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Abstract

We propose a new method called the Kinetic Meshless Method (KMM), for the
solution of time-dependent conservation laws that can be derived from a Boltzmann-
type equation by taking suitable moments. An important characteristic of this
method is its grid-free nature; it is able to use any type of grid or combination
of grids, or even some distribution of nodes. All that the method requires is the
specification of the connectivity, which consists of a cloud of neighbouring points
around each point. For hyperbolic conservation laws, the method is stabilized by
introducing an upwind-bias using the kinetic representation.

A numerical order of accuracy of two is shown for a scalar conservation law even
though the formal order of the method is one. Numerical second order accuracy is
obained even on a highly non-uniform grid.

We have applied the above method for the solution of the Euler equations by
using the Maxwell-Boltzmann distribution function. In this case, it has been pre-
viously called KRIME, Kinetic Rotationally Invariant Method for Euler equations.
We present a number of results on point distributions obtained from unstructured
grids. Results are obtained on adapted grids and demonstrate the ability of the

method to capture discontinuities sharply.

Keywords: Conservation laws, Euler equations, kinetic method, meshless approx-

imation, upwind scheme.






1 Introduction

The basic ingredient in all grid-free methods is the recovery of a function and/or
its derivatives from arbitrarily scattered data. Ome of the earliest works is that
of Liszka and Orkisz [22,23] who used a least squares approzimation to evaluate

derivatives from arbitrarily scattered data. They pointed out many applications:
e Extraction of derivatives of FEM/FDM solution of boundary value problems.
e Interpolation of the solution from one FE/FD mesh to another.
e Construction of shape functions used in FEM (like in the DEM and EFGM).
e Interpolation of experimental data.

These are known as generalised finite difference formulae since they contain the
usual finite difference formulae on regular grids as special cases. Liszka et al. [23] ap-
plied the least squares approximation to solve some elliptic and parabolic problems.
Lancaster and Salkauskas [21] proposed the moving least squares (MLS) approxi-
mation for data fitting which involves approximating an unknown function using
some set of basis functions. This was used by Nayroles et. al. [27] in the Diffuse
Element Method (DEM) and by Belytschko et. al. [9] in their Element Free Galerkin
Method (EFGM). These methods have been applied in fracture mechanics to study
crack growth and propagation. The grid has to track the crack propagation and
adapt to resolve the crack geometry, and this is easily achieved due to the grid-free
nature of the methods. The MLS approximation reduces to the least squares ap-
proximation of Liszka under some conditions. Duarte and Oden, and Babuska and
Melenk have advocated the partition of unity methods which generalise the MLS
approximation. Duarte and Oden call their method as the hp-cloud method. This
has been recently modified and applied to the solution of the incompressible Navier-
Stokes equations by Baumann et. al. [8]. A review of these methods is contained in
Belytschko [10].

All the above methods have been used for the solution of elliptic or parabolic
equations, while applications in CFD involving hyperbolic equations are very few.
Ghosh and Deshpande [15, 16] used the least squares approach and the CIR split-
ting technique for the Boltzmann equation, to develop an upwind kinetic scheme
called LSKUM (Least Squares Kinetic Upwind Method) for the solution of Euler
equations. The LSKUM has been applied to many problems in gas dynamics with
different types of grids and combination of grids [31]. Ghosh and Deshpande [15,
16] have also proposed a novel way of achieving second order accuracy in the least

squares approximation which does not require calculation of the higher derivatives;



2 Praveen and Deshpande

this leads to a Pade type approximation with a smaller support than is normally
required for second order accuracy. Batina [7] has also proposed a grid-free method
for Euler equations using artificial dissipation and used it to solve flow about a com-
plete aircraft configuration. Morinishi [25,26] used a method similar to the MLS
approximation but with a non-compact weight function, together with artificial dis-
sipation for solving Navier-Stokes equations, and has applied it to a variety of point
distributions and for multi-element airfoils. Balakrishnan [3, 4, 32] has proposed a
family of upwind meshless schemes known as LSFD-U, which again use least squares
in combination with any flux-vector or flux-difference splitting technique. Note that
the methods of Ghosh and Deshpande, Batina, Morinishi, and Balakrishnan can be
considered as generalized finite difference methods. Yagawa et al. [38,39] have de-
veloped the Free Mesh Method (FMM) which uses a local Delaunay triangulation
for a finite element solution. They have applied it to heat conduction, stress and
fracture analyses, and incompressible flows, and are now tackling compressible flows
with the SUPG finite element method.

