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Abstract

The main objective of this thesis is to study the global geometric properties of
a manifold embedded in Euclidean space, as it evolves under a stochastic flow of
diffeomorphisms. The processes driving the stochastic flows are chosen to be Gaus-
sian processes with stationary increments (in time). The most common class of
Gaussian processes with stationary increments is the family of fractional Brownian
motions with Hurst parameter H € (0, 1). This family encompasses a wide variety of
processes with applications in the fields of oceanography, finance and telecommuni-
cations, to name a few. The fact that these processes possess stationary increments
implies that the corresponding noise process is a stationary process, and so one can

hope to obtain ergodic estimates.

In Part I of the dissertation, we study the evolution of a codimension one manifold
embedded in Euclidean space, under an isotropic and volume preserving Brownian
flow. In particular we obtain expressions describing the expected rate of growth
of the Lipschitz-Killing curvatures, or intrinsic volumes, of the manifold evolving
under the flow. These results shed new light on the some of the intriguing growth
properties of flows from a global perspective, rather than the local perspective, on

which there is much larger literature.

In Part II, we deviate from the setting of standard Brownian flows, whose analysis
was primarily based on the Markovian character of the flow, and move to stochas-
tic flows driven by fractional Brownian motion with Hurst parameter H € (3,1).
Adopting a pathwise approach, we obtain estimates for the growth of the Hausdorff

measure of an m dimensional manifold embedded in R".



List of Symbols

M smooth compact manifold
T.M  tangent space to the manifold M at z € M
A; i-th Lyapunov exponent
Lr(M)  k-th Lipschitz-Killing curvature of the manifold M
R"™  n-dimensional Euclidean space
®, stochastic flow of diffeomorphisms
B fractional Brownian motion with Hurst parameter H
TM  tangent bundle to the manifold M
VxY  covariant derivative of Y in the direction of X
Hn(-)  m-dimensional Hausdorff measure
N,M  normal cone to the manifold M at x € M
{Uy}yen  collection of deterministic vector fields defined on R"
Dy Malliavin derivative operator
DY k-th iteration of Malliavin derivative operator
0y  divergence operator
LP(a,b)  the space of Lebesgue measurable functions f : (a,b) — R
such that || f||ze@p) < 00
I, left sided Riemann-Liouville integral of order o > 0
;' right sided Riemann-Liouville integral of order a > 0
Dy, left sided Riemann-Liouville derivative of order a > 0
D;* right sided Riemann-Liouville derivative of order a > 0
C’”\(O, T; Rd) the space of A-Holder continuous functions taking values

from [0, T] to R?



Chapter 1

Introduction

A subject of recent research activity in stochastic processes has been the study
of the dynamics of randomly evolving manifolds under a stochastic flow. An ap-
preciable amount of progress has already been made by studying stochastic flows
where explicit calculations are possible. For example, isotropic Brownian flows have
been studied in Baxendale and Harris [6], Le Jan [20, 21], and isotropic and volume

preserving flows have been studied in Cranston and Le Jan [12].

Baxendale and Harris [6] studied, in detail, the characterization of a Brownian flow
using its covariance function. They also established results related to the two point
motion of the flow, and studied in detail the various dynamic properties of the

tangent vectors and tangent flows.

Since the beginning of the study of stochastic flows, probabilists and geometers have
been searching for appropriate parameters to characterize the flow, in particular its
dynamic properties. In the last two decades, researchers have shown considerable
interest in Lyapunov exponents as a tool to explain the asymptotic behavior of
some of the characteristics of the flow, as, for example, in the study of statistical
equilibrium and the two point motion of flows in Baxendale [5]. The first step in
relating the Lyapunov exponents to stochastic flows was probably made by Carverhill
8, 9]. In [9], Carverhill proved a version of the multiplicative ergodic theorem
of Oseledec [31] for stochastic (Brownian) flows of diffeomorphisms of a compact
smooth manifold M establishing the existence of numbers A\; > --- > )y, called the

Lyapunov exponents, and random subspaces {V;"“}*_| of the tangent space T, M



for any « in the manifold M, such that V;"* C V17 for 1 <i < k and that the i-th
Lyapunov exponent is determined by any v € V;"“\V"". (The w in the superscript

emphasizes the randomness of the subspaces.)

About the same time Le Jan [20] also proved similar results, including an explicit
expression for the Lyapunov exponents of an isotropic Brownian flow defined on the

Euclidean space R™.

It was long believed that the Lyapunov exponents could explain the recurrence
of the second fundamental form at any point of a manifold, evolving randomly
under a stochastic flow. Cranston [10], however, indicated that an extension to the
continuous case of the results obtained in Cranston and Le Jan [11] would show
that the intuition employed to explain the recurrence of the second fundamental
form using the Lyapunov exponents was not true. The above observation leads one
to believe that the finite time behavior of the geometric evolution of the flow may
be better studied by some other characteristics of the flow. This lead Cranston and
Le Jan in [12] to study the unfolding of the symmetric polynomials of the principle
curvatures, including the mean and the Gaussian curvature of an (n—1)-dimensional
manifold M embedded in R”, evolving under an isotropic and volume preserving flow
on R™. They obtained an It6 formula for the symmetric polynomials of the principle
curvatures and hence deduced that while the vector of all the symmetric polynomials
of the principle curvatures is a diffusion, the same was not true for any proper subset

of the vector.

In Part I of this thesis, we extend this by looking at the dynamic behavior of
the Lipschitz-Killing curvatures of randomly evolving manifolds under isotropic
and volume preserving Brownian flows on R". The Lipschitz-Killing curvatures
{Ly(M) 23(1‘/1), also known as curvature measures, can be regarded as extensions
of intrinsic volumes and hence can also be called generalized volumes. This is a
natural but significant extension of Cranston and Le Jan [12], as Lipschitz-Killing
curvatures can be represented as the average of the symmetric polynomials of the

principle curvatures over the manifold.

Unlike the information furnished by the random filtration obtained by studying
Lyapunov exponents, which basically give local information, Lipschitz-Killing cur-

vatures describe the global geometry of randomly evolving manifolds. This is yet



another motivation to work with Lipschitz-Killing curvatures. Part I of the thesis
tackles this problem by studying the stochastic evolution of the Lipschitz-Killing
curvatures of a manifold evolving randomly under an isotropic and volume preserv-
ing Brownian flow. The results there, are an extension of the results in [12], and

have recently been published in [40].

Our main result in Chapter 4, will be a stochastic evolution equation for the
Lipschitz-Killing curvatures of a randomly evolving manifold under an isotropic
and volume preserving Brownian flow, an important consequence of which is an ex-
plicit, and quite simple, expression for their expected values as a function of time.
In simple words, let M; be the image, under the flow ®,, of an (n — 1)-dimensional
compact smooth manifold M, embedded in R™. Moreover, let L£,,(M;) denote the
m-th Lipschitz-Killing curvature of the manifold My, for 0 < m < (n—1). Then we

shall prove the following result.

Theorem 1.0.1 Let ®, is an isotropic and volume preserving Brownian flow of C*
diffeomorphsims of R™. Then, for 0 < m < n —1, the expected rate of growth of the

Lipschitz-Killing curvatures is given by
E{L,.(M)} = L,(M) exp(C't),

where C' is a constant independent of t.

Chapter 2 is devoted towards setting up the notation and developing the required
background for the results that follow in the subsequent chapters. Throughout this,
and the following Chapter 3, we borrow heavily from the work of Cranston and Le
Jan [12]. Chapter 3 redevelopes many results from [12] which are needed to prove

the new results in Chapter 4.

An important feature of Brownian flows which is crucial for the analysis in Part I

is the Markovian character of the one point motion of the flows.

Part II, therefore. moves out of this setting to see what can be done in the somewhat

harder setting of non-Markovian, non-diffusive, flows.

More precisely, in Part II we study stochastic flows driven by fractional Brownian

motion with Hurst parameter H > 1/2. The reason behind the choice of fractional



Brownian motion is two fold. Firstly, they are of independent interest, having
appeared in a number of applications (see [15, 35]). Secondly, while they are no
longer Markovian, their inherent Gaussian structure provides a framework in which

some calculations are still possible.

Fractional Brownian motion {Bf(¢), ¢+ > 0} with Hurst parameter H € (0,1), is
the zero mean Gaussian process with stationary increments, which satisfies a scaling

property called self-similarity with index H. More precisely,
(B" (1) = B"(s)) £ B" (|t — s]).

and
B (t) £ "B (1),

for any s, t > 0.

Note that for H = 1/2, B is the standard Brownian motion, which is a Markov
process and also a martingale. However for H # 1/2, B is neither a Markov

process nor a semi-martingale.

The study of fractional Brownian motion, the various ways of defining stochastic
integrals with respect to this process and the study of flows generated by fractional

Brownian motion with H > 1/2, forms the bulk of Part II.

Chapter 5 is mainly aimed at summarizing various properties of fractional Brownian
motion as a process, and providing a literature review of various attempts at defining
integrals with respect to this process. Then, in Chapters 6 and 7, we provide details
of two different ways of defining stochastic integrals with respect to fractional Brow-
nian motion, the Wiener integral and the pathwise approaches. Finally, in Chapter
8, we present the main result of Part II, namely the estimates on the growth of the
Hausdorff measure of randomly evolving manifolds under a stochastic flow driven

by fractional Brownian motion.

The main result of Part II can be stated, in short, as follows:

Theorem 1.0.2 Let M, be the image under the fractional flow ®; of an m-dimensional
smooth manifold M, embedded in R" for some m < n, and let L,,(M;) be the m-

dimensional Hausdorff measure of the manifold M,. Then there exist constants c;



and Cy, such that
1/8

sup L, (M) < ¢ L,,(M) oG TIB llgr
t€[0,T7

where || B|| 5. is the 3-Hélder norm of the driving process B, and Bis a parameter

to be defined later.

The thesis concludes with a brief chapter on open problems and directions for future

research.



Part 1

Brownian flows



Chapter 2

Background

In this chapter, we shall introduce the notion of a stochastic flow and develop the
basic geometric aspects concerning Riemannian manifolds needed to study the con-

nection between the two.

2.1 Stochastic flows

We start with a family of random mappings &, 0 < s <t < oo, of R" into itself,
such that

o &, for each s <t is a diffeomorphism of R™ into itself.

e &, ,0d, =P, forall s<u<t<oo.

e &, is the identity map on R”™ for all ¢.

o O,y Doy, ..., Py, are independent if 57 <t <59 <ty <00 <5, < .

e For each v € R", &, (7), ' (7), DO () = (%) and D®_'(z) are jointly

continuous in 0 < s <t < 0.

Such a family of random mappings is called a stochastic (Brownian) flow.

Writing ®, for ®4;, we can construct a Brownian flow on R™ by solving the equation

r=®(z) =z —i—/o OUs(Ps(x)), (2.1)



where 0 denotes the Stratonovich interpretation of a stochastic derivative and U;(z)

is a vector field valued Brownian motion with spatial covariance structure given by
EU{ (@)Ul (y) = (t As)CP(x —y), 1<ij<n, (2.2)
and where the C% takes the specific form
CM(z) = /00/ 1 P (58—t o,y (dt)F (dp), (2.3)
0o Jsn-
for a nonnegative measure ' on R* and normalized Lebesgue measure o,,_; on S™7L.

Furthermore we denote the various spatial derivatives of U as follows

Bie = giont: (2:5)

Writing (-, -) for quadratic covariation, we have
(AW (t,y), AW/ (t,y)) = Cjdt, (2.6)

where, C]’f can be obtained by taking the partial derivatives of the covariance func-
tion C' (cf [1]). In our case, because of the specific choice of the covariance function
n (2.3), Ci} is given by

ik _ 12 isi _ sisk _ sisk
le = m[(n + 1)5]45{ - 5j5l - 5[(5]-]. (27)
In [6] and [20] isotropic and volume preserving flows are characterised in terms of

the vector field U and the corresponding covariance function C.

A vector field {U(t,x) : t € RT, € R"} defined on the Euclidean space R™, is
called an isotropic vector field if for 7, a translation by y € R™, T,U(t,T_,x) and
U(t,x) have the same law, and moreover for R, an n-dimensional unitary matrix,
RU(t, R~'z) and U(t, x) are identical in law. A stochastic flow ®; is called isotropic
if its corresponding vector field is isotropic. For Gaussian vector fields the conditions
stated above boil down to the following condition on the spatial covariance function
C,
C(z) = G*C(Gx)G,



for any real orthogonal matrix G.

Subsequently, a necessary and sufficient condition for isotropy, in the case of Gaus-
sian vector fields, is that the partial derivatives of the covariance function at zero

have the form
Cif = a 6,6] +b 8:6] + ¢ 6,65,
where a + ¢, a — ¢, a + ¢ + nb are nonnegative. Moreover, a flow ®, is said to be

volume preserving if and only if
divU => W/ =0,

almost surely, or, equivalently, if

E(Y W) =0.

Hence it follows that the covariance function determined by (2.7) is that of an

isotropic and volume preserving stochastic flow.

The particular choice of the covariance functions in (2.3), made also by Cranston
and LeJan [12], simplifies many of the computations to follow, as certain It6 correc-
tion terms disappear. The computations are still difficult but, under (2.3), become

feasible.

Furthermore, under the above assumpions, we have

for any 1 <4,7,k,p,q <n and

31t4
n(n+2)(n+4)

((dB(u, u),v), (dB(u,u),v)) = [(n + 3)[Jul *[v[* — 4{u, v)?[|ul*]dt,
for all vectors u,v € R".

Throughout the remainder of this thesis we shall assume, without further comment,

that the covariance function corresponding to U is determined by (2.3) and (2.7).

2.2 Tensors

Before we can turn to the geometry of the flow, which is of central importance for

us, we need to recall some terms from tensor analysis.
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A k-covariant, l-contravariant tensor T, is defined as a multilinear map,

T:V'X-o - xV*xV x---xV =R,

Vv Vv
[ copies k copies

where V' is a finite dimensional vector space and V* is the dual of V. Writing (k, [)-
tensors for k-covariant and [-contravariant tensors,we denote 7;*(V) as the collection
of all (k,)-tensors defined on V.

Let S € 7f(V) and T € 7. Then their tensor product
ST :Vx---xV =R
————
(k+1) copies

is defined as

(ST Xy, ., Xpt) = S( X1y, X)) T (Xgegs -+, X))

Clearly, (S ® T) € 7™, An illuminating example of a 3-covariant tensor is the
determinant of the corresponding vectors. This example also serves as an example
of an alternating tensor, in the sense that interchanging any of the arguments results
in a change in the sign of the determinant. More precisely, an alternating tensor
of order k is defined as a covariant k-tensor 71" on a finite dimensional vector space

with the property that
T(Xoys..o, X)) = (—1)T(Xy, ..., Xy), YoeS(k),

where S(k) is the symmetric group of permutations of k letters and (—1)7 denotes
the sign of the permutation ¢. Similarly we define a symmetric tensor of order k as

a covariant k-tensor 71" on a finite dimensional vector space with the property that

T(Xp,... Xo) =T(X1,...,X3), Vo€ S(k).

