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We propose a framework based on the use of adjoint equations to formulate an adaptive sampling strategy
for uncertainty quantification for problems governed by algebraic or differential equations involving random
parameters. The approach is non-intrusive and makes use of discrete sampling based on a collocation on sim-
plex elements in stochastic space. Adjoint or dual equations are introduced to estimate errors resulting from
possible inexact reconstruction of the solution within the simplex elements. The approach is demonstrated to
be accurate in estimating error in statistical moments of interest and shown to exhibit super-convergence, in
accordance with the underlying theoretical rates. Goal-oriented error indicators are then built using the ad-
joint solution and used to identify regions for adaptive sampling. The error-estimation and adaptive refinement
strategy is applied to a range of problems including those governed by algebraic equations as well as scalar
and systems of ordinary and partial differentiatial equations. The strategy holds promise as a reliable method
to set and achieve error tolerances for efficient uncertainty quantification in complex problems.

I. Introduction

With the advances in computational technology in recent years, mathematical models are being increasingly called
upon to predict a variety of phenomena relevant to science and engineering. When applied to complex systems,
predictive models are subject to a range of uncertainties, arising either from natural variabilities present in the system,
or from an improper knowledge of the system and the conditions influencing it. The process of quantifying such
uncertainties and characterizing their manifestations on the output quantities of interest is being recognized to be
very important in all areas of computational science and has emerged as an important discipline termed uncertainty
quantification (UQ)1,2. In the present work, the aspect of uncertainty that is due to the variability in the system will
be considered. Otherwise referred to as aleatoric uncertainty, this is concerned with the propagation of uncertainty
in system parameters to system outputs, with the variability in the parameters assumed to be representable by known
probability distributions.

Uncertainty quantification approaches can be classified as intrusive3–6 or non-intrusive7–10. The former involves
a reformulation of the governing equations by projecting them in stochastic (probability) space and typically results
in a one-time solution that can be post-processed to recover the statistics of interest. The latter typically involves
deterministic or random sampling of the governing equations in stochastic space. While there are advantages and
disadvantages2 to either approach, in this work we consider a non-intrusive method. Intrusive methods like stochastic
finite element methods3, are inherently difficult to implement as a reformulation of the governing equations leading to
a large system of coupled PDE, development of new numerical schemes and also a complete rewrite of complicated
codes are required. Typically, the goal of the UQ analysis is to estimate the probability density of some random
output functional which also involves estimating certain statistical moments like the mean and variance. In this work,
recent ideas on adjoint based techniques for numerical solution of partial differential equations using goal-oriented
grid adaptation11,12 are extended to stochastic space and a new framework is introduced to estimate and control the
numerical error in calculating some statistical moments, which we will sometimes refer to as the objective function.
In other words, an approach to manage the error introduced due to an imperfect characterization of the output in
stochastic space will be presented. This approach requires development of adjoint solvers, which might be considered
as an intrusive approach; however the use of automatic differentiation (AD)13 tools greatly simplifies the development
of adjoint solvers for complex simulation codes. Moreover, with increasing use of adjoint-based optimization in
design, it is usually the case that an adjoint solver is already available.

The main contribution of the paper is the presentation of a new method for accurate estimation of statistical
moments of a random functional of interest using adjoint solutions. The use of adjoint solutions is shown to double
the accuracy of the moments leading to superconvergence. The adjoint approach also gives error estimates for the
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functional that are used to adaptively sample the solution in stochastic space leading to a goal-oriented adaptive
approach to uncertainty quantification. The proposed approach can be used either in a continuous or a discrete adjoint
framework; in the present work, we use the discrete approach due to the ease with which discrete adjoint solvers can
be developed for complex simulation codes, e.g., using AD.

The rest of the paper is organized as follows. In section II and III, we give the formulation of the problem
of estimating statistical moments of a random functional of interest and introduce the adjoint equation. Section IV
discusses the use of adjoint solutions to reduce the error in the objective functional while section V provides an adaptive
sampling procedure. In section VI, we apply these ideas to simple model problems and the two-dimensional Euler
equations involving one and two random variables. Section VII discusses some extensions and further generalization
of this apprach.