There is also the class of particle and Lagrangian methods for fluid problems,
which includes Smooth Particle Hydrodynamics, Reproducing Kernel Particle Meth-
ods, Finite Mass Method, Finite Volume-Particle Method [20], etc. Some of these
methods have similarities with the MLS approximation and are reviewed in Be-
lytschko [10].

Another line of attack that is being pursued by many people is the use of radial
basis functions for interpolation and recovery of functions from arbitrarily scattered
data. It involves a Lagrange interpolation using a basis of radial functions and/or
polynomials, and does not require a least squares approximation. Rigorous error
and regularity results have been derived and they have been shown to lead to opti-
mal recovery in certain function spaces. Sonar [34] has used radial basis functions
for ENO-type reconstruction in finite volume methods and has shown better perfor-
mance compared to pure polynomial reconstruction. Wendland [37] has used radial
basis functions in a meshless finite element formulation and has derived some error

estimates.

The least squares approximation has also been used by many researchers in
the reconstruction step in high-order finite volume methods, see Barth [6]. An
interesting development in this area is the use of data-dependent weights which
avoids the need to use a limiter, and provides a more rational basis for the least

squares approximation, see Gooch [18].
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Kinetic Meshless Method 3

The kinetic meshless method presented here was inspired by the work of Bal-
akrishnan [3,4, 32] and has some features similar to LSFD-U. It is the outcome of
combining the use of Boltzmann equation like in LSKUM, with the least squares
approximation used in LSFD-U based on mid-point data. The new least squares ap-
proximation as used here and by Balakrishnan are slightly different from the usual
approximation, and will be refered to as the dual least squares approzimation. The
advantage of the dual least squares approximation is that it allows the introduction
of upwinding on an unsplit stencil, which is required to derive a stable scheme for
hyperbolic equations.

We start with a discription of the kinetic representation for conservation laws
and the kinetic scheme using finite differences. This is generalized to arbitrary grids
using least squares giving rise to LSKUM. We then explain the dual least squares
approximation, using which we derive the KMM. The wall boundary conditions
which are based on the strong formulation are discussed next. The numerical order
of accuracy of the scheme is shown by solving a scalar conservation law. Finally

some results of compressible 2-D flows are presented.

2 Kinetic representation

The kinetic meshless method can be applied to any system of conservation laws
which have a kinetic representation. By this we mean that the system of conserva-

tion laws can be obtained by taking suitable moments of a Boltzmann-type scalar

equation. The conservation law in the divergence form is!

d
oU oF
- 1
5 + 0 (1)

ox®
a=1

where U € U,y C R™ is the vector of conserved variables, U,y being the set of ad-
missible values of U, and F® : Uyq — R™, 1 < a < d, are the Cartesian components
of the flux. The above system of equations can be obtained by taking moments of

the Boltzmann equation,

d
ot e =70 )

!The position of the Greek sub/super-scripts is not intended to convey the tensorial nature

of the quantities but is adopted for notational convenience.
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The moments are defined as,

0= [, Cuarar ®)

where (0, I) € R™ are the collisional-invariants of the Boltzmann equation and I
is a variable introduced to take account of non-translational degrees of freedom [12].
The additional conditions which relate (2) to (1) are,

U=(f), F*=(vaf) (4)

together with the compatibility condition,

(J(f)) =0 (5)

The last equation in fact defines the collisional invariants. For linear hyperbolic
equations, a kinetic representation can be easily written. In the non-linear case, a
kinetic representation exists if the fluxes can be written as F*(U) = A*(U)U, where
the matrices A%(U) have only real eigenvalues and a complete set of eigenvectors.
Though this condition seems to be restrictive, Harten, Lax, van Leer [17] have shown
that such a representation of the flux is possible whenever the system (1) admits a
convex entropy.

In the case of Euler equations the physically relevant distribution function is the

Maxwell-Boltzmann distribution function [12], given by

d/2
and the set of collisional invariants is given by
1
ven=1 (7)
I+ 5|5|2

where 8 = (2RT)™! and I, = RT(2+d — ~vd)/2(y — 1).
It is also possible to use other distribution functions like that of Kaniel or of

Sanders and Prendergast, which might lead to simpler flux formulae.

