfd xy`k ,dyw

xhnxt mr zil`peivwxt oe`xa zrepz ici lr zerpend zeihqkehq zenixf mipgea

.zil`peivwxt oe`xa zrepz ly dxigad ixeg`n zeaiq izy zeniiw .H > 1/2 Hurst

daiqd .([15, 35] d`x) mineyii xtqna zeriten el`k zenixfy `id dpey`xd daiqd

dnk rval xyt`n oiicr iqe`bd dpand ,zeiaewxnd zpekz zxqd zexnly `id dipyd

.miyxetn miaeyig

`id H ∈ (0, 1) Hurst xhnxt mr {BH(t), t ≥ 0} zil`peivwxt oe`xa zrepz

qwcpi` mr invr oeinc zpekz mr mix`peivhq mihpnxwpi`e 0 rvenn mr iqe`b jildz

:xnelk .H

(BH(t)−BH(s))
L
= BH(|t− s|),

BH(t)
L
= tHBH(1),

.t, s ≥ 0 lk xear

zepeyd ziivwpet ici lr oiite`n zeidl leki `ed iqe`b jildz edfy jkl zeced

:ici lr dpezpd ,ely ztzeynd

(1.1) E(BH(s)BH(t)) =
1

2
(t2H + s2H − |t− s|2H).

.mix`peivhq mihpnxwpi` BH jildzl okle ,E(BH(t)−BH(s)) = |t−s|2H-y al miyp

ly dxwnd dfe miielz izla mihpnxwpi` jildzl ,H = 1/2 dxwn xear jk lr xzi



-i` ly heyt meyii .liibpihxn mbe aewxn jildz `idy ,zihxcphq zipe`xa drepz

mitivx milelqn BH jildzly xxeb (1.1) mr cgi Garsia−Rodemich−Rumsey oeieey

oiivl aeyg (.ixewnd oeieey-i`d xear [17] d`x ).α ∈ (0, H)-d lk xear α − Hölder

.liibpihxn-inq epi`e aewxn jildz epi` BH ,H 6= 1/2 ly dxwna z`f znerly

mibivn ,zil`peivwxtd oe`xa zrepz z` mixweg ep` div`hxqicd ly ipyd wlga

zerpend zenixf mipgeae l"pd jildzl qgia ihqkehq l`xbhpi` zxcbdl zepey mikxc

.H > 1/2 mr zil`peivwxt oe`xa zrepz ici lr

zerpend zeil`xbhpi`/zeil`ivpxtic ze`eeyna zewqerd zepey`xd zeceardn zg`

oeirxd .1994-a [25] Lyons ici lr dzyrp H > 1/2 mr zil`peivwxt oe`xa zrepz ici lr

-pet ici lr mirpend mil`xbhpi`a wqerd Y oung ly gezipd lr qqean did ixwird

zrepz ici lr zrpend zil`xbhpi` d`eeyn ly oexzt zecigie meiw .zewlg `l zeivw

mil`xbhpi` ly zip-d div`ixea yeniy jez gked H > 1/2 mr zil`peivwxt oe`xa

zeiv`xhi` xear zip`iviytil zebdpzdl ribdl liaya BH jildzd ly mipype mixfeg

-yd z` aigxde [26]-a oerihd z` lilkd Lyons ,1998-a ,xge`n xzei .Picard znkqa

dxwnl mb agxen did xacd .H = 1/2 ly dxwnd llek ,mixg` miax mixwnl dhi

.[37] Unterberger ici lr H > 1/4 ly

,
∫ t

0
us dBH(s) dxevd on miilelqn mil`xbhpi` xicbd ,[43, 44] Zähle onfd eze`a jxra

zeawra .il`peivwxt Sobolev agxn ly mihpnl` md BH-e u xy`k ,H > 1/2 xear

ici lr mirpend mihqkehq mil`xbhpi` ly zilelqn dxcbda yeniy ly lirl dhiyd

zecigide meiwd z` egiked [30] Nualart and Răşcanu ,zil`peivwxt oe`xa zrepz

zrepz ici lr zerpend zeicnn-ax zeihqkehq zeil`ivpxtic ze`eeyn ly zepexzt ly

l`xbhpi` oaena xcben BH-l qgia l`xbhpi`d .H > 1/2 mr zil`peivwxt oe`xa

.Zähle ici lr xcbeny enk ,ilelqn Riemann− Stieltjes

wlgd ly zixwird d`vezd z` lawl ick lirl zx`eznd dhiya ynzyp ep`

zgz zi`xw` zgztznd drixi ly Hausdorff zcin zginv zkxrd `idy ,ipyd

:zexg` milina .zil`peivwxt oe`xa zrepz ici lr zrpend zihqkehq dnixf

m < n xear Rn-a zpkeynd M dwlg zicnn-m-d drixid ly dpenz Mt didz 1.0.2 htyn
drixid ly zicnn-m Hausdorff zcin Lm(Mt) didze .Φt zil`peivwxt dnixf zgz ,edylk

y jk C1-e c1 mireaw miniiw if` .Mt

sup
t∈[0,T ]

Lm(Mt) ≤ c1Lm(M)2C1T‖BH‖1/β
β,T ,

.dhn xcbend xhnxt `ed β-e ,BH ripnd jildzd ly β −Hölder znxep ‖BH‖β,T xy`k
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