II. Stochastic Expansions and Sampling

Consider a system of governing equations written in a compact form as:

R(u⃗(x⃗, t, ξ⃗)) = 0, (1)

where u⃗ represents the state vector of the unknowns in space x⃗ and time t, and the quantity ξ⃗ represents the aleatoric or
uncertain variables. We assume that ξ⃗ ∈ Ω is anNξ-dimensional vector with a precisely specified probability structure.
For purposes of clarity, symbols signifying spatial and temporal dependence are omitted (as is the vector notation)
without any loss of generality of the formulation. Let I(u(ξ)) be a functional of interest; the goal of UQ is typically
to estimate the statistical moments of this random output functional. In the rest of the paper, we will take the objective
function to be the mean of the random functional defined as

J (u) = ∫
Ω
I(u(ξ))dξ (2)

The random variables are assumed to be uniformly distributed. Extensions to other random variables is easy and is
described in Section (VII.); conceptually, this amounts to taking dξ to be the appropriate probability measure of the
random variables involved. In order to compute the above integral, we will assume that the random space Ω is divided
into NE simplex elements consisting of NS vertices. The stochastic problem is converted to a deterministic problem
corresponding to the NS realizations of the random variables and the objective function is computed by performing a
quadrature on the simplex elements

J (u) =
NE

∑
i=1
∫
Ei

I(u(ξ))dξ, (3)

where, {Ei} represents a division of the random space Ω into NE simplex elements. However, the random solution
u(ξ) is available only at the vertices of the simplex elements. In order to perform the quadrature, we construct an
approximation ũ(ξ) using the solution at the vertices of the simplex elements using finite element techniques. In
essence, based on NS samples, an unstructured mesh composed of NE elements in Nξ dimensions is built, similar
to the concept of Stochastic Finite Elements3,14. The accuracy in computing the objective function depends on how
closely the reconstructed solution ũ(ξ) within these elements is able to represent the true distribution u(ξ).

III. Formulation of adjoint problem in stochastic space

Each sample in stochastic space u(ξj), j = 1, . . . ,NS is obtained by solving eqn.1, and hence the residual
R(u(ξj)) = 0 at the vertices of the elements. If the reconstructed solution ũ(ξ) is not exact, then its residual will
not be identically zero in Ω. In recognition of this, a global adjoint problem is defined in Ω. Using the theory of
adjoint-based error estimation11,12, it would then be possible to explicitly derive the relationship between locally non-
zero residuals and the global error in computing the objective function.

Given a non-linear forward equationR(u(ξ)) = 0 with ξ ∈ Ω and a scalar objective functionJ (u) = ∫Ω I(u(ξ))dξ,
the governing equations for the adjoint variable v can be constructed15 as

L
∗
uv = −g(u), (4)

where Lu is the Frechet derivative of R. AssumingMu to be the Frechet derivative of J , the adjoint operator L∗u and
the source term g(u) are given by

(Luû, v)Ω = (û,L∗uv)Ω (5)
Muû = (g(u), û)Ω, (6)

where, (⋅, ⋅) is an inner product depending on the function spaces to which u, v belong. In the discrete approach that
we follow here, the inner product is the usual Euclidean inner product17. Since there is no cross-coupling between
different locations in Ω, the solution of the global adjoint problem reduces to the individual solutions of the adjoint
equations at each sampling location.
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IV. Error estimation procedure

The error estimation procedure used in the present work is based on a discrete version of the conceptual adjoint
problem introduced in the previous section. ThusR in equation (1) represents the system of discrete equations obtained
by applying a numerical scheme to the differential equations governing the system. In computing the statistical average
(2), the integral is approximated using a quadrature on simplex elements which is exact for polynomials of degree s,

J ≈
NE

∑
i=1

Nq

∑
j=1

wijI(u(ξij)) +O(∆ξs+1
),

where ξij is the jth Gaussian quadrature point in the element i. For purposes of clarity, the subscripts (.)ij will be used
to denote the value of the quantity (.) at the quadrature point ξij . Also, summations over i and j imply looping through
the elements and quadrature points within the elements, respectively. The quantities I and R can depend explicitly on
the random variables without changing the formulation, but we do not indicate this dependence for purpose of clarity.