3 Kinetic scheme

A kinetic scheme for a conservation law that has a kinetic representation is derived

in the following way: Since the Boltzmann equation is a scalar convection equation,

FM Report 10:2003 Department of Aerospace Engg.
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its characteristics and hence its upwind directions are clearly known. We first derive
an upwind scheme for the Boltzmann equation and then take its moments to obtain
a discretization of the conservation law. This is known as moment-method strategy.
We explain the kinetic scheme in one dimension, the equations being given by (1), (2)
by retaining only the z-components. The exact solution of the Boltzmann equation

without the collision term is
floyz, t + At) = f(v;z — vAL,T)

i.e., the solution is simply advected with speed |v| and in a direction that depends

on the sign of v. We first set

+ v+ —_v—|y
viEo, v =
and write equation (2) in CIR-split form,
of  of _of
8
FZAr TR ®)

where we have neglected the collision term J(f). Since v+ > 0 and v~ < 0, we

write the difference equation for (8) as,

f +o +fz .fz _fz+1 fz

dt Az Az =0

which is the standard upwind scheme for the convection equation. Taking moments
of this discrete equation, we get an update equation for the Euler system.
v,  F'-FL,  Fy, - F

1+1 7
=0
at Az Agz

where we have set
= (v f) 9)

This is essentially a flux vector split scheme, with the split fluxes being defined
by (9). Kinetic schemes are very robust at all Mach numbers because they are
entropy consistent and satisfy positivity of pressure and density under a CFL-like

condition.

4 Least squares approximation

We next explain the least squares method for determining the derivative of a smooth

function from arbitrarily scattered data. Let f : R — R be a sufficiently smooth

Indian Institute of Science FM Report 10:2003
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function whose values are known at some arbitrarily spaced locations {z;}. For each
point ¢ we define a set of points C; as its connectivity. Using Taylor’s formula, we

can write,
fj—fi-i- Tij dz .+O( :Eij), Tij = Xj — T;
(2

In the least squares method, the derivative is determined by solving a weighted

minimization problem:

2
minimize jEZCiwij [fj — fi — Awmjj (%)J ,  W.I.t. (%)Z (10)
The resulting formula is first order accurate in general but second order accurate on
a symmetric centered connectivity. In the above, the w;; = w(|Z; — &;|) are positive
weight functions and a standard choice is w(r) = r~? with p > 0. We have used
this weight function with p = 2 in all the computations presented here. A better
choice might be to use an exponential weight function as in SPH or cubic/quartic

polynomials used in EFGM, which remain bounded even as r — 0.

5 Kinetic scheme on arbitrary grids: LSKUM

The LSKUM [15,16] of Ghosh is obtained by generalising the kinetic scheme to
arbitrary grids using the least squares approximation. Starting with equation (8)

we now replace the two spatial derivatives with least squares approximations.
of L (Of _(of
et i e =0 11
at " (63@ o \a) (1)

Cr={jeC:zj<z}, C ={jeC:z;>uz}

where

and the subscripts indicate the stencil to be used in the least squares procedure.
Note that this corresponds to using generalised backward and forward difference for-
mula instead of standard finite difference formulae. Following the moment method
strategy, we take moments of (11) to obtain an upwind discretization of the Euler

equations. In 2-D we need four sub-sets of connectivity for each node 4:
Cf+:{j€ci:xj<$i}, Cf_Z{jECi::cj>:c,~}
Clr={jeCiy<uy}, C ={je€Ci:y;>u}

FM Report 10:2003 Department of Aerospace Engg.



Kinetic Meshless Method 7

The Boltzmann equation is discretized as

af | 8f> _ 8f> N 8f> _ 3f>
=L = A = = = 12

which is a generalised version of the CIR-split scheme in 2-D. Note that this is a
fully upwind method and has been found to be very robust at all Mach numbers. In
1-D it has been shown to be positivity preserving under a CFL-like condition and
numerical experience indicates that this property holds in higher dimensions also.