For k > 0, we denote by A¥(V) (respectively, Sym(ZF(V))) the set of all alter-
nating (symmetric) covariant k-tensors. We can also define a natural projection
A:THV) — AR(V), by

(AT (X1, X)) == Y ()T (Xoqy, - - - Xo)-

11



This definition helps in defining a crucial operation in tensor calculus, the wedge
product of alternating tensors, which is given by

(k + 1!
k1!

alf= Ala® [).

Since o € A*(V) and 3 € AY(V), it follows that a A 3 € AF(V).

Writing A™"(V') for the linear span of the image of A™(V) x A™(V) under the
operation ®, define A*(V) @ A*(V) = &5, _oA™™(V). Then we can also define a

m,n=0

double wedge product for v € A™"(V') and 6 € AP9(V') by

(7 - ) ((u, -y tmgp); (01, Vngg)) =

! S O (o ton), (O )

—
m:nipq:
oeS(m+p), peS(n+q)

X O((Uoyysys s Uors)s (Uppars -5 Uppgy )]
so that (y-60) € A"TPrta(V),

These constructions will turn out to be crucial for the tube formulae that we shall

meet later.

2.3 Riemannian manifolds

We let M be an (n — 1)-dimensional compact C? manifold embedded in R". We
write T, M for the tangent space at point v € M and T'(M) = | |, ToM for the
tangent bundle. In general, a (smooth) k-dimensional vector bundle is a pair of
smooth manifolds £ and M, together with a surjective map m : E — M, such that

the following conditions are satisfied.

e Fis ((n—1)+ k) dimensional smooth manifold.

o 7 !(z), for each x € M, called the fiber of E over w, is endowed with the

structure of a vector space.

e For every x € M, there exists a neighborhood U of x and a diffeomorphism
¢ : 7 Y(U) — U xR such that m (p(7~1(U))) = U, where m, is the projection

onto the first factor.

12



e Finally, the restriction of ¢ to each fiber, v : 77(z) — {z} x R* is a linear

isomorphism.

Another related concept, a smooth section is defined as a smooth map o : M — E

such that, m o 0 = Id,;, where Id), is the identity map on M.

Going back to the previous section, recall that we defined all tensorial objects with
respect to a vector space V. We now move this to the context of manifolds so that
we can make use of tensor analysis in the setup of Riemannian manifolds. Writing
T, M for V', we replicate all the definitions of the previous section. Then we define
the bundle of (k,1)-tensors T*M on M as

M = | | THTM)

xeM

where | | denotes the disjoint union. Similarly, the bundle of k-forms is

AM = | | AT, M).

zeM

We also assume that M is a Riemannian manifold equipped with a Riemannian
metric. Formally, a Riemannian metric g on a smooth manifold M is a smooth
section of Sym(ZZ(M)), such that for each x € M, g, is positive definite (i.e.,
9:(X, X)>0if0# X € T, M).

Loosely speaking a Riemannian metric determines an inner product on each tangent
space T, M. Therefore, we shall write g,(X,Y) = (X,Y), a natural choice for
inner products. Enigmatic as it may appear now, this choice of notation is actually
very natural. Nevertheless, it is important to remember the dependence of the

Riemannian metric on the position in the manifold.

Now we shall move on to an extremely crucial concept in differential geometry, that
of differentiating vector fields and the notion of a connection. Writing £(M) for the
space of smooth sections of E (from the definition of vector bundle), and 7 (M) for

the space of all the vector fields, a canonical connection in E is defined as a map
V:T(M)xEM)— EM),

written (X,Y') — VxY, satisfying the following properties:

13



e VY is linear over C*°(M) in X, i.e.,

valJrngY = va1Y + gVX2Y for f7g S COO(M)

e VY is linear over Rin Y i.e.,

Vx(aYy +bY3) = aVxY; +bVxY, fora,beR.

e V satisfies product rule, i.e.,
Vx(fY) = [VxY + (X[)Y for f € C*(M),

where X f is interpreted as the derivative of f in the direction X.

VxY is also called the covariant derivative of Y in the direction of X. It is notewor-
thy that even if we choose X, Y as vector fields taking values in the tangent bundle,
the usual derivative of Y in the direction X need not lie in the tangent bundle.
However, by projecting the resultant derivative onto the tangent space we get the

linear connection which does lie in the tangent space.

As we did for M, we also define a connection on the ambient manifold R™. We write
V for the connection on the tangent bundle of M and V for the connection on the

ambient space R".

Furthermore it is natural to request that a connection satisfy the following properties
in addition to the ones already mentioned. Connections that do so are called Lev:

Civita connections.

e V is torsion free, i.e., VxY — Vy X — [X,Y] = 0, where [X,Y]f = (XY)f —
(YX)f, is the Lie bracket.

e V is compatible with the metric (-,-), i.e., X(Y, Z) = (VxY, Z) + (Y, Vx Z).

All the machinery developed so far goes into defining one of the central aspects of

Riemannian geometry, curvature. The Riemannian curvature operator is defined as

R(X,Y)=VxVy —VyVx — Vixy,

14



where X,Y are vector fields taking values in the tangent bundle of the manifold.

The Riemannian curvature tensor is defined as

R(X,)Y,Z W) = (VxVyZ -VyVxZ —-VixyvZ, W)
= (R(X,Y)Z, W),

where (-, -) is the Riemannian metric.

Another important tool often used in differential geometry is the (scalar) second

fundamental form, defined as

S/(X,Y) = ((I-MVxY,v)
= (VxY = VxY,v), (2.8)

where II : T,R" — T,M is orthogonal projection onto the tangent space of the
manifold, v is the unit normal vector field on the manifold and X,Y are vector

fields taking values in the tangent bundle. Writing
S(X,Y) = (I -1)VyY,

called the second fundamental form, we get
S,X,Y)=(S(X,Y),v).

It follows from the definition of the second fundamental form that S(X,Y’) is or-
thogonal to the tangent space T, M for each x € M.

Remark 2.3.1 [n the definition (2.8) of the scalar second fundamental form, we use
the fact that [VyY = VxY, without any explanation. Though it is not immediately
apparent from the definition of a connection, note that connections depend on the
underlying Riemannian metric. Some computations, together with the above fact,
imply H%XY = VY. We direct interested readers to [22] for complete computations

and explanations.

Remark 2.3.2 Despite its name, the (scalar) second fundamental form should not
be confused with a differential form. It derives its name from the fact that it is a

bilinear form.

15



We can use the (scalar) second fundamental form to induce a linear operator S®*)
on the exterior algebra A¥(T,M) for k < (n — 1). This is done as follows. Define
SW as X — (S(X,-),v) = S,(X,-). This satisfies the condition of a linear operator
on AY(T,M). Then define S as

Su(ua(j)a Uj)7

Sl(/k)(ul/\/\uk, U1A~~-/\Uk): Z(_l)a
j=1

k
€Sy, j=

where Sy is the collection of all k-permutations o, and as earlier, we use (—1)7 for
the sign of the permutation. This gives rise to a linear operator u; A ... A up —
S®) (uy A ... Ay, -), where uy, ..., u,_1 € T, M is a basis of T, M.

The last, and the most important, remaining definition is that of the trace of S,

For this, however, we need some more notations. Define the index set I by
Ik:{ﬁie{l,,n—l}k my <mo < --- <mk},
for 1 <k <(n-1).

Then, for le I}, define

[

ap=uy N A, (2.9)

O{l:(—1)|l|+kU1/\"'/\al1/\"'/\ﬁ'lk/\”'/\UN—h

and

a=uy N NUp_1,

where uq, ..., u,_1 is, as defined earlier, a basis of T, M and a vector labeled by a *

is understood to be omitted from the wedge product. Now, for ij € Iy, define
(ap, aum) = det((ug,, um,)), (2.10)

and, similarly, define
| = det({ui, uy)).

Now we are well armed, with all the tools required, to define the all important 7'rS®)

as

-

Trs® = sO (g, am)ial, ™) al| 2,

16



where the Einstein summation convention is used over the indices l_;ﬁ’i € I.. An
interesting and quite useful property of the trace, which we shall use later, is that

TrS™ is independent of the choice of basis.

We shall now explain why 7S® is important in the study of manifolds. As earlier,
we write v for the unit normal vector field in M. Then for x € M, and v, the unit
normal vector field on the manifold M, the shape operator Sy ,(-) of M is defined
as a map,

Seu TeM — T, M

such that,
S:,(Y) = ~Vyr,

where Y € T, M. A simple calculation shows that the shape operator is a linear
operator on the tangent space of M at x. An extremely important property of the

shape operator is that

(S3(X),Y) = —(Vx1,Y)
= (1, VxY)
= (,(I —T)VxY)+ (1, VxY)
—
= (S(X,Y),v)
= S,(X,Y),

where X,Y are the vector fields taking values in the tangent bundle and the un-
derbraced part is zero as VxY lies in the tangent bundle, by definition, hence its
inner product with v vanishes. This observation is a consequence of what is known
as the Weingarten equation. So we observe that the second fundamental form can

be retrieved from the shape operator.

Being a linear operator on the tangent bundle of the manifold, the shape operator
has eigenvalues and eigenvectors. The eigenvalues of the shape operator {)\k}Z;i
are called the principal curvatures and the corresponding eigenvectors are called the

principal curvature directions.

Writing uy,...,u,_q for the principal curvature directions at a point x € M and

A1, ..., Ap—1 for the corresponding principal curvatures, we find S (u;) = \ju; and,

17



by using the property of the shape operator mentioned above we conclude that

(S(uj,v),v) = Nj(uy,v).

Now making use of the fact that the principal curvature direction vectors are or-
thogonal we find that,

S(k)(&f, Ozf) = )\11 c. )\lk'
Since TrS™ is independent of the choice of the basis, we can, and so shall, evaluate

it for the principal curvature direction vectors. Therefore, we observe that

TrS™ =3 "N, 2 P A,
felk
which is the k-th symmetric polynomial of the principal curvatures for 1 < k <
(n—1). Observe that the first symmetric polynomial is the mean curvature and the

last symmetric polynomial is the Gaussian curvature.

In the following section we shall see an example of why symmetric k-polynomials of

the principal curvatures are very important in differential geometry.

2.4 Tube formula and Lipschitz-Killing curvatures

Perhaps surprisingly, the problem of finding the volume of the tube around a man-
ifold, when the manifold is inflated by some amount, has its roots in statistics. In
stochastic processes, the tube formula is used to evaluate the maximal distributions
of Gaussian processes (cf [1]). The tube formula is credited to Hotelling ([19]) and
Weyl ([41]). This celebrated result gives the volume of the tube around a manifold
in terms of geometric invariants of the manifold itself. More precisely, if M is an
(n — 1)-dimensional smooth manifold embedded in R™ and endowed with the canon-
ical Riemannian structure on R", then we shall define the tube of radius p around
M as
Tube(M, p) ={x € R": d(z, M) < p},

where

(e, M) = inf o~ y].
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Writing p(T'ube(M, p)) for the volume of the tube, Weyl’s tube formula states that
there exists a p. > 0, known as the critical radius, such that for p < p., the volume

of the tube is given by
Vol(Tube(M, p)) Zp” Wi Li(M), (2.11)

where w; is the volume of the i-dimensional unit ball and £;(M) denotes the i"-

Lipschitz-Killing curvature.

It is shown in [1] that the volume of the tube can be explicitly calculated by using
the tools we have seen in the previous sub-sections and a little more. Consequently,
given this calculation and then comparing coefficients of p' on both the sides of

(2.11), one can obtain precise expression for Lipschitz-Killing curvatures £;(M).

In particular, it follows that the Lipschitz-Killing curvatures of a smooth (n — 1)-

dimensional hypersurface M embedded in R"™ can be written as

En—k—l( = Knk/ / TT’ S,Sk
S(R)

X1y, v (=) Ho(dv)Hp,—1(dx),

where, K, = (%)(,}H)/QF((":;I)), Hy(dz) is the k-dimensional Hausdorff measure,

and N,M is the normal cone to the manifold M at point x. Loosely speaking, a
normal cone N, M for x € M, a smooth manifold, is the vector space generated by
the set of vectors normal to the tangent space. If the codimension of the manifold M
is 1, then it is easy to see that the normal cone N, M comprises of two unit vectors

pointing in opposite directions, which are orthogonal to the tangent space T, M.
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Chapter 3

Geometry of the flow

In the previous chapter we developed the background required for the geometric
analysis of stochastic flows. In this chapter we shall review and rederive some results
due to Cranston and Le Jan in [12] concerning the evolution of the scalar second
fundamental form S,, the induced k-form S% and finally the trace of the induced
k-form. Essentially all the results we give here, together with their proofs, can be
found in [12]. Nevertheless we collect them here, sometimes with additional details,

since they are needed for what follows in Chapter 4, where we present new results.

Before we start proving theorems, we need some notations which are basically ex-
tensions of what we have already seen in previous chapter. Recall that we assumed
M to be an (n — 1)-dimensional manifold embedded in R™ and we have defined a
stochastic flow with its covariance function in Chapter 2. The special choice of the

covariance function made the stochastic flow volume preserving and isotropic.

We define M; as {®;(z) : € M} or equivalently ®,(M) and T, M; as the tangent
space of M, at x; and write uy, ..., u, 1 for a basis of T,M, and wuy(t), ..., u,_1(t)

for a basis of T, M;. At this point we require no connection between the u; and
u;(t).

Here is a quick overview of some of the geometric objects redefined for M;:

e The orthogonal projection onto the tangent space is written as

Ht : TxtRn — TxtMt- (31)
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e The second fundamental form for M, is denoted by

Se(u(t), v(t)) = (I = 1) Vg (v(1), (3.2)

and the scalar second fundamental form is given by

Su (u(t), v(t)) = (Si(u(t), v(t)), v1), (3-3)
where u(t),v(t) € T,,M; and v, is a unit normal vector field of M,.

e Finally, the k-form S,(,f) induced by the second fundamental form is given by,

k

S (0(8) A+ Av(t),wi(®) A= Awe() = Y (1) T T S (vt (1), w; (1)),

0€ESy j=1

(3.4)
where (—1)7 is as defined earlier, v;(t), w;(t) € Ty, M;, and Sy is the collection

of all k-permutations.