Note that u(ξ) is known only at the vertices of the simplex, ξj , j = 1, . . . ,NS . Using these vertex values of u
we reconstruct the solution ũ(ξ) in random variables, which would typically be a linear or quadratic reconstruction.
Assuming I is a smooth function of u,

I(uij) = I(ũij) + [I(uij) − I(ũij)]

= I(ũij) +
∂I

∂u
(ũij)(uij − ũij) +O(∥u − ũ∥2

)

Assuming smoothness of u with respect to the random variable ξ, if ũ is exact for polynomials of degree r, then we
can expect ∥u − ũ∥ = O(∆ξr+1) where ∆ξ is a measure of the stochastic element size, e.g., the length of the largest
side. Since

R(uij) = 0

we can write§

I(uij) = I(ũij) + {
∂I

∂u
(ũij)(uij − ũij) + v

T
ij[R(uij) −R(ũij) +R(ũij)]}

+O(∥u − ũ∥2
)

= I(ũij) + [
∂I

∂u
(ũij) + v

T
ij

∂R

∂u
(ũij)] (uij − ũij) + v

T
ijR(ũij)

+O(∥u − ũ∥2
)

It has to be mentioned that this procedure mirrors the numerical error estimation procedure of Venditti et al.12, but the
reconstruction and expansion is performed in probability space instead of within a spatial mesh element. If we choose
vij to be the solution of the adjoint equation

∂I

∂u
(ũij) + v

T
ij

∂R

∂u
(ũij) = 0,

then the corrected functional is
I(uij) = I(ũij) + v

T
ijR(ũij) +O(∥u − ũ∥2

)

This, however, requires the solution of adjoint equations at the quadrature points which would require possibly unjus-
tifiable extra work. Using a solution of the adjoint equations v(ξ) at the vertices of the simplex elements, we propose
to use them to reconstruct a higher order representation in stochastic space, ṽ(ξ). Then the corrected functional is

I(uij) = I(ũij) + ṽ
T
ijR(ũij)

+ [
∂I

∂u
(ũij) + ṽ

T
ij

∂R

∂u
(ũij)] (uij − ũij) + (vij − ṽij)

TR(ũij)

+(vij − ṽij)
T ∂R

∂u
(ũij)(uij − ũij) +O(∥u − ũ∥2

)

The second term on the right hand side involves known quantities and is termed the computable correction (CC),
whereas the third and fourth terms involve the unknown exact solutions uij , vij and constitutes the remaining error
(RE). Again, assuming smoothness properties, if ṽ is also exact for polynomials of degree r, then the fifth term is of
similar order as the neglected term of O(∥u − ũ∥2), and hence can be ignored. The mean value of the functional is
given by

J =
NE

∑
i=1

Nq

∑
j=1

wij{I(ũij) + ṽ
T
ijR(ũij)} +RE +O(∆ξ2(r+1)

) +O(∆ξs+1
) (7)

§As I is a scalar, we use the convention that ∂I
∂u

is a row vector.
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In the present approach, the second term is used to correct the predictions of the objective function and an estimate of
the remaining error is used to drive the refinement in stochastic space (adaptive sampling) in an attempt to reduce the
reconstruction error. Since ũ, ṽ are approximations to the primal and adjoint solutions, we can expect the remaining
error to be small, especially because of the targeted refinement. If RE is sufficiently small, then the corrected objective
function with the error estimate based on CC is capable of providing super-convergence.

Using only the computable terms, the corrected mean value of the functional is given by

J ≈
NE

∑
i=1

Nq

∑
j=1

wij{I(ũij) + ṽ
T
ijR(ũij)} =∶ J +CC (8)

If the remaining error is small, then from the preceding derivation, the estimate J converges at the rate (r + 1) while
the adjoint corrected estimate J +CC converges at the rate 2(r + 1). In later sections, we provide numerical evidence
of this super-convergence property of adjoint corrections. Note that the accuracy of the numerical quadrature must be
sufficiently high so that quadrature error is smaller than the error of reconstruction, which requires using a quadrature
rule so that s ≥ 2r + 1.