6 Dual least squares approximation

A variant of the least squares approximation, which will be called the dual least
squares approximation, has been used by Morinishi, and Balakrishnan. We explain
it in an abitrary dimension d. Let f : R* — R be a smooth function. If j € C; then
let f;; denote the value of f at the midpoint of the line segment ij. Using Taylor’s
formula

1 .
fij=fi+ §A$ij -V fi + O(|AF5%)

The dual least squares approximation is obtained from the following weighted min-

imization:
2
o L. .
minimize Z Wy [f” —fi— EA:EU -Vfil , wat. Vf; (13)
JEC;
This gives a system of d x d equations
A Vi =b;
where
1 Az AP
A =7 | D] wijAsfAy
J&C 1<a,8<d
1 [0
bi =35 > wii Az fij — fi)
JEC 1<a<d

The matrix A is symmetric and positive definite as long as the connectivity is non-
degenerate; hence a unique solution always exists. The solution of this linear system

can be written as

of a
Dual Least Squares: el Z pij(fij — fi) (14)

L 1<

Indian Institute of Science FM Report 10:2003
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Note that since we have neglected terms of O(|AZ;;j|?), we must use atleast a second
T + fj
2
the least squares approximation of the derivative,

order estimate [4] of f;, i.e., fij = f + O(|Z; — Zj|*). We also mention

Least Squares:

= o w1 (15)

i JEC;

dze

The fact that there is a factor of 1/2 in the above formula shows that the least

squares approximation satisfies the following property:

o, Of _10f

oy _10f
e 9z 20z°

Theorem 1 The formulae (14) and (15) are first order accurate estimates of the

derivative.

7 Kinetic mesh-less method

The KMM is built on the dual least squares approximation described in the last
section and the moment-method strategy. In the LSKUM which uses the least
squares approximation, all the nodal values of f are given and the only way of
introducing upwinding is by stencil sub-division. On the contrary, in the dual least
squares, the value of f;; is not known a priori, and we can introduce upwinding into
the scheme by defining f;; in a consistent and upwind manner. Substituting the
dual least squares estimate given by equation (14) into the Boltzmann equation, we

obtain 4
S Y (v — vaf) =0 (16)

a jec;

Taking moments we obtain a semi-discrete form of the conservation law

5 T D m(Fy — FY) =0 (17)
o jeC;
where
Fy= [, vafydr (18)
Re xR+

In order to upwind-bias the approximation given by equation (17), (18), we construct
fij from the particle distribution functions of nodes ¢ and j, depending on whether

the particle velocity has a component towards node ¢ or towards node j. Let V

FM Report 10:2003 Department of Aerospace Engg.



Kinetic Meshless Method 9

be a complete set of macroscopic variables which uniquely define? f. Then the
upwind-biased approximation of f;; is given by
= 1.vt
f(va I’ V;J )a
1@, 1;V;5),

<€ >0

19
oy (19)

. v
fi(0,1) = { .
0]

where &;; = (cos;;,sin6;;) is the unit vector which is directed from node ¢ to
node j and 6;; is the angle made by 7,3 with the z-axis. The V; must be atleast
second-order accurate interpolants [4] of V' from Z;, £; to the midpoint of ij. This

is achieved by using linear interpolation

1, . _ 1.
Vi = Rij(Vi+ 5 A%y - VVi),  Vij = Rij(V; = S A% - VVj) (20)

The matrix R;; effects a rotation of the coordinate system such that the z'-axis
becomes parallel to €;; upon rotation. This transformation makes it easier to use
equation (20) in (19). The derivatives of V are calculated using the least squares

approximation given by equation (15).

Remarks: An essential difference between KMM and other least squares based meth-
ods is that in KMM we apply the dual least squares approximation at the Boltzmann
level so that we have to handle only one scalar function, the distribution function.
On the other hand, Balakrishnan and Morinishi both apply the dual least squares

at the level of the conservation laws so that they deal with flux vectors or tensors.

Theorem 2 The scheme given by (17), (18), (19), (20) is rotationally invariant,
i.e., if UMY, U are the updated values in two Cartesian coordinate frames, then

they are related by
l’j’TH—l — RUn+1

where R is the coordinate transformation operator.

Remarks: A necessary condition for the above theorem to hold is that the dis-
tribution function should be a true scalar, i.e., it should be coordinate invariant.
The Maxwell-Boltzmann distribution satisfies this condition since it depends on the
velocity only in the form |7—|. The proof of the theorem makes use of the transfor-
mation properties of the first order least squares approximation [29, 30, 13]. The use
of minmax or Venkatakrishnan limiter in the presence of discontinuities, will make

the interpolation to be coordinate dependent. This has been remedied by adopting

°In the case of the Navier-Stokes equations, the distribution function depends on the spatial

derivatives of V also.