We know the exact expression for the Lipschitz-Killing curvatures for M, now we
shall define them for the moved manifold M;. There is no change, whatsoever, in
the definition of the Lipschitz-Killing curvatures, but the constituent terms change

with the flow.

Lop-1(M) = Kn,k:/ / TTT”Mt(SIEf))
M JS®)

X 1Ntht (_Vt)HO(th)Hn—l(dxt)

Although it is natural that the exterior integral here is over M;, it will be convenient

for us to have the integral over the original manifold M, which we can obtain via a
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standard change of variables formula to be

£n—k—1<Mt) = Knk// Ty Toy @) Pt (M \/det UZ U] )>)
S(R)
X 1n,, a, (— Vi Ho(dut)Hn 1(dx)

x1NHMt( )H (dz/t) _(dz). (3.5)

Now we are in a position to develop some results for isotropic and volume preserving
stochastic flows which we shall, in the following chapter, apply towards realising our

main goal, that of finding an It6 formula for Lipschitz-Killing curvatures.

3.1 1Ito formula for the second fundamental form

Clearly, it follows from (2.1) that,
dD®,(z) = OW (z) D®y(z), (3.6)

where we remind the reader that 0 denotes the Stratonovich interpretation of a
stochastic derivative, D is the space derivative as mentioned earlier while defining
stochastic flows in Section 2.1 and, finally, d denotes the Ito interpretation of a
stochastic derivative. It is important to note that D®,(x) is a full rank matrix and,

hence, is invertible due to the diffeomorphic nature of the flow ®,(x).

Assuming u € T, M, we define

u(t) = D®y(z)u.

Then by a simple calculation of the push-forward (see [23] for complete computa-

tions), it follows that u(t) € T,, M; and moreover,

du(t) = OWu(t) = dWu(t). (3.7)
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The correction term in the above expression is %deWut, which vanishes due to
the choice of the covariance function in (2.3) and (2.7). Furthermore, if we choose
{uy, ..., u,—1} as the basis for T, M, then it follows that {u(t),...,u,_1(t)} forms
a basis for T,, M; by a simple application of the push-forward.

Recalling that we are using V for the canonical connection on Euclidean space, we

have the following result.

Lemma 3.1.1 Let u,v be vectors belonging to T,M and set u(t) = D®y(x)u,
v(t) = D®y(x)v. Then, u(t),v(t) € Ty,,M; and

AV (0(8)) = OW V0 (0(8)) + DB(u(t), v(1).

Proof: Let u,v € T, M. Extend v to a smooth vector field V' in a neighbourhood
of x € M from which it follows that Vi(z;) = v(t). Set

Vi(y) = (D2)(®; " ())V (2, (1)),

where y € M;, which implies ®, !(y) € M and hence V(®; '(y)) is well defined. Now
denote Z; = 6u(t)Vt(xt), then take v to be a curve taking values on the manifold
M, with v(0) = z, 7' (0) = u, thereafter, define ~,(-) = ®,(7(-)), so that 7,(0) =
D®,(7(0))7'(0) = D®y(2)u = u(t). Then,

Vu)Vi = EL%S "V ((s)) = Vi(n(0)))
= lim s~ (DPy(v(s))V(4(s)) = DPi(2)v)
= lim s~ [(DP(v(s)) — D (2))V (7(s))
+ D®y(x)(V(7(s)) —v)]
= D?®,(z)(u,v) + D®,(z)V,v

However, by (3.6),
dD®,(zx) = OW DD, ()

and
dD?*®,(x)(u,v) = OB(D®(s)u, DP(x)v) + OW D?*®,(x)(u, v).
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Therefore,

dZ, = dD*®,(x)(u,v) + dD®(x)V v

OB(D®,(s)u, D®,(x)v) + OW D*®,(z)(u, v) + OW DDy (x)V v
= OB(u(t),v(t)) + OWD*®,(x)(u,v) + OW (Z, — D*®,(z)(u,v))
OB(u(t),v(t)) + OW Z,

which proves the lemma. O

From here on we shall always assume u(t) to be given by u(t) = D®(x)u, where

u € T, M, unless mentioned otherwise.

Now recall, 11, : T,, R* — T,, M, was defined as the orthogonal projection in (3.1).
Hence we can write
Il = Y, (Yy'Yy) 'Y/,

where Y; = (uy(t),...,u,—1(t)), is an n x (n — 1) matrix generated by the basis
{u;(t)}= of T,,M; and Y/ is the transpose of Y;. Considering II; as a matrix, we
have the following It6 formula for the orthogonal projection, describing the evolution

of II, as a function of time t.

Lemma 3.1.2
dHt — (I - Ht)aWHt —|— HﬁW’(I - Ht)

Proof: We have dY, = WY, or equivalently dY;, = Y;/OW’, where W’ denotes the

transpose of W. Using the simple product rule we get,

OYLY;) = Y/ OW'Y, + Y/ OWY, = Y (OW + oW")Y,. (3.8)

Since
VY)Yt =1,

where [ is the identity matrix, we have

DYV (YY) ] =0, (3.9)
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and so, again by the product rule, we obtain

(YY) (YY) ] = PV Y| (YY)~ + (YWY)o[(V/'Ye) ™). (3.10)

Using (3.9) and (3.10) we therefore have

YY) = —(V/'Y) oY Y (YY) T

Hence,
dHt - 0Ht
= WY, (YY) Y + Y (VY)Y oW + Y, 0(Y Y)Y
— OWTL, + LW’ — Y (YY) oYY (VYe) Yy
= OWII; + ILOW' — I, (OW' + OW)II,
- (I - Ht)aWHt + H,ﬁW’(I - Ht)a
which is what we wanted to prove. O

Now we define dP;, dQ;, d)\, du; as follows:
(I —I)oW = (I —I1,)dW + d\, = dP, + d),
ILOW' = T, dW' + dpy = dQy + dyus.
Then,
dll; = dPI1L; + dM\I1 + dQy(I — 1) + dpe (1 — 11,), (3.11)

where the correction terms indicated by A, y; are expressed as
2d>\t — d(] - Ht>dW,

and
Qdﬂt = dthW,

Following the expression of the second fundamental form in (3.2), we can rewrite it

as

Si(u(t), v(t)) = Vg (0(t)) = TV (0(t) = Vu (v(t) = R,
and it follows that R, € T}, M,.
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Theorem 3.1.1 The Ito formula for the second fundamental form is given by

dS(u(t),v(t)) = (I —1)dB(u(t),v(t)) + (dPtl— dQy)Se(u(t), v(t))
+ d(Ae — 1) Si (u(t), v(t)) + §(dpt — dQy)?Si(u(t), v(t)),

where u(t),v(t) € T,,M; and furthermore v(t) is extended to a vector field in a

similar way as in Lemma 3.1.1.

Proof:

=

dS(u(t),v(t) = (I —T1)V,uuo(t) — (
= (I = )dB(u(t), v(t)) + (I = T)OW Vyyo(t) — (A1) Vayo(t)
= (I —T0,)dB(ut), v(t)) + (I = TL)OWS,(u(t), v(t))

+ (I = TL)OW R, — (911;) R, —(911,) Sy (u(t), v(1))

~~
=0

= (I —1I;)dB(u(t),v(t)
— (O11) Sy (u(t), v (1))

= ([ —IL)dB(u(t),v(t)) + (I — IL;)OW S (u(t),v(t))
— ILOW' Sy (u(t), v(t)),

OIL,) Vyu(t)

)+ (I = ;) OW Sy (u(t), v(t))

where the underbraced part equals zero as a consequence of Lemma 3.1.2.

Replacing the Stratonovich derivative by the Ito6 derivative, which is done by intro-
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ducing a correction term, we obtain

dSy(u(t), v(t)) = (I —TIL)dB(u(t),v(t)) + (I — L)OWS,(u(t), v(t)) — ILAW'S,(u(t), v
= (IIHQd (u(t), v(t)) + (I = ) dW Sy (u(t), v(t))
+5ld( = )dWS(u(t), v(t) + (I — TL)dWdS(u(t), v(t))]

— AW Sy (u(t), v(t)) — [dthW’St(u(t), (b)) + ILdW'dS, (u(t), v(t))]
)

= (I = I)dB(u(t),v(t)) + (I — T01)dW Sy (u(t), v(t)
+ ANS(ut), v(t)) + = (I — TL)dWdS, (u(t), v(t))

L\Dlr—t

— LA u(t) (1)) — (), () —
= (I —IL)dB(u(t), v(t)) + (AP, — dQ,)S:(u(?),
+ 3PS (u(t), v(t)) — dQudS (u(t), (1))
= (1~ T)AB(u(t), o(H) + (0P, — dQ)S,(ul), v(1)
+ (AN — ) S ((t),v(0)) + (AP, — QU Si(ut) (1),

% (AW dS, (u(t), o(t))

which is what had to be proved. a

The above expression involves correction terms which can be simplified by a specific

choice of an orthonormal basis of 7, R".

Lemma 3.1.3 If (; € N,, M, is a semi-martingale, then

NG = gn(nz‘;g , (3.12)
aug = O ;;()fl”:m””@dt, (3.13)
1 2 - n( )
5P = dQuG = mgdt (3.14)

Proof: Using the earlier definitions and Theorem 3.1.2,

2y, = dIL,dW' = (I — IL)dWILAW’ + IL,dW' (I — II,)dW".
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Let’s choose an orthonormal basis {ey,...,e,} for T,, R" such that e, € N,,M,.
Then clearly,

n—1

/

= E €€,
i=1

(I —TI) = eqe,.
Therefore,

2dNG = —(I = ) dWILdW ¢ — 1L dW' (1 — I1,)dW ¢
= — Z enen dWeie dW ¢,
i=1
n—1
=) eie/dW'ene,dW ¢,

=1

= Z (dW?  dW™),

= - Z C;?Ctdt
i=1

(n —1)pe

i) it

Here we have used the fact that (dW/,dW) =0, 1 <i < (n—1) (from (2.6) and

(2.7)). Similarly we obtain the other two expressions. O

A trivial consequence of the above lemma is the following.

Corollary 3.1.1

dSy(u(t),v(t)) = (I —L)dB(u,v)+ (dP; — dQy)S:(u(t), v(t))

(n—1)pe
— —=5(u(t),v(t))dt. 3.15
nT2) t(u(t), v(t)) (3.15)
Proof: Apply the results of Lemma 3.1.3 to Theorem 3.1.1. O

We now choose a particularly convenient basis to work with. In particular, let

(u1,...,u,) be an orthonormal basis of T,R"™ such that the first (n — 1) vectors

28



form a basis of T, M. Then, as we saw earlier, {uy(¢), ..., u,_1(t)} forms a basis for
T.,M;. Clearly this new set of vectors need not remain orthonormal, hence wu,,(t)

need not belong to N, M;. Therefore we define a unit normal vector

(3.16)

Theorem 3.1.2 With the above choice of the {u;}, let v, be the unit normal vector
field for My determined by (3.16). Then the Ito formula for v, is given by:

2
—1
<n )ILLQ I/tdt.

dl/t = _thVt — —2n(n I 2)

Proof: Let v,(t) = (I — I;)u,(t), so that v, = v,(¢)||lva.(¢)||7'. We now start
developing expressions that we shall need to compute the It6 formula for ;. The

first is

dop(t) = (d(I —1L;))u,(t) + (I — ;) duy,(t)
= —(dITy)un,(t) + (I — I1;)OWu,(t)
= —(I — ;) OW L, (t) — TLOW' (I — 1) u, (t) + (I — ;) OW u,(t)

= (I —T0)OW (v, (t) — up(t)) — TLOW v, (t) + (I — T1,)0W u,(t)

= (I —)0Wo,(t) — (I —II;)0Wu,(t) — ILOW v, (t) + (I — I1,) OW u, (1)
= (I —1IL)0Wu,(t) — TLOW v,(t)

= (I —IL)dWu,(t) + 2d(I — IL,)dWv,(t) + (I — IL,) dW dv,(t)

— ILdW v, (t) — dIL,dW’ — LIL,dW'dv,(t)
= (dP;, — dQ:)va(t) + (d\¢ — dpe)va(t) + (dP, — dQy) v, (t)

(AP, — dQu)un(t) — %umdt.
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[to’s formula gives us the second as

dllon®* = 2{va(t), dva(t)) + ((dP, — dQi)vn(t))

= 2un(t), (AP, — dQ)un(t)) — 2N Dz

"2 v () ||2dt

n—1
+ (AW v, (t) Z eidW (v, (1), en))
=1

- W%(W%W“—%& >&n J(OIPdt

n—1

+ AW AW ||lua () ||? + Z AW AW (0, (1), e)?

_ 2 n 2(n — )H2 2
= 2[jua(t)"dWy; nr2) [[on(2) " dt

(n—1)us 5 (n+1) ,ug 9
dt dt
o e 0 +§j ()

(n—1)(n 2)uz

- 9 2 n _
o0 Pary - =0

[lvn ()|t

Finally, the third is given by

d(([loa(8)]*)~7?)
(=Ddllva®* 3, d{[loa(®)]*)

= S T @ e

TR L G L ) TR R

2n(n + 2)
Q) o]

= —loa@®l " aWy +

dljon ()]

(n = 1)(n+ Dy

on(n +2) [[on (8|~ dt.
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Hence, amalgamating the last three calculations, we find

L Un(t)
= A o
- ||Cii"<(tt>)|| + 0 (O)df[on(®) 7 + (don (), dlva O] )
= (@R = dQoen(t) — L ) o, (0] 4 v () (= ()]

(n+2)

(n—1)(n+ 1)z v, (0)]| 72 dt) — ((dP; — dQy)vn(t), ||un ()] 1 dW ™)

2n(n + 2)
—1)? 1
Y Gl o L B PR Ul L S
2n(n + 2) n(n + 2)
(n* — Dpo
= —d ——— "y dt
Qi 2n(n I 2) Vi at,
which proves the theorem. O

Now we are well equipped to compute the Ito formula for the scalar second funda-

mental form.
Theorem 3.1.3 Let u(t) = D®u and v(t) = D®w, for u,v € T,M, and v; be the
unit normal vector field (3.16). Then,
A5y, (u(t),v(t)) = (dB(u(t),v(t)), vs) + Sy, (u(t), v(t))dW;!
(n —1)%us
o+ 2) Sy, (u(t),v(t))dt.