V. Adaptation procedure

The remaining error which is not precisely computable can be used as an error indicator to decide where to perform
additional sampling. Since we do not know the exact solutions uij , vij we need to estimate the terms (uij − ũij) and
(vij − ṽij). This can be achieved by using two reconstruction operators of different accuracy12. Let L and Q denote
linear and quadratic reconstruction operators in stochastic space. Then an estimate of remaining error in element i is
given by

εi =
RRRRRRRRRRR

Nq

∑
j=1

wij {(Qvij −Lvij)
TR(ũij) + [R∗

ij(ṽij)]
T
(Quij −Luij)}

RRRRRRRRRRR

(9)

where

R∗
ij(v) ∶= [

∂I

∂u
(ũij)]

T

+ [
∂R

∂u
(ũij)]

T

v

and Quij etc. mean that the reconstructed solution is evaluated at the quadrature point ξij , e.g., Quij = (Qu)(ξij).
The total remaining error is estimated as a sum of element errors εi

RE =
NE

∑
i=1

εi (10)

which can be used to set error tolerance for adaptation. The element error indicator εi is then used as an adaptation
indicator. If any element has a large local error ε, then it can be divided into two or more elements by adding new
sample points.

In the present work, we implement an adaptive sampling technique based on remaining error as follows. In all the
examples, we take the case of two independent random variables, and assume that the random variable space Ω ⊂ R2

is a rectangle. The following algorithm is illustrated in figure (1).

Figure 1. Adaptive refinement of simplex elements: The shaded element is flagged for refinement and is divided into two elements by adding
a new sample in the middle of its largest side.

Adaptive sampling algorithm:

1. Sample the primal solution u(ξ) and adjoint solution v(ξ) at the four vertices and center of Ω, i.e., NS = 5

2. Construct a grid of simplex elements using the NS samples

3. Construct the stochastic approximations ũ(ξ) and ṽ(ξ) to the primal and adjoint solutions
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4. Compute J and CC from equation (8)

5. For each simplex element, compute the remaining error from equation (9)

6. Choose the element with the largest value of the element error and add a new sample at the middle of the largest
side

7. Set NS = NS + 1 and go to step 2

The above algorithm can be modified to add more than one sample in each iteration depending on the available
computational resources. Note that the availability of an error estimate (and an estimate of the total remaining error
(equation 9)) presents an opportunity to set an error tolerance and this can serve as a stopping criterion. We could, for
instance, choose to stop the refinement when the error estimate or the estimate of the remaining error is reduced below
a user-specified percentage of the objective function. Note that this is possible only because the error estimate has the
same units as that of the objective function (which is unique to adjoint based methods). For problems in which the
randomness is large, a combination of error indicators based on mean and variance of the random functional can also
be used. It has to be noted, however, that errors resulting from spatial and/or temporal discretization at each sample
point could potentially overwhelm the error in the objective functional, and hence, these have to be accounted for.
Although this aspect is not addressed in the present work (all the results presented are grid converged), the availability
of the adjoint solution at each sample point may be used to estimate the error in I(u) and ensure that it remains a very
small fraction of I(u) using adaptive spatial and/or temporal refinement if necessary.

Remark

Even if the numerical quadrature uses linear reconstructions ũ, ṽ, the estimation of remaining error requires both
linear and quadratic reconstructions, which is not an optimal approach. However, we would like to demonstrate that
the theoretical convergence rates are achieved with respect to the number of samples for both linear and quadratic
reconstructions, and the resulting superconvergence when adjoint corrections are added. In practice, one would use
quadratic reconstruction for better accuracy and faster convergence, provided the primal and adjoint solutions have
sufficiently smooth dependance on the random variables, see also the remarks in Section (VII.). Alternately, when
using linear reconstruction in stochastic space, one can choose a constant in element approximation as the lower order
reconstruction L and linear reconstruction as the higher order reconstruction Q, and then estimate the remaining error.