Indian Institute of Science FM Report 10:2003
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a MUSCL-type approach which is described below.

Remarks: The property of rotational invariance is important for two reasons. The
first is that this property is also shared by the partial differential equations that we
are trying to solve. Secondly, it allows us to use stretched grids in boundary layers
or near shocks (which could come from anisotropic adaptation) without leading to

loss of accuracy, even if the stretching is not aligned with the coordinate axes.

Theorem 3 The scheme given by (17), (18), (19), (20) has formal first order

accuracy.

Remarks: This result follows very easily because we have retained only terms upto
O(h) in the least squares approximation [30]. Inspite of the above theorem, the
numerical results show very good accuracy and are comparable with second order
results. The use of unsplit stencil twice in each update, for interpolation and also
for the flux derivatives, might have a beneficial effect. We give numerical evidence
that the method has an effective order of accuracy of two even on a highly random

point distribution in two dimensions.

7.1 Higher order formulation

The route to higher order formulation of KMM is straight-forward. To obtain a p-th
order scheme, we must retain terms upto O(h?) in the least squares approximation
and use an interpolation which is p-exact for determining Vj, ie., szc =V({(Z +
£;)/2)+0(|Z; —%;|PT!) in smooth regions. If we use a formally second order method,
then the least squares procedure leads to a system of five coupled equations in 2D
for Opf, Oyf, Ovaf, Oryf and Oy, f. This system has to be solved only once and we
can store the values of p that are required in formulae (14) and (15). Note that
the structure of the equations (14), (15) remains same even when the order of the
least squares approximation is changed except that the values of y will change. The
computer code does not require any modification; only the subroutine for calculating

the u’s has to be changed according to the order of the least squares approximation.

7.2 KMM for Euler equations

The Euler equations for compressible flows can be obtained as moments of the
Boltzmann equation using the Maxwell-Boltzmann distribution function. In the

case of the Euler equations, we can take the primitive variables, V = [0 u; u, T,

FM Report 10:2003 Department of Aerospace Engg.



Kinetic Meshless Method 11

for interpolation and the fluxes are given by

F;; = R;jl [COS QijF(V;;!—, Vz;) - Sineijé(‘/;;—’vi;)]

FY = Ry}! [sin0,F (Vi) ,Viy) + cos 05 G(ViF, V5|
In the above equations

F(V,W)=FT(V)+F~ (W), GV,W)=G"(V)+G (W)

where F* = (v f) and

GE(V) = / vy £ (¥, I; V') dvgdu,dT (21)
R xRxR+

Note that these split fluxes are unconventional; they are fluxes in the y-direction but
the splitting is with respect to the z-component of the molecular velocity. When
the distribution function is a Maxwellian, the expressions for these split fluxes are
given in the appendix. We can also show that if VJ = Vw_ =V, then Fj =F} and
Fg = F/. This follows easily from the tranformation properties of the Euler fluxes.

This property was used in [30] to prove the rotational invariance of the method.

7.3 Boundary conditions for Euler equations

Wall boundary conditions based on the strong formulation [5] can be easily imple-
mented in a meshless framework. In the strong formulation, the following conditions

are enforced at a solid wall point.

i-n = 0

op .o
on

oS
on
O0H
on
where S = p/p” and H = ¢?/(y — 1) + u7/2, and we have neglected the vortic-
ity source term in entropy equation, which is a valid assumption for subsonic and

transonic flows. These conditions are enforced using the least squares approxima-

tion; if ¢ denotes any of the variables (p, S, H) at a wall boundary point b, then we

Indian Institute of Science FM Report 10:2003



12 Praveen and Deshpande

determine ¢, from
> > ugi(bs— be) + > > udi(bi — ) = Sy
JECy JE€Cy
An alternative, which we have not tried, is to determine ¢ by solving a constrained

least squares minimization problem:

minimize Y wy;(¢; — ¢y — AZy; - Vebp)® + (7ip - Vb — Sp)?, Wt dy, Vb
JECy

assuming that ¢;, j € Cy are known. The solution satisfies the boundary condition
only in the limit of the steady solution. A trick that we have successfully used is
to update the flow at a solid wall point using the interior scheme and then kill the
normal component of the velocity. This has been used in the case of supersonic flow
over a cylinder and the results are presented here. A variant of this which works
well for subsonic and transonic flows is to correct the updated pressure and density
by solving the normal momentum and normal entropy equations listed above.