Proof: From (3.15) we know that

dSi(u(t),v(t)) = (I —1)dB(u(t),v(t)) + (dP; — dQy)St(u(t), v(t))

(n—1)ps
— mst(u(t),v(t))dt.
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Using (2.6) and (2.7), we note that

—((dF; — dQu)Si(u(t),v(t)), dQur) = (dQ:Si(u(t),v(?)), dQsvy)

n—1

= (Su(u(t), v(t),v1) Y AW dW;

i=1

= S u(t) o(6) Y

_ (= Dps
= ) Slult) v(O)d

Now, using the relation (3.3) and standard bivariate [t6 formula, we obtain
dSy,(u(t),v(t)) = (dSi(u(t),v(t)),v) + (Se(u(t),v(t)), dvy) + (dSi(u(t),v(t)), dvy)
= (dB(u(t),v(t)),vr) + ((dP; — dQ:) Sy (u(t), v(t)), v1)
(

n—1)us
nt2) (Si(u(t), v(t)), viydt = (Si(u(t), v(t)), dQsvi)

— (S). o)1) G (AP, = QS (ult) (0). dQuvs)

= (dB(u(t),v(t), ) + (AW S, (u(t), v(t))

=3 WS ult), o(0), e0)), )

(n = Dp (n* = Dpo
BCES) Sy, (u(t), v(t))dt — on(n 1 2) Sy, (u(t), v(t))dt
(n® — 1)ps
) Selu®, o (0)d
= {(dB(u(t), v(t)), vi) + Sy (u(t), v(t)) AW, — (27:1(_712 5)2 Sy, (u(t), v(t))dt,
which completes the proof. O

Note that essentially the same proof gives the quadratic covariation terms.

Corollary 3.1.2 With the notation of the above theorem,

(dSy, (ui(t), u;(8)), dSy, (u(t), w(t))) = (dB(ui(t), u;(t)), ve), (dB(ux(t), w(t)), vi))

(n—1)ps
ot 2 (w1 5 (0) i (s (1), ()t

where w;(t) = D®u; € Ty, M.
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With this we end the preliminaries required for the next chapter, where we shall

prove the main result of Part I of the thesis.
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Chapter 4

Main result: Itdo formula for the
Lipschitz-Killing curvatures.

In Chapters 2 and 3 we developed the foundation on which we build our main
result. However, before getting to this we shall present one more result each from
[12] and [20]. Although these results are related to those of Chapter 3, they are
presented in this chapter due to their importance for our main result, which appears
in Theorem 4.1.4. Some direct consequences of our main result are listed as a remark

and a corollary, immediately following Theorem 4.1.4.

4.1 Ito formula

We shall go back to [12] and [20], to prove the last two results necessary for our
main result. For this, we retain the notation of Chapters 2 and 3, and start with
{uy(t),...,up—1(t)}, a basis of T, My, and in the spirit of Section 2.3, define

ap(t) = (=1 u (8) A - Ay, () A= A, (8), (4.1)
for1 <k < (n—l),wherefe I, l;e]k,l and 1 <p <k.
Rewriting the above expression as

ap (t) = (=P uP (@) A A? (1), (4.2)

P

defines u”.

We can now formulate the following result.
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Theorem 4.1.1 The Ito formula for the k-form S,Ef), induced by the second funda-

mental form as in (3.4), is given by

ST (a(t), o (t Z S (e (), cu, (£))(dB (g, (£), um, (), v2)
+ kSW (ag(t), s () AW — k(n — k)(n — i S® (ar(t), s (t))dt

2n(n + 2)

where o {(t) = uy, (t) A -+ ANy, and oy (t) is defined similarly.

Proof: Using Theorem 3.1.3, Corollary 3.1.2, and the multivariate It6 formula we

see that

k k
dSP (ai(t), am(t)) = Z(—l)"z H o () (8) i, () AB () (1), i, (1)), 1)
o€Sy i=1 j=1,5
k(n —1)° ,U2
2n(n+2)

* % Z (_1)0 Z [ H Sz/t (ulo-(j) (t)7 umj (t))]
€Sy 1<i##p<k j=1,j#{i,p}
(dB™(ur, ;) (1), um, (), dB"™ (ur, ,, (1), U, ()))
k(k —1)(n

— Dpa k)
T 2t 2) St (oqft), (1)) dt.

+ks£f><aﬂt>,am<t>>dws - S (ag{t), (1))t

The fourth term of the sum vanishes as, for each o € S, there exists exactly one
n € Sk such that, {o(i),o(p)} = {n(é),n(p)} and o(j) = n(j) for j ¢ {i,p} and
(1) = —(-1)"

We simplify the first term as follows.

Z Yo DT Sty (), i, () HAB (wr, (1), i, (1)), v2)

i,p=1 0€Sy,0(i)=p j=1,5#1i
k
= > 1D (=nr(=1) H Sv,(u ule) (D)YAB (g, (t), i, (1)), v2)
i,p=1 €S _1 j=1,j#i
= Z S5 (e (1), v, (1) (@B, (£), i, (1)) 14).
i,p=1
The third and the fifth terms combine to give the final expression. a
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Before we move further in realising our main goal of obtaining an It6 formula for
the Lipschitz-Killing curvatures, we recall some of the results and notations from Le

Jan [20], which are essential for a thorough comprehension of our main result.

Let 5(t) be an m-form written as G(t) = B1(t) A ... A Bn(t), and define
7 B(t) = ¢ Au(e)B(),
where o(e')3(t) = 325, (=DM (Bu(8), €) Bi(E)A- - - ABK(E) A+ - A B (1) and {5;(8) 17,

are vectors in T}, M; with {e*}7_, being the standard basis of R"™

Theorem 4.1.2 Let £(t) = u;, (1) A... Auw;, (t) and Y(t) = uj (E)A. .. Ay, (t), where
ug, (t) € T, My. Then,

dig), o) = Y (T, »(0) + (1), 7/ (1)))dW; (1)

where (-,-) is as defined in (2.10).

Proof: We know from (3.7) that du,;(t) = dWwu,(t). Then using the product rule of

differentiation,

k
dy(t) = Z wi, () Ao Adug, (t) A .. A, (t) + correction
j=1

n—1
= Z wiy () Ao A {Z epduy, (1)} A ... A, (t) + correction
J p=1

= Z uiy () AN ey Ao A, (t)dug (t) + correction
Jp

= Z wi, ()N ON ey AN uzk(t){z dVleuéj (t)} + correction
Jp =1

jth

= Z Z(—l)jﬂuij (t)ep Nug (E) Ao AN, (E) A ... A g, (t)dWP + correction
J pl

= Z ep N u(e)(t)dW) + correction
p, 1

= Z 77 (t)dW} + correction.

Dyl
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Using (2.6) and (2.7) the corresponding correction term is given by

2(correction) = Z T TR () Chdt
p,lg,m
S+ 1) — () — () L2
a’q pla 7’p n(n + 2)
P.q
In general,

T Td = (0]7TE — e, N eg Na(er)i(em))(t).
Exploiting the linearity of the wedge product we restrict our attention to ¢ (t) of the
form e;; A ... Ae; and find that

(n+ Dk —k? — (n—k — D)E)Y(t)padt
n(n +2)

2(correction) =

= 0.

Utilising the above results, we obtain the It6 formula for (£(¢),v(¢)).

d(€(t), (1)) = (d&(t), (1)) + (§(t), do(t)) + (d(t), du(t))
= D ((Te(®), 9(8) + () 7w (1)))aw]

+ ) (T(t), () Clhdt
= Z(Wf(t% W(t)) + (€(t), Tjb(t))) AW (t)
;chorrection.

o~

where the correction term can again be simplified by using the linearity of the wedge
product and hence by restricting ourselves to the wedge products of standard basis

vectors {eg}. Following this argument we observe

correction = ;((n + 1)(T]l-w(t),7]l-f(t)> — <7’ll¢(t),T]j () — <T]l-¢(t),njf(t)>)n(/;2—jlf2>

_ o edt o _— 2
= n(n+2>(( +Dk(n—k+1)— k> — k)
__Hedb o
= gy D=k 1) = k=)
k(n — k)podt

n
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Hence the required result. O

Applying the argument of (3.7) in (3.6), we write,

AD®,(z) = OW D®,(z) = dW D®,(x).

Now a simple application of Theorem 4.1.2 will give us the following result:

d|D@(x)| = > (rIB.e" N+ Aen)dW], (4.3)

ij=1

where 8 = A\i_, (D®;)? and (D®,)® denotes the ith column of the Jacobian matrix

Going back to the definition of Tij (1), we see that due to linearity of the inner
product and the wedge product, it suffices to simplify (4.3) using an orthonormal

basis {e*}7_,. Hence,
(TiB,€" N+ ey = 6;5]| DDy ().

Therefore, we can rewrite the It6 formula in (4.3) in a more comprehensible way as

d|[ D&, ()| = || D ()] Y _ dW.
=1

If we now assume the flow to be divergence free, then

i dW} =0, as.
i=1

Therefore, for a divergence free flow, the Jacobian D®,(z) is almost surely a con-

stant, which in our case is 1, as ||D®y(x)|| = 1 almost surely.

Note that it follows from this observation that divergence free property is equivalent
to the volume preserving characteristic of a flow. To see this, let M* be an n-
dimensional manifold with the ambient manifold being R" and M; = ®,(M*). For
example, take M* to be an open ball in R?. Then,

Vol(M?) = /

Mg

dxt:/ dx = Vol(M),
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which establishes equivalence between the divergence free and the volume preserving

properties.

In [20], Theorem 4.1.2 is a crucial step towards computing the Lyapounov exponents
of the flow. Another application of Theorem 4.1.2, needed for our main result, is

the following.

Corollary 4.1.1 Let a = uy(t) A -+ A up_1(t), where (uyi(t),...,up—1(t)) is any
basis of Ty, M;. Write ||a(t)|| = det((u;(t),u;(t))). Then

o)~ = @) (- E:mvz ]

Proof: Applying Theorem 4.1.2 to ||a(t)]|* we find

@) = |la(t) ( Zde Wdt)

Now using the standard It6 formula and the relations (2.6) and (2.7) we obtain
dla@®[I™" = d(la(®)]*)2

_ —ﬁﬂa ( ZdWl )det>
)
= ——||a )~ 1<ZdWZ )M2dt>

3(n —1)pe -1
—_— t dt
2Mn+%na>n
_ 1 i n— 1) M2
= lle®I” ( ZdW 2nn+2)dt>'
This proves the result. a
Now define,
Y®() = S5 (ai(t), () (' (), @™ () a(t)]| ", (4.4)
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where Einstein’s summation convention is used over the indices [ and m.

Finally, we compute the last ingredient necessary to obtain our main result. Al-
though the following result does not appear anywhere in the references but it can
simply be obtained as a consequence of Theorem 4.1.1, Theorem 4.1.2 and Corol-
lary 4.1.1.

Theorem 4.1.3

dy (1) = [il S e (1), (B (g, (1), 1w, (1), ) (0 (1), @™ (1)) la() |
+ YW () kW, — nz_l dW;]

+Sﬁf’(&#t),aﬁz(t))(Wo/(t) o™ (1)) + (o (6), 7@ ()W a(t)]| !

g

t, (4.5)

for 1 <k <n—1, where ait), a;(t) and all other terms are as defined earlier.

Proof: From Theorem 4.1.2 and Corollary 4.1.1 we have

— - — — - . -

da'(t),a™(t)) = ((Fa'(t),a'(t)) + (a!(t), 7/ a™()))dW]

+ (k + 1)(” —k— 1)M2 (Ozd(t), o/ﬁ(t))dt,

dla@®|™ o (=1
Tl = M S

=1

Recall that,

-

YW (#) = S50 (alt), am (t)) {0 (8), o (1)) ()|

40



Hence, by the multivariate It6 formula,

AYW(t) = (dSH (ag(t), am (D)) {a’(1). a™ (1) ()]
S tor(t) 0 (1)), 0" O]
wdla)] ™
TS e
(A (at), o (1)), dla
d|

+ (A5 (o), (1)), dllx

+ S (arft), (1)) (e (), @
— I+ I+ +IV+V+VI,

I
)(t)
(1), )™

(1), @™ (1))
O (1), o™

We shall simplify the above expression term by term.

The first term can be rewritten as a consequence of Theorem 4.1.1.

Z P s, () ) (A B (ur, (), wm, (1)), i) (@' (), & () [ (8) ]|~
k n bk —=FE)(n—Dus
+ kY ® () awn — i 12) Y8 (1) dt. (4.6)

Using Theorem 4.1.2 we obtain

— -
—

ZS('“ agft), am (1) (7o' (1), (1)) + (a'(t), 7/ @™ (£))) dWj|la(t) | !

i,7=1
E+1)(n—k—1
L (kD= k= Dy

- Y ") (1) dt. (4.7)

An application of Corollary 4.1.1 gives us that

I = —Y<k>(t)2dwg—%y<k>(t) dt. (4.8)

Other terms are simplified along the similar lines using Theorem 4.1.1, Theorem 4.1.2
and Corollary 4.1.1.
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IV = kS (o), am(t) Z (' (1), a™ () + (a'(t), 7/ @™ (t)) (AW}, dW;1) |a(t)]| !

= kSWlar®), an(®) Do (ral(),a™(®) + (o), o™ O la(®)|C dt

ko = oz ; - o
= o+ 2y 0 am(®) 32 (0,07 0) + @0, 70

[(n +1)8,07, — 0307 — 6,07 ][l (t)]| " it

n

= —n(slf ) S (at), (1)) ;(hﬁa (1), a™(1)) + (al(t), T (1))

[(n + 1)8,8, — ;0 — 0,0, ][lau(t)]| 7" dt
n(n + 2)

Y &) (1) dt. (4.9)

—_

n—

Vo= —kSP(ag(t), am(t) Y (W, dWi (ol (t), o™ (t))|la(t)]| " dt

1

2

= fj‘f 3550 (@(D) an(®) i@f(t), a™ () la(t)]| M (n + 1)0%8%, — 8iop — 865 dt

k(n — 1)
WY““) (t)d

t (4.10)

VI = —Sﬁf)(aﬂt%am(t})uz (Fad (1), ™ (1)) + (a(t), 7™ () AW, dWD) [l a(t)]| "
= ——n(nui 2)555)(0%15),0%@)) Z (/' (1), @™ () + (a'(t), 7™ (1)))
(0 15305 = 8102 — 8] (0]
2(n —k

_ — Do
= e Y® (t)dt. (4.11)

i=1,p=1

Adding the terms from (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), we get the re-

quired result. O

We now have everything we need to present the main new result of Part I.
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Theorem 4.1.4 Let M be a smooth (n — 1)-dimensional manifold embedded in R™
and My its image at time t under the stochastic, isotropic, and volume preserving
ﬂow &, described in Section 2.1. Let Ly be the Lipschitz-Killing curvatures defined

n (3.5), S be the induced kform defined in (3.4), where v, is the unit normal
vector field defined in (3.16), o! , ap be as defined in (2.9) and (4.2) respectively and

Y ) be as defined in (4.4). Furthermore, let WP and B}, defined in (2.4) and (2.5)
respectively, be the spatial derivatives of the vector field driving the flow. Then the

Ito formula for the Lipschitz-Killing curvatures is given by

Loy (M) = [Kox /M / SED (g (), (D) (t (2), i (), 1]

zpl

(1), a™ (&) [la(®)] !

n—1

+ YO (@) [kdWy = dW ()]

=1

3 5O agan) (a0, (1) + (o(0), 7o (D)W ()] )

% Iy, a1, (—12) Holdw) Hn_l(dxt)}

N (n—k—1)(n+1)(k+ 1)us
2n(n + 2)

Loo1 (M)t (4.12)

where Hy, is the k-dimensional Hausdorff measure and N, My is the normal cone to
Mt at Ty € Mt-

Proof: Using (3.5) and (4.4) we rewrite the Lipschitz-Killing curvatures as,

Loir(M) = Koy / / o S0, an®) 0,07 ) )]
X 1N Mt I/t)Ho(th)Hn 1(dl‘)

= Kn,k/ / Y(k)(t) X ]‘NxtMt(_Vt) Ho(th> Hn_l(dl')
M JS(R

Hence,

ALy 1 (M) = K, /M /S (Y™ () x 1n,, a1, (—11) Holdvr) Ho—1(da).