VI. Numerical test cases

To demonstrate the super-convergence properties of the adjoint-based correction and the adaptation procedure, we
use four test cases, the first three of which involve simple scalar differential equations while the fourth is based on
the solution of the two dimensional Euler equations.. The first two examples involve algebraic governing equations
whereas the third is a convection-diffusion problem. The discrete model is assumed to be the truth model, i.e., we do
not consider the error arising in the numerical discretization, but only aim to reduce the error of stochastic integration.
For linear reconstruction, the values at the simplex vertices are used to define a linearly varying function which
corresponds to P1 finite element interpolation. Quadratic reconstruction is performed using the values and gradients
at the simplex vertices, the gradients being computed using a least-squares based procedure16. Integration within
each simplex element is performed using the symmetric Dunavant quadrature rule19,20. The quadrature points are
located inside the simplex elements; for linear reconstruction it is enough to use four quadrature points while quadratic
reconstruction requires seven quadrature points. This choice ensures that the quadrature error is less than the error of
interpolation, so that we can observe the theoretical convergence rates with respect to the number of samples.

To verify the convergence rate of the mean of the random functional, a uniform refinement of the simplex elements
is first performed. The domain Ω of the random variables in two dimensions is taken to be rectangular and is initially
divided into four simplex elements, by sampling at the four corners and the center, see figure (1). In every refinement
step, a new sample is added at the middle of each edge. The number of samples is thus 5, 13, 41, 145 and 545 when
performing four levels of uniform refinement. Since we are dealing with two random variables, the error is expected
to decrease as N−p/2

S where p is the rate of convergence of the objective function. To compute the convergence rate,
a straight line is fit to log(Error) as a function of log(

√
NS), the slope of which indicates the value of p. For linear

reconstruction, the theoretical rate is p = 2 and p = 4 for the uncorrected and corrected functionals respectively, while
for the quadratic reconstruction, it is p = 3 and p = 6 respectively.

5 of 16

American Institute of Aeronautics and Astronautics



A. Algebraic example I

The governing equation is given by

R(u, ξ1, ξ2) ∶=
1
2
u2
− ξ1u −

1
2

exp(−50(ξ2 − 1/2)2
) = 0

where the random variables ξ1 ∈ [1/2,1], ξ2 ∈ [0,1] are uniformly distributed. The random functional of interest is
I(u) = u2 and we would like to estimate

J = ∫

1

0
∫

1

1/2
I(u)dξ1dξ2

Figure (2) shows the contour plot of I as a function of the random variables, which indicates a sensitive dependence on
ξ2. Figure 3 shows the convergence properties under uniform refinement; for the linear reconstruction, the convergence
rates with and without error estimation are 2.7 and 4.8, which are close to the theoretical values of 2 and 4. For
the quadratic reconstruction, the values are 3.7 and 6.4 which are again close to the theoretical values of 3 and 6.
Figure 4 shows the effectiveness and accuracy of the adaptive refinement procedure; perhaps quite striking is the
highly accurate recovery of the error by the estimation procedure, even when the total number of samples is small.
The convergence with adaptive refinement is not monotonic until a sufficient number of samples are used (Figure 4).
The adjoint corrected functional is seen to converge more monotonically compared to the uncorrected functional. The
error recovery is seen to be very good for NS > 60. The simplex grid shows that the error indicator is able to identify
the regions of the random space where the functional is more sensitive leading to more refinement in those regions.
Figure 5 compares the reduction of error with increasing samples. The benefits of the error correction in both the
uniform and adaptive refinement is quite clear. The adjoint-based adaptive refinement/error correction strategy is seen
to be advantageous. Also shown for comparison is a Richardson-based error-estimation strategy, which is, in this
particular case, not accurate for a low number of samples. It is possible that the Richardson extrapolation will provide
improved results in the asymptotic convergence range.
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Figure 2. Random functional I for algebraic example I

B. Algebraic problem II

To assess the applicability and performance of the present approach in the case of a discontinuous response surface,
the following governing equation is considered:

R(u, ξ) ∶=
1
2
u2
−

3
4
u −

a(ξ)

2
= 0

where the random variable ξ ∈ [0,1], is uniformly distributed and a(ξ) is discontinuous and assumes the values sinπξ
for ξ < 0.6 and sinπξ/2 for ξ > 0.6. The objective functional is given by

J = ∫

1

0
u2dξ

The primal and adjoint solutions are depicted in Figure 6 and both of them are discontinuous. Figure 7 shows the
convergence of the error in the mean functional with the number of samples. The legends P1 and P2 refer to linear