Now using Theorem 4.1.3 we obtain the desired result. a
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Remark 4.1.1 It is clear from the results obtained by Cranston and Le Jan [12]
and the expression obtained in the above Theorem 4.1.4, that the vector of Lipschitz-

Killing curvatures is not a diffusion due to the presence of the first term in (4.12).

An immediate consequence of the above theorem is an exact expression for the mean

of Lipschitz-Killing curvatures.

Corollary 4.1.2 Under the conditions of Theorem 4.1.4,

(4.13)

m—k—-1)(n+1)k+ 1)p2t>.

E(Lyk1(M)) = Lnp-1(M) exp ( 2n(n +2)

In particular, for k = (n — 1), we have E(Lo(M;)) = Lo(M), for all t, which is
what we expect, as Lo(M) is the Euler characteristic of M and so is invariant under

diffeomorphisms.

Proof: In (4.12), we note that except for the last term, the other terms are zero
mean martingales. Therefore, taking expectations of (4.12), after taking the integral
over time ¢, will yield

(n—k—1)(n+1)(k+1)us

E(Ln—r—1(My)) = 2n(n + 2)

/0 CB(Ly (M)

Solving this linear differential equation we obtain the required result. O
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Part 11

Fractional Brownian motion and
stochastic flows
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Chapter 5

Introduction and background

Continuing from where we left in the previous chapter, here we shall present some
similar results, but in a different setting, attempting to extend the results available
for the diffusive Brownian flow to non-diffusive flows. By non-diffusive flows, we
mean flows driven by a non-diffusive process, in particular, a fractional Brownian

motion.

The fractional Brownian motion {B#(t), t > 0} with Hurst parameter H € (0,1),

is the zero mean Gaussian process with covariance function

E[BH (s)BH ()] = = (12 4 521 — |t — s|2H). (5.1)

N | —

Note that E|BH(t) — B (s)|? = |t — s|*#, and hence the process B has stationary
increments. Moreover, when H = %, the process also has independent increments
and this case corresponds to the standard Brownian motion. A simple application
of a Garsia-Rodemich-Rumsey type of inequality, together with (5.1), implies that
the process B has a-Holder continuous paths for all a € (0, H). (See [17] for the

original inequality, or [30] for the application of the inequality to fractional Brownian

1

motion.) It is also important to note that the process BY, for H # 7, 1s neither a

semimartingale nor a Markov process.

In order to construct a non-diffusive flow, we start with a collection of independent

46



fractional Brownian motions, {Bf }yen and define, for some set I C N,
Ur(w,t) = ) Uy(2)BJ(#), (5.2)
yel
where {U, },en is a collection of deterministic vector fields defined on R" such that,
for I =N, Uy(+,-) is an isotropic Gaussian vector field. For the moment, we do not
impose any conditions on the vector fields, although we shall add various conditions

as and when required.

Now we introduce a candidate for the evolution equation describing a stochastic flow

driven by a fractional Brownian motion by setting

t
b=z + Y ¢ / U, (®4(x)) dB (s)". (5.3)

vel 0
For H = %, the integral appearing in the above expression can be interpreted as
either an It6 or a Stratonovich integral. When H # %, although the standard
semimartingale arguments cease to work, there is a plethora of literature available on
various ways to define an integral fab f(s) dBH(s), where f(s) denotes some random

process and B the fractional Brownian motion. See, for instance, [2, 7, 13, 24, 16].

In the remaining part of this chapter, we shall present an overview of the various
available results on defining integrals with respect to fractional Brownian motion,
without rigorously defining the various terms involved. The details will be presented
in Chapters 6 and 7. In Chapter 8, we shall return to the main results of this part
of the thesis, and develop analogues of the results of Chapter 4, for non-diffusive

fows.

One of the earliest efforts at dealing with integral/differential equations driven by
fractional Brownian motion for H > 1 can be attributed to Lyons [25] in 1994. The
idea was primarily based on Young’s [42] striking analysis of integrals driven by
non-smooth functions. The existence and uniqueness of the solution of an integral
equation (5.3) was proven by using the p-variation of iterated integrals of the process
BM to derive Lipschitz type behaviour for various iterations in a Picard’s iteration
scheme. Later, in 1998, Lyons generalized the argument in [26] and extended the
theory to various other cases, including H = % This was further generalized to the

case H > 1 by Unterberger [37].
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Around the same time, Zahle [43, 44|, defined pathwise integrals of the form fg usdBH (s),
for H > %, where u and B were considered to be elements of fractional Sobolev
space. Apart from proving an Ito type formula, connections were established be-
tween the pathwise definition of the stochastic integral with various other interpre-
tations of integrals. Elsewhere, Ruzmaikina [33] independently, obtained similar

results by approximating the stochastic integral by a Riemann-Stieltjes sum.

Following the above method of using the pathwise definition of a stochastic integral
driven by fractional Brownian motion, Nualart and Ragcanu ([30]) proved existence
and uniqueness of the solutions of multidimensional stochastic differential equations

of the form . .
X = Xo —I—/ o(s, X,) dB"(s) +/ b(s, Xs) ds,
0 0

where B is a fractional Brownian motion with H > %, and the integral with respect
to B is a pathwise Riemann-Stieltjes integral, as defined by Zihle and others.
Later, continuing in the same vein, Decreusefond and Nualart in [14] proved the
existence of a homeomorphic stochastic flow driven by fractional Brownian motion.

We shall have more to say about this in detail in Chapter 7.

While the pathwise approach towards defining integrals driven by fractional Brown-
ian motion was gaining momentum, Decreusefond and Ustiinel ([16]), at essentially
the same time, approached the problem in an altogether different way by utilizing
the Gaussian character of fractional Brownian motion, and employing the stochastic
calculus of variations called the Malliavin calculus'. They extended the Malliavin
calculus, which was primarily designed for the Wiener process, to fractional Brow-
nian motion and developed the stochastic calculus for fractional Brownian motion.
This was further extended in [2], where stochastic calculus with respect to Volterra
processes of the form, Y; = fot K(t,s) dW(s), was developed, where W is a standard
Wiener process and K (¢, s), a square integrable kernel, is called the Volterra kernel.
This covered the case of fractional Brownian motion for a specific choice of the kernel
K(-,-). The analysis of the stochastic calculus for the fractional Brownian motion

was further refined in [3] by Nualart et.al., where some L? estimates of the divergence

'For a quick introduction to Wiener space, we refer the reader to the appendix on “An Intro-
duction to Malliavin Calculus” in [39], whereas for an excellent detailed account on the same topic,
we refer the refer the reader to [38], and finally, to [27] for a more analytical treatment and its
various applications.
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integral were presented. Chapter 6 is devoted to the study of this approach towards
defining stochastic integrals, with the aim of convincing the reader that an attempt
to define a stochastic flows with the integral interpreted as a divergence operator
is unlikely to work. Subsequently, in Chapter 7, we shall present the background
required for defining pathwise integrals and we shall give a brief argument for the

existence and uniqueness of stochastic flows in a pathwise sense.

Finally, once we settle with a definition to interpret (5.3), we shall start analyz-
ing the evolution of the geometric characteristics of a randomly evolving manifold
under the flow, which will be the central theme of Chapter 8. The main goal is
to achieve reasonable upper bounds for the basic characteristics of the randomly
evolving manifolds, viz. the appropriate Hausdorff measure of the manifold. We
shall show that the (n—1)-dimensional Hausdorff measure of an (n — 1)-dimensional
manifold evolving under an n-dimensional stochastic flow, exhibits a growth which
is almost surely bounded by an exponential function with the exponent depending

on the appropriate Holder norm of the fractional Brownian motion.
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Chapter 6

Stochastic calculus of variations

As described in the previous chapter, there is a significant literature available on the
topic of defining integrals driven by fractional Brownian motion using the Malliavin
calculus or stochastic calculus of variations. (See [28] for a survey of the various
results available on this topic.) For a variety of technical reasons, we shall restrict
our attention to the case H > % These are processes that are smoother than
standard Brownian motion.

This section is devoted to reviewing the results related to the divergence integral,

and trying to implement them to interpret the integral appearing in (5.3).

6.1 Preliminaries on fractional Brownian motion
and the Wiener integral

We shall start with S as the set of step functions on [0,77], and denote Hy as the

Hilbert space defined as the closure of S with respect to the inner product

(7 + s*T — |t — s]*) = Ry(s,t).

1
(Lio,o> Ljo,) 1y = 3

Now consider a Gaussian field { BH(¢) : ¢ € Hy}, with its covariance function given
by
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BB @B @l =an [ [ 60O - P drds £ (o (61)
where oy = H(2H — 1).

Note that the map ¢ — B (¢) defines an isometry between Hy and the Gaussian
space H(B), which is the space of random L? random variables of the form B (¢).
It is customary to interpret B (¢) as the divergence integral of ¢ € Hy with respect
to BH.

Remark 6.1.1 For the case H = %, the divergence integral is the Wiener integral,
and it is for this case that the standard Malliavin calculus was designed. Also note
that for this case (6.1) takes the familiar form

E[Bl/2( B1/2 / (b

Remark 6.1.2 The Hilbert space Hy is also called the reproducing kernel Hilbert
space for fractional Brownian motion with Hurst parameter H. Although in some
books the same space is also referred to as the Cameron-Martin space, we shall make
a distinction between these two spaces and we shall denote the later by Hi;. A closer
look at these two spaces (see, for instance, [16] and [3]), shows that one is a mere
transformation of the other. We shall explain this with reasonable generality in the
following section. A typical element of Hy is generally not a function, but rather a
distribution of negative order (see [2] or [3’2/) In fact the space Hy coincides with
the space of distributions f such that s2~ ] ( H=3 f(u))(s) is a square integrable
function, where IOJr : 18 the left-sided fmctwnal integral of order H — % This and
more about deterministic fractional calculus will constitute our next Chapter 7. An

appropriate definition of Hj; will be formulated in the next section, which is devoted

to the study of the stochastic calculus of variations.

Remark 6.1.3 In the special case H = %, Hy = L*([0,T]), and H}; is the space of

absolutely continuous functions on [0,T| with square integrable derivatives.

The key to stochastic calculus for fractional Brownian motion, or Volterra processes

in general, is the representation (see [2], [28])
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t
B0 = [ Kult.) dB(s)
0
where B is a standard Brownian motion and Ky (¢, s) is the L?[0, T| kernel given by
1 ¢ 3 1
Ky(t,s) = cHs2H/ (u—s)"2u"2 du,
for s <t and 0 otherwise, and ¢y is a normalizing constant such that

Ry(s,t) = / Ky(s,u)Kg(t,u) du.
0
(This, by the way, proves that Ry (t, s) is nonnegative definite.)

The kernel Kp(-,-) can itself be regarded as an operator in L?([0,7]) defined via

the correspondence
for ¢ € L*([0,T)).

Furthermore, it can also be used to define an operator K} : & — L?([0,T]), given
by

(K;{]-[O,t]xs) = KH(ta 5)7 (62)

which is extended as a linear isometry to all of Hyg. For our choice of H > %, the

action of the operator K7, can be expressed as,
8K H
(K3)(s / (1) 2 (7, 5) dr.

The relationship between the operators Ky and K7, one as the adjoint of the other,

can be seen in the following lemma.

Lemma 6.1.1 For any ¢ € S and h € L*([0,T]), we have

/O (K56) (t)h(t) dt = / o(t) () (dt),

where the integral on the right hand side is interpreted as a standard Riemann-

Stieltjes integral with respect to the function Kgh.
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For the proof of this lemma and a general treatment of integrals with respect to

Gaussian processes, we refer the reader to [2].

An immediate consequence of the isometry K7, between Hy and L?([0,T]) is the
transfer rule between the standard Wiener integral and the Gaussian process B(¢)
defined by (6.1), given by

BY(¢) = W(K}9). (6.3)

for any ¢ € Hy, and where W (-) is the Wiener integral defined on L?([0,T1).

Consequently, it is clear from (6.2) and (6.3) that the divergence integral with re-
spect to the fractional Brownian motion is an anticipative integral. Thus interpreting
the integral appearing in (5.3) as a divergence integral would result in an anticipa-
tive stochastic differential equation, which is difficult to solve except in some simple
cases. A brief argument explaining the difficulty in solving such stochastic differen-

tial equations will be the focus of our next subsection.

6.2 Malliavin calculus

As we mentioned above in Remark 6.1.2, corresponding to the Hilbert space Hy
we can associate another space Hj;, called the Cameron-Martin space, such that for

each element h* in H};, there exists an h € Hpy, such that

h* () = /O Kyt s)(K5h)(s) ds. (6.4)

Therefore the space Hj can also be identified as a Hilbert space with the inner

product induced by Hy, i.e., for h*, g* € H};
(0,91, = (b9
For a comprehensive study of the space Hj;, we refer the reader to [16].
Now let us define £ to be the set of smooth cylindrical random variables of the form
F(B") = f(B"(¢7),...,B"(¢},), (6.5)

where n > 1, f € C°(R"),, ¢F € Hiy, and BH (¢) 2 BH(4;), where ¢ is the element
in Hy corresponding to ¢f € Hy. Recall that BH (¢) for ¢ € Hy was defined as a

Gaussian process with the covariance function given by (6.1).

53



The above definition of cylindrical random variables can also be considered as a
map B — f(B7(¢?),...,B%(¢})) = F(BY) = F. The idea being, to study the

calculus of variation with respect to the underlying “randomness” induced by B*.

Let W denote the Banach space of continuous functions from [0, 1] to R, and equip
it with the measure induced by fractional Brownian motion B*. Then it is natural
to expect that differentiation on this space is of a Fréchet kind. However, the
existence of such a derivative requires the mapping w — F(w), for w € W, to be
continuous in the norm topology of W. However, for most, at very least, F' this is
not true. For instance, a general diffusion with reasonably smooth coefficients is not
continuous with respect to the underlying Brownian motion, due to the presence
of the correction term marking the difference between the Stratonovich and Ito

representations of the stochastic integral.

Moreover, the fact that almost all functionals in probability theory are defined up to
equivalence classes induced by the underlying measure suggests that an appropriate
definition of the derivative of the Wiener functionals must be well defined up to
the equivalence classes, given by the Cameron-Martin theorem, of the Wiener func-
tionals. (See [16] or [39], for an exact formulation of the Cameron-Martin theorem
for abstract Wiener space.) Hence, a Sobolev type of differentiation rule is better

suited, which is well-defined for these equivalence classes.

A standard way of defining derivatives in abstract spaces is by choosing a direction
in which the perturbation is introduced, and then defining the resultant limit as the
gradient in the chosen direction. However, since not all the directions are feasible,
as noted above, only the directions belonging to the Cameron-Martin space qualify
for defining the derivative. For a F' defined as above, its gradient in the direction

h* € Hj; is given by

i=1 z;

d
VEF(w) = —<F(w + Ah*)|x=0 =

= (B(¢3),....BT(@5)(h", é0)n  (6.6)

Considering this relationship as a linear, continuous functional on Hj,, there exists a

map w — (Dgo(w))(s) with values in Hy, as a consequence of Riesz representation

o4



theorem, such that

VI F(w / / (D F(w))(s)h(r)r — s[> =2 drds, (6.7)

where I is the element in Hy corresponding to h* € Hy;.

We shall use the symbols (DyF)(h) and VI F, interchangeably. Comparing the

expressions in (6.6) and (6.7), we shall write

DyF = Z

(¢1),-.., B (4}))or. (6.8)

This derivative operator is a closable operator from LP(€2) into LP(§2; Hy ) for any p >
1, which means that if for a sequence of random variables {F}, },>1 C & converging
to zero in LP(Q), {DyF,}n>1 is a Cauchy sequence in LP(Q2; Hy), then {DgF,}n>1
also converges to zero in LP(€; Hy). We refer the reader to Proposition B.3.1. in
[39], for a proof of the above fact in the case of H = %, which in principle works for

H > % too.

Writing D% for the iteration of the derivative operator, we define the Sobolev space

]D]Bp as the closure of £ with respect to the norm given by

k
IE|I;, = EIFP+ Y Bl Dy F|l]

=1

? ot (6.9)

Similarly, given a Hilbert space V' we shall denote by D];}p (V) the corresponding

Sobolev space of V-valued random variables.

We have now reached the main point of this section, that of defining the divergence
operator 0, which in simple words is defined as the adjoint of the derivative operator

given by the duality relationship
E(F(SH<U>> = E<DHF, u)HH,

where u is an element in the domain of the operator dy, which is defined as the class
of u € L*(Q; Hy) such that

|E(DuF, u)py | < cul Fl2@

for any F' € &.
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Remark 6.2.1 The divergence operator defined above using the duality relationship
has its roots in the Gauss divergence theorem, which establishes a relationship be-
tween the gradient and the divergence operators, one as the negative of the dual of
the other.

Remark 6.2.2 [t is customary to write 5y (u fo s)0B(s), and to make it

clearer, we note that B7(¢) = 0yu(¢), for determzmstzc ¢ € Hpyg, and for non

1
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generalized Ito stochastic integral introduced by Skorohod for non adapted integrands

(see [36]).

deterministic (random) ¢, the divergence (integral), for H = =, coincides with the

Some of the basic properties of the divergence operator ¢ are listed below:

e The space ]D> (H m) is contained in the domain of the divergence operator 0.

e For any u € D}’ (Hy) we have

E(0r(u))* = Ellullf,, + E(Dgu, (Drw) ) ryer (6.10)
where (Dyu)* is the adjoint of (Dyu) in the Hilbert space Hy ® Hy.

e For any F' € D} and any u in the domain of 65 such that Fu and Féy(u) +

(D F,u)yq, are square integrable, the F'u is in the domain of 0y and

5H(FU) = F(SH(’U,) — <DHF, U)HH

Embedded in the Hilbert space Hy is the Banach space |Hpg| whose norm is given
by
19172 :/[ . 6(s)| |o(r)] |r — s|?72 dr ds.
t

)

Along similar lines we can define |Hy|®|Hy|, and as before this will define a Banach
space with respect to the norm || - || 3, |e/#y|- Clearly, this space is isometric to a
subspace of Hy ® Hpy and it is identified with this subspace. We are interested in

this space as it forms a natural basis for the analysis that we are soon going to start.

Our main objective is to be able to interpret the integral appearing in (5.3) as

a divergence integral. The two most common and robust methods of obtaining
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existence proofs, namely the Banach fixed point theorem and Picard’s iteration,
both hinge on the Lipschitz behavior of the functional involved, which in our case is
the divergence operator. (Note that a contraction also exhibits Lipschitz behavior.)
This is precisely what is missing in this set up. We shall see this in the following

illustration of the Picard’s iteration scheme.

Let us assume that U(x,t) = U(z)BY(t), and define 2" (t) iteratively as follows

() =z + /0 U(z" (1)) 6B (s),

with 2° = x. Then,

2™ (t) — 2" (1)] = ’/O (U(2"(s)) = U(z""(s))) 6B"(s)|. (6.11)

Now we require an L” bound on the right hand side of above expression involving
terms like |z™(t) — 2"~ (t)| only.

By an immediate consequence of Meyer’s inequalities (see, for instance [27]), for
p > 1, a process u € D}P(|Hy|) belongs to the domain Dom(dy) of the divergence
in LP(Q2), and we have

El5(u)| < Crp (| Eully,, + £l Dul

p p )
|H |Hu|®Hu!|/

This together with (6.10), implies that it is not likely that our requirement of the
bound on the right side of (6.11) is fulfilled, unless there are bounds available for
the gradient Dy F' in terms of F' for any F' € £. This, of course, is not generally
the case. Hence interpreting the integral in (5.3) as a divergence integral is not
possible, due to our inability to find answers to questions concerning the existence

of a solution.

Remark 6.2.3 [t is worth noting here that, at least for some simple U, it is pos-
sible to construct the integral equation using the divergence integral. For example,
for U(x) = z, a simple chaos expansion of the solution exists, whereas for the case
of general U, the solution can be shown to exist for smallt, using the Taylor series
expansion of U around 0, and hence reducing it to the linear case, with the added
conditions that the higher order terms in the Taylor series expansion do not con-
tribute much. (See [4].) However, neither of these cases are of any help in our

scenarto.
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Chapter 7

A pathwise approach

Another natural way to define the integrals with respect to fractional Brownian mo-
tion is the pathwise approach using the deterministic fractional calculus. Primarily,
as noted in the introduction, this method is based on Young’s way of defining in-
tegrals with respect to Holder functions. Although there is a plethora of literature
available on this topic, we shall closely follow Zahle’s approach as it appeared in

[43], and we shall borrow heavily from Nualart’s various papers on the subject.

We start by listing some of the basic formulae required from the deterministic frac-

tional calculus, and the fractional spaces associated with them.

Fora,b € R, a < b, let LP(a,b), p > 1, be the space of Lebesgue measurable functions
f:]a,b] = R with || f||r(ap) < 00, where

b 1 )
| fllr(ap) = (Jo [f ()7 dz)r, if 1<p<oo
a, esssup | f(z)| : z € [a,b], if p=oc.

The left sided fractional Riemann-Liouville integral of f € L'(a,b) of order a > 0
is given by
1 xT
e — a1 d
2@ = e [ =)
for almost all = € (a,b), where I'(«) is the standard Euler function. Similarly, the

right sided fractional integral is defined, for almost all x € (a, b), as

@) = Sl [ ) dy

where (—1)7® = ™. If we consider the fractional integral I¢, (or I ) as an

operator with domain LP(a, b), then the range space is denoted by 12, (LP(a,b)) (or
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I (L*(a,b))). Clearly, for a = 1, I, is the standard left integral operator, and a
simple calculation yields that lim,_o(/$, f)(x) = f(z—) = limjo f(z — €), for each
€ (a,b). An immediate consequence of the definition of the fractional integral is

the following property:
(L) =135 ), (7.1)
for all a, 3 > 0. With some obvious variations wherever needed, all the above

properties are true for the right sided fractional integrals too and they are listed as

follows:

b
@) = (-1 / f() dy,
lim (I f)(x) =
= leii%lf(l’—l—G), and

I (I2f) = IM°f Yo, 8> 0
(See [43] for these and more on fractional calculus.)

In order to better understand the linear spaces I, (L?(a, b)), we can write f €
I¢, (LP(a,b)) if and only if f € LP(a,b) and lim._o [, fﬂg ) 1+a ) dy exists in LP(a, b)
as a function in « € (a,b). Furthermore, if pa < 1then I, (L?(a,b)) = I* (LP(a,b)) C

L%(a,b), with ¢ = p/(1 — pa), and if pa > 1 then f € 12 (LP(a,b)) implies that f is
(v — 1/p)-Holder continuous function on the interval (a,b). These and many more

such results can be found in [34].

Having defined a fractional integral, we now define a fractional derivative as the
inverse of the fractional integral operator, whenever it is well defined. In other words,
each element f in I$, (L”(a,b)) has a corresponding ¢ € LP(a,b), such that I, ¢ =
f, which is unique in LP(a,b) and agrees almost everywhere with the appropriate
fractional derivative of f. More precisely, the left sided Riemann-Liouville derivative,
also called the Weyl derivative, of a'-order of f € I%, (L?) is defined as:

D2 fa) = (ﬁdi / x%dy) 1<a,b><x>

F(ll—a) (x —a)> / f 1+a ) 1(a7b)(x)' (7.2)

Equivalently, we can write D, = D(I,;*f), where D is the standard derivative op-

erator. Similarly, we can define the right sided Weyl derivative as D¢ = D(I}~*f),
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and

i
_ FEl Dk S0 / ) — 1) 1+a dy) Lap(o).  (73)

As in the case of the integral operators, there is an analogue of the composition

formula, given, for all a;, 3 > 0, by

Dy (D7, f) =D’ f. (7.4)
A similar formula also holds for the right sided derivatives, and is given by,

Dy (D} f) =Dy’ f, (7.5)
as long as all the fractional derivatives are well defined.

We note that the linear spaces I$ (LP(a,b)), for various choices of o and p, are

Banach spaces equipped with the norms

£z, zeabn = 1 leoapy + 1Dgs fl o (o).

and a similar norm is defined on the space I{* (L*(a,b)).

Using the methods of fractional calculus, one can extend the standard integration
by parts formula to the more general case of LP functions. Hence the generalized

integration by parts formula can be written as

b
/f m-ew/gmmﬂmm (7.6)

where f € LP(a,b), g € L9, p>1, ¢>1, 1/p+1/¢g < 1+a, p,g > 1, and
1/p+1/q =1+ «. A similar formula, called the second integration by parts formula,

holds true for derivative operators, and is given as
b b
-1 [ Dz f@g(o)ds = [ 1D g(o)ds (7.7
where f € IZ, (LP(a,b)), g € Ij (LU(a,b)), p= 1, ¢=1, 1/p+1/¢< 1+

Let f(a+) = limjo f(a + €), and g(b—) = lim, ) f(b — €), whenever the limit exists

and is finite, and define

far(x) = (f(z) = fa+))L(ap) (),
g-(r) = (g(z) = g(b=))1(ap) ().
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Using these definitions and the machinery developed above, an extension of the
Stieltjes integral, called the generalized Stieltjes integral, of f with respect to g is
defined as

b
/ f(2)dg(z) = / D2 fur (2) DI gy (2)da
+ f(a+)(g(b—) — g(a+)), (7.8)

where f, € I (L*(a,b)) and g, € I,~*(L%(a,b)) for some p,q > 1, 1/p+1/q <
1, 0 < a < 1. Furthermore, if we impose the condition ap < 1, then f,. €
I¢ (LP(a,b)) implies f € I¢, (LP(a,b)), in which case (7.8) can be rewritten as

[ st = v [ vz s@nit @i (79)

This representation is sometimes also referred to as the forward integral represen-
tation due to the choice of left and right sided derivatives for f and g respectively.
By interchanging this choice of the left and the right-sided fractional derivatives in
(7.9), for the integrand and the integrator respectively, we get what is called the

backward integral representation, given by

/ f(2)dg(a) = / Dg fyo (2) DLy g0y (2) da
g(b-) - g<a+>) (7.10)

if fo_ € I (LP), gay € I,7*(L9) for some p,g > 1, 1/p+1/¢g<1,0<a < 1.

Remark 7.0.4 [t is important to note here that in view of (7.4), (7.5), (7.6) and
(7.7), the definition (7.8), or equivalently (7.9), is independent of the choice of c.

Next we define C*(0,T;R?), the space of A\-Hélder continuous functions, with A\ €
(0, 1], as the space of R? valued functions for some fixed d € N, the space of natural

numbers, equipped with the norm given by

I =0+ sup LI <o,

where |[f[loc = suprejo.ry £ (1)

In [43], Zéhle proved that the conditions of the definitions (7.8) and (7.9) are met
if f € C*0,T;R) and g € C*(0,T;R) for A + p > 1, in which case the integral
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defined in (7.8) or (7.9) coincides with the Riemann-Stieltjes integral. Now we state
the following well known result concerning the Holder coefficient and exponent of

fractional Brownian motion with Hurst parameter H.

Lemma 7.0.1 For {Bf(t): t € [0,T]}, a fractional Brownian motion with Hurst
parameter H € (0,1), there exists a positive random variable n.r, for each0 < e < H

and T > 0, such that E(|n.r|?) < oo for all p € [1,00) and for all s,t € [0,T]
|BH(t) — BY(s)| < nerlt —s|" 7 as.,

where ner = Cy T ¢r, with the LY(Q) norm of & bounded by c.,T¢ for g > 2.

(For a proof of this, we refer the reader to [30].)