6 of 16

American Institute of Aeronautics and Astronautics



10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

sqrt(Number of samples)

E
rr

or

 

 

Linear, J
Linear, J + CC
Quadratic, J
Quadratic, J+CC

Figure 3. Convergence rates for algebraic example I under uniform refinement: (∗) 2.7, (○) 4.8, (▽) 3.7, (◻) 6.4

and quadratic reconstruction of the primal and adjoint solutions. It is again seen that the adjoint-based error correction
strategy shows great benefit, especially for the linear reconstruction approach. The adaptive refinement is clearly supe-
rior to uniform refinement while Richardson extrapolation is not effective. Similar to the Burgers example, however,
the error correction from the quadratic reconstruction does not prove to be more advantageous than the linear recon-
struction, thus warranting a non-oscillatory scheme for reconstruction in stochastic space to handle discontinuities.

C. Stochastic convection-diffusion equation

Consider the steady viscous Burgers equation with a random forcing term given by

uux = uxx + s, x ∈ (0,1)
u(0) = u(1) = 0 (11)

The source term s(x; ξ1, ξ2) is chosen so that the exact solution is

u(x; ξ1, ξ2) = 10x(1 − x) sin(π(ξ1 + ξ2x))

where ξ1, ξ2 ∈ [0.9,1.1] are uniform random variables. This problem can be considered as a simplified model of
Navier-Stokes equations since it has non-linear convection and diffusion effects. The ODE (11) is approximated using
a finite volume method on M cells so that the governing equations R ∶ RM ×Ω→ RM are given by

R(u)i ∶=
Fi+1/2 − Fi−1/2

∆x
−
ui+1 − 2ui + ui−1

∆x2
− si = 0, 1 ≤ i ≤M

where Fi+1/2 = F (ui, ui+1) is a numerical flux function, e.g., the Lax-Friedrich’s flux defined as

F (u, v) =
1
2
(f(u) + f(v)) −

1
2
λ(v − u) (12)

where we choose λ = 1 which leads to stable solutions. The boundary conditions are implemented by appropriate
definition of the boundary fluxes. The random functional of interest is

I = ∆x
M

∑
i=1
u2
i ≈ ∫

1

0
u2dx

and in the computations we use M = 20 cells. The functional is plotted in figure (8) as a function of the random
variables. We are interested in the mean of the random functional I(ξ) given by

J = ∫

1.1

0.9
∫

1.1

0.9
Idξ1dξ2
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Figure 4. Adaptive sampling for algebraic example I: linear (left) and quadratic reconstruction (right) of state variables in stochastic space
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Figure 6. Primal and adjoint response surfaces for Algebraic problem II
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Figure 7. Primal and adjoint response surfaces for Algebraic problem II

As seen from Figures 9 and 10, theoretical convergence and super-convergence rates are observed for uniform refine-
ment and the adaptive refinement is well behaved. Figure 11 shows that the adjoint-based error correction strategy
is more accurate than Richardson-based error-estimation. However, the adaptive refinement is not appreciably more
efficient than the uniform refinement.
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Figure 8. Random functional I for convection-diffusion problem

D. 2D Euler equations

As a final test case, inviscid transonic flow over a NACA 0012 airfoil is considered. The two dimensional Euler
equations are solved on a spatial grid consisting of 9200 control volumes (figure 12). A second order accurate upwind
spatial discretization is employed and discrete adjoints are computed using the automatic differentiation21 tool-kit
ADOL-C22. Two different test problems are considered, the first involving a situation where the freestream mach
number varies between 0.8 and 1.0 and a two-parameter problem where, in addition to the afore-mentioned Mach
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Figure 9. Convergence rates for convection-diffusion problem under uniform refinement: (∗) 2.2, (○) 4.4, (▽) 3.3, (◻) 6.3

number variation, the angle of attack also varies unifomly between 0○ and 2○. The objective functional is taken to be
the mean drag coefficient over the parameter range.