Hence, the integrals with respect to the fractional Brownian motion can be proven
by the results obtained in [43]. In the same article, the corresponding stochastic
calculus is also developed with an appropriate formula for change of variables. These

existence results can naturally be extended to the case of vector valued integrands.
For the following definitions, we shall assume o < %

Define W3 (0, T'; R%), as the space of measurable functions f : [0, 7] — R¢ equipped

with the norm given by

PlF) — f(s
| fllaoo := sup (\f(t)] + Li(rl)’ds) < 0. (7.11)
t€[0,7) o [t—s]
A trivial observation following from this definition is that
Core(0, T;RY) € W™(0,T;RY) ¢ C*7(0,T;RY), (7.12)

forall 0 < e < a.

Together with W;">°(0,T;R?), another space which will form the backbone of the
analysis that will follow, is defined as W;fa’oo(O,T; R), the space of measurable

functions ¢ : [0,7] — R, such that its corresponding norm is given as

lglh-occr = su (% +/ %dy) < oo. (7.13)
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The corresponding embedding result is
Clmet (0, T;R) € Wy “®(0,T;R) ¢ C'7*(0,T;R), (7.14)

for all e > 0. Moreover, if g € W;~ (0, T;R), then g|o € I}=*(L>(0,t)) for all
te(0,7).

Now consider the integral fot fdg for g € W,;*>°(0,T;R) and f such that

[ fllaa = /0 %j”ds —i—/o /08 Wc@ds < 00. (7.15)

Then the conditions for the existence of the integral for all ¢ € [0,7] are trivially

satisfied, and using (7.2) and (7.3) the integral can be bounded as follows:
T T
[ sas| = | [ D, soDigr (510
0 0
T

< [ D8 SO IDE g (9)lds

O 0, [ H=10)

1 T
T T(1-a)T(a) /0 (s —y)
9(r) —g(s) [ 9y) —9(s) .
<[ e [ G @l
S ||f||oz,1 Aoz(g)a

where the last inequality is the result of (7.15) and
1

A, = —— su D=%g, (s
(g) F(l—CM) 0<s<£)<T| t gt ( )|

1

< —a,00,T'+
S Ta=aym(a)9lh-acr

(7.16)
Now recall the vector fields defined in (5.2), with following additional conditions:

(A1) |U(x)] < M,, Yz € R" and v € N, where U} denotes the i-th component of
the v-th vector field.

(A2) Writing || - || for the Euclidean norm in R?, for the appropriate d, we require,
Ui(2) — Uiy)| < MY ||z = yl», Yo,y € R" and 7 € N.

(A3) Denoting W, (z) as the spatial derivative of U, (z), we also require that, [W. ;(x)—
Wi ()] < MP |l = ylla, Yo,y € R" and 5 € N, where W! (-) is the (i, j)-th

element of the matrix W, (-).
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(A4) Finally, M® = > M < 0o, M@ = S MP < oo, and M® =
Y wen MY < o0
a€ o

Consider the following deterministic integral equation in R"

s / (,(2))dgs (5), (7.17)

where g, € W, (0, T;R).

Then, under (A1) — (A4) on the vector fields, existence and uniqueness of a solution
of (7.17), in the space C'~(0, T; R™) is proven in [30] for |I| < co. We shall present
the idea of the proof in short without delving too deeply into the technical aspects

of the proof.

First, an operator GZ is defined on W3 (0, T; R™), for fixed 0 < o < 1/2, by setting

(! —x+2/ ))dgy(s),

for f € Wg™(0,T;R") and g, € Wy *°(0,T;R). Then, it is proven that G :
W (0, T; R™) — Wy°(0,T;R™) is a contraction. The rest of the proof hinges on
a simple application of Banach fixed point theorem. The resultant solution is then

shown to have (1 — «)-Hélder continuous paths.

In fact, the existence and uniqueness of the solution can be proven under far weaker
conditions, but that prevents the solution from being a diffeomorphism in R”, while

we are interested in the flow properties of smooth flows (see [14] for details).

Finally, the existence and uniqueness of the flow of diffeomorphisms defined in (5.3),
using the above interpretation of the integral, is established by using the fact that
the sample path of B belongs to the space Wy *>(0,T;R) for a € (1 — H, 3).
Appropriate estimates of the solution of the flow equation are also obtained in [30],

which are improved on in [29)].

So far we surveyed two ways of constructing stochastic integrals with respect to frac-
tional Brownian motion, and have, hopefully presented enough evidence to convince
the reader that the pathwise method seems more amenable for the construction of

stochastic flows.
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Chapter 8

The flow and its geometric
properties

In this chapter, we shall use the approach developed in [29] for getting estimates
on some of the basic geometric characteristics of the flow defined in (5.3), with the

integral interpreted as in the previous chapter.

We start with recalling the class of vector fields {U, }ey defined in (5.2), and restate

the corresponding assumptions as follows.

(A1) |Ui(z)| < M, Vo € R" and v € N, where U} denotes the i-th component of
the v-th vector field.

(A2) Writing || - || for the Euclidean norm in R?, for the appropriate d, we require,
Ui(z) — Ul(y)| < MY ||z — y|l2, Yo,y € R" and 7 € N.

(A3) Denoting W, (x ) as the spatial derivative of U, (x), we also require that, [W? ;(x)—
)| < M|z = y|l2, Yo,y € R" and v € N, where W2 .(:) is the (4, j)-th
element of the matrix W, (-).
(A4) Finally, M =>_

.

Jen My < o0, M® = Z,YGNM()<oo,andM(2):ZveNM7(2)<

We consider the flow

—:1:—1-2/ U,(®s(x)) dBH (s), (8.1)

vel
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where I is a fixed but generic subset of N, such that |I| < oo, where |I| denotes the
cardinality of the set I, and the integral appearing in the expression is interpreted

in the pathwise sense defined in the previous chapter.

Beginning in a similar way as in Part I, with M, an m-dimensional smooth manifold
embedded in the n-dimensional Euclidean space, we denote T, M as the tangent
space of M at x € M. Let v € T, M. Then its push-forward under the flow ®, is
given as

vy = D®y(x)v,

and v, € T, M.
From here on we shall write z; for ®;(z). Another notational nuance that we shall

often use in the subsequent proofs is the following definition of the norm for a R?

valued process y defined on the interval [a, b],

ly(c) — y(d)||2
ab = SU 3
Y1106 I Ny P

(8.2)

with the understanding that ||y||,» 2 lly

1,00, and that for p = oo, this norm is

defined as the sup norm.

8.1 Main technical result

In the build up to the main result of Part II of this thesis, which will be presented
in Section 8.2, we shall state and prove a technical result, which will form the crux

of this section.

Theorem 8.1.1 Under the assumptions stated in (Al)—(A4), and fora« = 1—H+4,
B =H —¢, such that (1 — H) < o < 1/2 and § > ¢, there ezist a constant ¢ and a
random variable Cr, such that

sup [lopfla < sup oy
rel0,7 rel0,7]

< ¢ QCT T7

where ||v,||o and ||v,.||1 denote the ly and Iy norms, respectively, of the vector v, as an
element in R"™. The random variable Cr depends on o, 3, n, I, and {HBng,T, M,, Mg)’ ]\/[7(2)}%1,
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with || Bi ||, the Hélder norm of the process BI'. Furthermore,
E[Cr)” < C - E[|B"| 5],

where the constant C' depends only on «, 3, n, |I| and {M,,, M, (1) M }761

Remark 8.1.1 For a better understanding of the results of Theorem 8.1.1, we note
that for the case |I| = 1, these results boil down to the following

/B
sup fJuglla < ¢ 20T IB"IST
r€[0,T]

for some constants ¢ and C, dependent only on the various uniform bounds and the

Lipschitz coefficients corresponding to the vector field.

Remark 8.1.2 The results listed in this chapter hold true for any I C N as long
as the cardinality of the set satisfies |I| < oo. However, extensions of these results
to the case I = N, though possible, require unnatural conditions on the summability
of the constants appearing in Assumptions (Al) — (A3). For instance, extending

Lemma 8.1.1 to the case I = N will require

1

S e MYVIBI |5,z
2

S e M| BH |51

A sufficient condition for which can be stated as

(1)
Z M, < 00,

veEN

which does not seem to have a straightforward meaning in terms of the vector fields
{Uy }ren-

The idea of the proof of Theorem 8.1.1 is to break up the interval [0, 7] into smaller
units A, on which reasonable estimates of ||v, |2 are possible, and then to glue the
intervals together to obtain the required result. However, in the process, we shall
require estimates on the flow, which are presented in the following lemma, for which

we rely on the results obtained in [29].
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Lemma 8.1.1 Let M, M"Y be constants as defined in Assumptions (A1) — (A4),
and 0 < s <t <T be such that

B naa+pF—1) Dt oH
= S = sa)a+ - D@ = 2 M 157l

'yEI

where « =1 —H+6, 3 =H —¢, such that (1 —H) < a <1/2 and 6 > €. Then for

xy defined in (8.1) there exists a random variable K7, such that

e —

W dr S K:,t(t — S)ﬁ_a. (83)

S

Furthermore, K7, can be bounded above by another random variable, independent of
s and t, with finite moments of order greater than 1, as long as (t — s) is chosen

sufficiently small.

Remark 8.1.3 Note that under the aforementioned conditions concerning o and [3,

we have a+ 3> 1, and B > «.

Proof: Writing U’ (-) for the i-th component of the vector U, (-) and choosing {e;}i,

as the canonical basis of R", we have

((xp — z4), ) Z/ Ui(x,) dBX(r),

yel

which is true by linearity of the operation, and where (-,-) denotes the standard

Euclidean inner product. Hence for o € (1 — H, %),

(20 — 24), )| = ‘Z/ i) dBI ()]

vyel

- ‘Z/ D§+UZ x, Dtl__ant_(r) dr

vel

< 3 [ IDeuil DB ) d

vyel
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To obtain a bound on the second term in the integrand, choose 8 < H, such that

a+ > 1, so that using (7.3), we have

(D= By, (r)] = ) F1(L a( ”(it )+O‘/ B(( )_)B Ud“)‘
1 /|BH(t) | BY (u BH( )|
= () ( |t—7“\1 a / (u—r)? du)
MWL TS
 T(a) (t—r)s t—r)la
N a/r | B} ((u)_ r?g (r) (u— r)‘”ﬁ_Qdu)
1 H a+f—1 H (t_r>a+ﬁ '
o e ot )
= kil DB [l (t = r)t, (8.4)
where k1 (a, 5) = %

To bound the first term we use (7.2) and assumptions (A1) — (A2), to see that

D3 UL (an)] = F(ll_a) ([:’3_(23) +O‘/: G ((ir) 9)[1];5]69)) d@‘
< ml_a) (s / Hale) Z Sl i)
< Ca Mw / MY |$r 1+l;9||2 d@)
< ca(M <r—s> M) ||x||sr1 Wr=s)'), (85)
where cq = T'(a)~! and MY = (O{]ﬁ;))

69



Therefore, combining the above two estimates , we get

(el < coiland) S 1B [ (Mt =)= ry

vel

+ MO @lsa-alr = 5)' 72 = )57 dr

t
< coi(,8) Y 1B aatt =5t [ (0= sy
yel s
+ M(lc)y||9€||s,r,1—a(7“ - 8)1_2a> dr
= coki(a,8)> B Hm( —P1—a)
vyel
Bl = 102 = 20))).
Let
Mo =(1=a)™' ) M|B sz, (8.6)
vel
and
MY = (2-2a)7" Y MQ|IBY s (8.7)
vyel
Then
|‘(xt_xs)|’1 = Z|<<xt—$s),€i>|
i=1
S Cankl(aa ﬁ) <Ma(t - S)ﬁ + M(gl)Hst,t,l—a(t — S)I_OH_B) .
Equivalently,

< eqanki(a, B) (Ma(t — S)O‘J“B_l
+ MOy a(t—s)ﬁ) (8.8)

(Recall that a + 5 > 1.)
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Now using the above estimate together with (8.2), and the fact that ||-||2 is bounded

above by || - ||1, we have
(20 — zu)|2
x o = Ssu
llls1-a s<u<1?1<t (v —u)t-e
e ap M mlh
o s<u<v<t (U _u)l—a

IA

sup _canha(a, 8) (Ma(v = u)*~!

s<u<v<t

+ MO0 = 0)°)

< Cankl(a7 6) (Ma(t - S)a+ﬂil
MO oa1-alt = 5)°). (8.9)
Now choosing s,t such that
(t—s)" > conki(a, B)MDY, (8.10)

(8.9) can be rewritten as

canky(a, B) My (t — s)> 01

1 — conky(a, ﬁ)MS)(t —s)8

= Kt — )1 (8.11)

[zllst1—a <

Therefore,
Nlze —arll2 Hmt —fﬁrl\z 20
/ 1+a - T) dr
< ot / (¢ ) ar
_ g\B—«a
B o k)
" (1 - 2a)

= K:,t(t - S>ﬂ_a7
where K7, = (1K32t thus establishing (8.3). The final claim, that K7, can be
bounded by a random variable independent of s and ¢ will be proven later. O

Proof of Theorem 8.1.1: Taking the space derivative of (8.1), the existence of

which is ensured by Theorem 3.2 in [29], we have

D, (z _1+Z/ W ( O, (x) dBH(s),

vyel
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where the matrix W, (-) = (W2 ;(:)):; denotes the spatial derivative of the vector
field U.

Now using the definition of the pushforward of a vector, we can write the evolution

equation of the tangent vector as follows

vt—v—i-Z/ W, (xs) vsdBH()

vel

Recall that |lvg]|; = >0, |(vt, €;)], where (-, -) is the standard Euclidean inner prod-

uct, and {e;}; denotes the canonical basis of R". Since,

Utaez —I“i‘Z/ x?" U’r'ael dBH( )7
vel
we have

(g, €5) — (vs, ;)| = ‘Z/ (), €;) dB (r)

yel

— ‘Z/ D (W, (, vr,ez>Dt1__°‘Bft_(7")d7"

yel

< Z/ D2 (W, (2,)or, )| - DB, _(r)|dr.

yel

The above inequality holds for any choice of s and ¢, but we are interested in pairs
for which (¢ — s) is sufficiently small. To this end, note first that from (8.4) we can
bound the second integrand by

1D, =B (r)] = ku(a, B)IBY [lp.r(t — 7)1
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Now using (7.2) and Assumptions (A2)-(A4), the first integrand can be bounded as

‘D < ($T)UT, 61)’ < F<1 1_ a) :|<WZ7§J:_T):)T; €z>’ La /T |<ny (xr)vry(ii> ;)?ﬁ;}(l@)vm ei> | d9:|

<l :ijlw(r;(s)xvr,e] o [ W) (il
< ﬁ ZL&? / (W, (x, vr,el> —e)gljiv(xg)vr,eiﬂde
o [/ Wt c) — O feenci
= o M Z|rw_’e§
of LW ><(vr,e]9>)l+a L)l
of I >§ J>)Haw el
< mioa M Z|£«U3€s]
of S W 8« Q)Hi o)
of S o0 Lﬁ’;’fﬁ el
- m[ Z'iv’"_’? Z\vmea | s

Now using the result proven in Lemma 8.1.1, for r such that s < r < ¢, with (t — s)
satisfying the condition (8.10), we have

"l = woll

gyt 0 S I

s
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Hence,

(1) (2) 7+ B
’Ur7 6 M’Y + aMV Ks,r(r - S)
|D < (.TT)UT, eZ>| = Z |: 7" _ SJ < F(l — O[) )

( Uraey U9:€J>|
['(1l—a) / 0)+ d@]

(v, €;)] aMm |w@ (vo, €5))]
1+a d@}

B 1[%’1(7“—3 'l —a)

+

n

<.
Il

] =

[%ﬂmwMW—$”+%w@wWva—$”ﬂ,

j=1
where " o

. _ My + oMy K (r — s)° (8.12)

v:8,m Il —«) ’ '
and 0
alMl
b1 = 2 . 8.13
"= B )l —a) (8.13)

Note that ay 5,1 < ay 541, for s <r <t
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Writing asr1 = 32 er sl

BIf||gr and by = > el byl B ||, and using the

above estimates for the integrands, together with (8.4) and Remark 8.1.3, we have

[{(vr = vs5), )| <

ki(a, ) / Z s | (U, €5)|(r —5)~ ot — )t

+ bl”(“-a €j>||3,t,5(7“ — s)ﬁ Of( _ T)aJrB*l)dr

IN

t n
ki (o, B)(t — 8)*F~ 1/ Z asr1|{vr, €53 (r — 8)7¢
S

b1l ) s - sW)dr

IN

ka(a, B) (¢ — 5)- 1/2 el ) oo — )7
S

+ bull{o, €3}l = s>ﬁ—“)dr

IN

+0u[[(v.s €5l

- t—s)l—@
b )t =973 (el o) o 2

«

(t . S>1+,8a>
sbBT 4 60—«

krle B8) D (trall(v €5) loaoot = 5)°

J=1

bl elleat - 7).

where ag49 = as;1(1 — ) and by = b1 (1 —a+ 3)7!

Therefore,

(., €}l

IN

IN

L0 = ).0)

s<r<o<t (0 —1)P
n

Bi(@,B) Y s (anoall (v, 6) oo

=1 s<r<0<t

+ ball (o, )16 — 1))

n

i, 8) 3 (sl (0 ) lnoe

J=1

+ ball{v., ) st — 5)°).
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As a consequence of the above estimate we have

Sl edlles < nhki(e,d) Y (asnalvsen) o
i=1 j=1
+ ball{v., ) st — 5)°). (8.14)
For further analysis we shall require that
(t — )7 > nk(a, B)by. (8.15)

Thereby, for (t — s) satisfying conditions (8.10) and (8.15), we can rewrite (8.14) as

S Hcileo < nbilo Mance 3o bt
Hence,
S el < 3 (el + o) = )
< 3 (lom el + et =)

n

(0., €)ls.t.00 (t — 5)°
; <|<"US, ei)| +nki(a, B) aso (1= ko (c, B) by (£ — 3)5))

IN

Clearly, for any r € [s,t] we have

- - ||<U~7€i>||syr700(r - S)ﬁ
Z (v, 3)] < Z (I(ssei)| + ks (a, 8) o o S)ﬁ)).

Now using the fact that s < r < ¢, so that |[(v,€;)|lsr0 < [|{v.,€:)]s1.00 and
Qs r2 S Qs,t,2, WE have

n

P[RS W= By (WS

) (0 et — 5)°
(1 —nki(a,B) by (t —s)5)

+nki(a, B)asgs

). (8.16)

Finally, we shall require (¢t — s) to satisfy

(t— 5)7[3 > nki(a, () [asta + bal, (8.17)
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to allow us to rewrite (8.16) as

Sl )

nki(a, 8) asss (t — s)°
s,t,00 1_ = sy &
| (1= nki(a, B) by (t — )P } Z'“ )

We shall note that for (¢ — s) sufficiently small, the inequality (8.17) does hold true,

as as. o is a decreasing function of (t — s).

This, in turn implies,

Z sup (v es)| = Zmax{ sup [{or, e, 100, €3}l

0<r<t 0<r<s
) (03, 3]
< max{p foeil, —se)
[ (T—nk1 (o, B)ba(t—5)P )}
|

IA

Sup0<r<s|<vT7 >
zmax{osgg o el T e aneateni T)
s =

(1=nki (o,8)ba (t—s5)P)

_ Zn: SUPp<r<s | (vr, €)]

1— nki(a,B)as,i,2(t—s)8 i|

= SZ sup |[{v,, e;)] (8.18)

0<r<s

— nk1(0B)as, ()" 17
where S = |1 — (1_;k1(a,5)tb22(t—s)ﬁ)] ’

Next we divide the interval [0, 7] into p pieces of size A = (¢t — s), with A being
small enough, so that none of the above estimates are negated, and we shall write

an o for asyo, as as1o depends on s, ¢ only through the difference (¢ — s) = A.

More precisely, in view of (8.10), (8.15) and (8.17), we require A to satisfy the

following condition

AP > nki(a, ) max[c, MY, by, (ans + by)]
= nki(a,B) - max[ca MV, (ans + )]
For example, we can choose

AP =3nki(a, B) - max[ca MV, (ans + bo)], (8.19)

and thus, for this specific choice of A, we have S < 2.
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To ensure the existence of such a A, we start with
Aaﬁ =3nki(o, B) ca MY,
then, if
Aaﬂ > 371]@1(06, ﬁ) (CLA()’Q + b2>, (820)
we shall choose A = A, else, we solve the following equation

Aaﬁ > 3nki(a, B) (any2 + b2),

in the range A < Aq. It is now easy see that the solution to this equation is ensured
since the left side increases to infinity as A — 0, whereas the right side, which is

larger than the left side at A = A, decreases as A decreases to zero.

Using the above notation, and repeatedly applying the technique used in (8.18), we

can write
sup || = sup [» (v, e;)l]
t€[0,7) ! tE[O,pA]iZI
< sup (U, €;
;te[ﬂ,pA]Kt )|
S SPZKUaeiHa
i=1
where
T
Pr="A
(1) e
= T(Bnkl(a,ﬁ)-max[caMa : (&A,Q‘i‘bg)])
= TCT7
and

Cr = (8nky(. 8) - (@I V (anz + b)) )

Proof of Lemma 8.1.1 continued: To prove the final claim of Lemma 8.1.1, note

that for specific choice (¢t — s) = A, together with (8.6) and (8.11) we have

K.,
K, = —3
sit (1-2a)
3
< — . M,
3 M, || B [|sr
= —— .conk Ty e
21— 2a) " (en) D =77

yel
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and, so there exists a constant K («, 3), dependent only on v and (3, such that

. > s Mo||BY o,
Ks,t<t_s)ﬂ < K(Oé,ﬁ) = 7(1) A/H
22761 M, HBV ’ﬁ,T
M
yel M’Y

Consequently, aa 2 can also be bounded above by a constant as, hence we shall re-

place aa o by as, in the following discussion. O

Note that,

(Cr)? < 3nca k(e B) Y (M) + azyy + bay) | B .1,

yel

where ]\;[o(}%, as~, and by, are the coefficients of ||Bf||ﬁ7T in the constants M(S), as

and by, respectively.

Now using the bound on S available due to the specific choice of A, we get the

desired result. O

8.2 The main result

The results obtained in the previous section, finally bring us to the main result of
this part of the thesis.

The estimates in Theorem 8.1.1, in turn imply similar bounds on the Hausdorff
measure of the m-dimensional manifold M;, evolving under the flow ®,. More pre-
cisely, let {07}, be an orthonormal basis of the tangent space T, M, at the point
x € M, then writing L,,(M,;) for m-th Lipschitz-Killing curvature of M;, we have

the following result.

Theorem 8.2.1 Let M be a C?, m dimensional manifold, evolving under the flow
O, defined in (8.1). Then under the conditions (Al) — (A4), and for o« =1—H + 9,
B =H —¢, such that (1 — H) < a < 1/2 and § > €, there exists a constant c¢i, and
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a random variable Cy 1, such that

sup L (My) < 1 L,(M) 201 T
te[0,7]

where the function Cyr depends on o, 3, n, I, and {||B$||57T,Mv,Mﬂsl),Mém}We],
with || B || the Holder norm of the process BY for 3 < H, such that

E[C12)” < C1- B[ B"||x),

with constant Cy dependent only on o, 3, n, |I| and {M,, Mél), M@}vel.

Proof: Consider the pushforwards {vf,}i2; of tangent vectors {vf}2; under the
flow ®,. Then by using a simple formula for change of variables on a manifold, as

in (3.5), we get
LOM;) = | H(dy)

- /M o (&) [ H(d),

where ||a®(t)] = \/ | det({vf;,v7,))|. By the Cauchy-Schwartz inequality we know
that

<Uztvvﬁt> < ||U;U,t||2 ||U§it 2

Therefore, using Theorem 8.1.1 and the above expression, we get

sup [la®(¢)[[ < ml(sup |[[vf[))™
te[0,T] te[0,T]

mCT|BH Y~
< ecm!2 s,

which proves the required result. O

We end this chapter with the following remark on the growth of the random variables

Cr and C) r, appearing in the above results.

Remark 8.2.1 The rate of growth of the (3-th moment of the random variable Cy 1
appearing in Theorem 8.2.1, together with some rough calculations, implies that the

magnitude of Cy.r is of the order T for some €y small enough.
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Chapter 9

Future research and open
problems

As can be gathered from the remark following Theorem 8.2.1, we do not believe
that the bounds obtained in the previous chapter are sharp. In this chapter we shall
present a few ideas aimed at improving the results obtained in the previous chapter,

together with the some problems associated with implementing them.

9.1 On improving Theorem 8.2.1

Consider the case |/| = 1 in the definition (8.1) of a fractional Brownian flow. Then

equation (8.19) can be restated as
AP =3nk (o, B) || BY |57 - max[ca MY, (ans + )], (9.1)
where MS), aa2 and by are constants.

Now a careful reading of the proofs of Theorem 8.1.1 and Lemma 8.1.1 yields that
|BH||5r in (9.1) can be replaced by

A :
Y (8,2, B") = max{||B" || siai+1a 0 0<i<T/A},
where || B¥||g,a (i+1)a is the 8 Holder norm of B in the interval [iA, (i + 1)A].
Clearly, not only is it true that

|1B™||s,r > Y (B, A, BT),
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but one expects that the right hand side, which is a local quantity is considerably
smaller than the global quantity on the left hand side. Making this replacement
should improve the bounds in Theorem 8.1.1, and hence in Theorem 8.2.1, but
it seems that following this approach is not going to bear any fruit. For a start,
after replacing || B¥ |51 by Y (8, A, B¥) in (9.1), a rough calculation yields that the

solution to the new equation does not exist for each realization of the process B*.

9.2 Ergodicity

Note that, even in the light of Lemma 7.0.1, it is inappropriate to compare the results
of Theorem 8.2.1 with the ones obtained in Part 1. For a start, Theorem 8.2.1 is a
uniform, almost sure bound, whereas the results of Part I, in case of an isotropic
Brownian flow, are results explaining the average behavior. Actually similar almost
sure bounds can be obtained in the case of stochastic flows driven by standard
Brownian motion by studying the Lyapunov exponents of the flow. However flows
driven by fractional Brownian motions are not known to have an invariant measure,
and hence are not known to exhibit ergodic behavior. Thus arguments concerning

the Lyapunov exponents do not work in this case.

In [18], the ergodicity of stochastic differential equations driven by additive fractional
noise is proven. In particular, let f : R™ — R", satisfying some regularity conditions,

and define the process
t
wt:x—l—/ f(zs)ds + o BY(t),z € R, (9.2)
0

where B is an n-dimensional fractional Brownian motion with Hurst parameter
H, and o a constant, invertible n X n matrix. Then it is proven that the solution to
the above stochastic differential equation converges to a unique stationary solution

in an appropriate norm. It is noteworthy that the result is true for all H € (0,1).

The idea of the proof is to build a stochastic dynamical system over an appropriate
noise space, and then with some compactness arguments to show the existence of
an invariant measure for the system. Finally, the result is achieved by a coupling

construction.

Note that the stochastic differential equation (9.2), is driven by an additive noise,
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whereas the systems that we have studied are driven by a multiplicative noise.
However, if it were possible to extend the ergodic properties of the solution of (9.2)
to the case involving multiplicative noise, this would be a major step in the direction
of improving the results obtained in Part II. But, as is noted by the author towards
the end of [18], the case of multiplicative noise is considerably more involved than

the additive case and requires better estimates.

Therefore, one of the directions of future research in this field would be to try to prove
ergodicity for the flow described in (8.1). A good starting point would be to take
a compact state space, so as to stop the flow from blowing up. With appropriate
conditions on the vector fields, the flow will traverse almost all the points in the

space, and hence can be believed to exhibit ergodicity.
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1 29D

98PN

MNNANNN MY Y NPMINPT RIN DPVDNIVD DXIPDNTN DINN NNINKD FPNIN YD
PN PPy TPNIN M OINHA PNNN TPOONIVD NPT INH OXNIPR 19INXI
NPAIVIVN NN MPN,NONTD . DYNIN DN DIVIRNN JNA NPVDIIVD
MIVN NPMIVIWNR TP (20, 21] Le Jan ,[6] Bazendale and Harris-2 YN
[12] Craston and Le Jan-2 YN N9
VIDY NMY TPIRIA 7PN DY IPONN IR PN [6] Bazendale and Harris
2V TP PNV NYNIN 2)7 MNNIN ITO? DN )2 1D .1OY NOMYN MNVN TP¥PNNI
NPPYN MM DPPYN DNV OV NPPNRPT DY DNY DIIND 1IPN I ND
NINDD 102 PIVNINI TNANDN IPNN PWIN NPVDNVD MV OV APNNN NPNIN
DIV DAYYL DNRYT MPMANND VIN) NIPN PXAND YT DNPNNN DIVNID
PN PADNY 5aw1 53D Lyapunov exponents-1 9233 PRIY NI DMIIN MNINKD
MY DY NN RINTD P RN DY DINANRNDNND NN DY TPVIVIPONN NNNINNN
PRI YN [5] Bazendale -2 NYPN W MNP 1Y NYNM YLDVLLD JPWN
Carverhill >1° 2¥ NYYI NPVODIVO MR PAY Lyapunov exponents YA NWPA
MY [31] Oseledec DY 1292 »TNIN LIYN DY RON NN Carverhill [9]-2 .[8, 9]
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