Figure 13 shows the initial and final “response surfaces” for the linear and quadratic reconstructions. The adaptive
refinement is seen to identify the peak in drag coefficient and as observed in figure 14 show rapid functional conver-
gence compared to the uniform refinement strategy. In all these cases, the target error was set to be 1 × 10−6, and
hence the adaptive simulations are terminated when the computable correction reaches this level. The effectiveness of
the computatable correction is also evident in the two parameter case (figures 15,16), as is the fact that the quadratic
reconstruction shows drastic improvement over the linear reconstruction.

VII. Comments, generalizations and extensions

In the numerical examples, we have demonstrated the performance of the proposed UQ method for two random
variables which are assumed to be uniformly distributed. Here we indicate further generalizations of the adjoint-based
UQ approach.

1. The results presented in the paper make use of uniformly distributed random variables. However, it is easy to
extend the approach to general random variables. If P (ξ) is the probability density function, then it is enough
to replace the measure dξ with the probability measure P (ξ)dξ; for the discrete equations, this amounts to
replacing the quadrature weights wij with wijP (ξij) in all the formulae. The error estimate in each simplex is
not only weighted by the interpolation error but also the probability measure for the simplex.

2. In principle, it is possible to use other types of stochastic elements for numerical integration. But the use of
simplex elements has some advantages in terms of requiring smaller number of samples14. For example, for a
P2 simplex, all the samples are located at the vertices or on the boundary of the simplex, and hence they are
shared by the neighbouring simplices. When a simplex is refined as a consequence of adaptation, the number of
new samples required are also small, as compared to d-cubes.

3. The extension to more than two random variables using multi-dimensional simplex elements is straight-forward
in principle, but of course the computational cost increases due to the curse of dimensionality. Due to this
reason, the present approach may be limited to a small number of random variables. It is primarily aimed
at those situations where simulation tools are computationally expensive and are being used to design some
critical system for which reliable uncertainty quantification is of paramount importance. The adaptive sampling
procedure then allows us to choose the samples in such a way that the error in the moments of interest are reduced
in an optimal way. The quadratic reconstruction procedure from12 can be extended to multi-dimensional case.
Alternatively, we can also use P2 simplex elements as in14.

4. The convergence rates and superconvergence hold under sufficient smoothness of I(u) and R(u), and smooth
dependance of the primal and adjoint solutions on the random variable ξ. As seen in Burgers problem, the primal
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Figure 10. Adaptive sampling for convection-diffusion problem: linear (left) and quadratic reconstruction (right) of state variables in
stochastic space
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Figure 11. Comparison of error for convection-diffusion example using linear reconstruction

Figure 12. Spatial mesh (left) and sample flow (density) solution (right) for 2D Euler problem
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Figure 13. Initial (circles) and final (crosses) samples for one parameter 2D Euler problem. Left: P1, Right: P2 reconstruction
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Figure 14. Convergence of functional for one parameter 2D Euler problem. Left: P1, Right: P2 reconstruction
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Figure 15. Convergence of functional for two parameter 2D Euler problem. Left: P1, Right: P2 reconstruction
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Figure 16. Convergence of error estimate for two parameter 2D Euler problem. Left: P1, Right: P2 reconstruction

solution has a discontinuous dependance on the random parameters since the shock location depends on these
parameters. In such situations, quadratic reconstruction becomes oscillatory leading to loss of accuracy of the
interpolation in stochastic space. This situation can be improved using a monotonicity or TVD reconstruction
procedure in which the reconstruction order is reduced to linear on any stochastic simplex element in which a
discontinuity is detected14. The reconstruction order can thus vary from one element to another within the same
simplex grid, similar to p-refinement in the finite element method.

VIII. Conclusion

A new framework is introduced to estimate and control the numerical error in aleatoric uncertainty quantification
of functional outputs using adjoint variables in stochastic space. Super-convergent error estimates and successful
adaptive mesh refinement is demonstrated for a number of problems involving algebraic equations and ordinary and
partial differential equations. The corrections to statistical moments based on adjoint solutions is seen to be able
to recover a large percentage of error, leading to more accurate estimation of the moments. This strategy for error
estimation and control coupled with the unstructured and non-intrusive sampling is hence a potentially effective way
of handling highly complex response surfaces in multiple dimensions. The current approach also provides a platform
to set error tolerances in computing numerical solutions at the sampling points themselves and to effectively budget
the various sources of errors associated with uncertainty quantification.
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