For subsonic and transonic flows the solution on the outer boundary is updated

by using the point vortex model of Thomas and Salas [35].

8 Interpolation schemes

Interpolation of some set of variables is required to determine the fluxes Fj7. Any set
of variables like the conserved variables, primitive variables, characteristic variables
or entropy variables can be used. In the present work, we have used primitive

variables for this purpose.

8.1 Linear interpolation with Venkatakrishnan limiter

Venkatakrishnan proposed a limiter for high order unstructured finite volume com-
putations based on a smooth modification of the minmax limiter of Barth and
Jespersen. The linear interpolants (20) are modified by multiplying the gradients
with Venkatakrishnan limiter function s, which is defined for any node 7 as follows

$; = min s;;
jec;

and o e
(A7) + 2004 + @

(A5 +2(A5)2+ ALAL + @

Si5 =

FM Report 10:2003 Department of Aerospace Engg.
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1
where Ai_j = EAacij -VV; and
AZ?L.: Vimf‘X—Vi ?fAi:j>0
J v — v, 1fAij <0

In the above equation V"%, V;mi“ are the maximum and minimum values of V' in
the connectivity and @ = (Kh;)3, where h; can be taken to be the minimum length
in the connectivity. The value of K determines the amount of limiting with a large

value causing almost no limiting. In the present computations, it is set to 3.

8.2 Rotationally invariant interpolant

Another way of obtaining a limited interpolant is to follow the MUSCL approach [19]
which can be generalized to multidimensions and non-structured grids [24]. We first
define

8y = RyATy- WV, A= By(V; = V)

The interpolants to the midpoint of z} are given by

Siq —

Vii = RiVj — % [(1 - ﬁs]-i)A;“i +(1+ Iﬁ)S]'Z')Aj_i]
where s is a Van Albada limiter which is defined as
20507 + €
835 = max (O, (AZT"]-)Z n (A;j)Q e

), 0<ex 1

with a similar expression for s;;. The parameter s determines the amount of up-
winding; if K = 0 then this corresponds to taking the arithmetic average in smooth
regions. If Kk < 0 then there is more upwind-bias in the interpolation. This way
of defining V; makes it rotationally-invariant even under the action of the limiter,
and the scheme has the property stated in theorem (1).

9 Numerical order of accuracy

To investigate the numerical order of accuracy of KMM, we have applied it to a

scalar conservation law of the form

13

Indian Institute of Science FM Report 10:2003



14 Praveen and Deshpande

This equation can be obtained by taking moments (with ¢ = 1) of the Boltzmann
equation (2) with a Maxwellian-type distribution given by

5\ 42
1:2.0 = o@t) (£) e (-l - aP)

for any 8 > 0. We choose a two-dimensional problem with u, = vy, uy = —z, ie.,
we solve
do 0 0
_ - 1 1 22
ot WO+ (a0 =0 120 @ @D x0.])  (22)

with initial conditions

u\zr,y, =
Y 0, elsewhere

We choose u, to be smooth and compactly supported in [0, 1] so that the appropriate

boundary conditions are
w(0,y,t) = uo(y), u(z,1,t)=u(l,y,t)=0, V>0
The characteristics are concentric circles centered at the origin so that the steady

us(z,y) = uo(vV 22 + 4?)

We use the following compactly supported data

state solution is

1 3
;2
sin“(2m(y +1/4)), - <y<-
0, elsewhere
Equation (22) with 8 = 0.1 is solved on a sequence of uniform Cartesian and

non-uniform/random grids which become successively finer. The non-uniform grid
is obained by randomly perturbing the uniform Cartesian grid. The perturbed
coordinates (Z,y) are given by Z = z + 0.4CAz and § = y + 0.4nAy, where (,
n € [—1,1] are random numbers. Figure (1) shows a non-uniform grid of 2601
points which is obtained by perturbing a Cartesian grid of 51 x 51 points. For each
grid, the Ly, Ly and Lo, error are calculated and these are plotted in figure (2)

against a grid size h which is defined as
h = ma; ax|¥; — Z;
max 1}1ec)ic|a:] Tl
The slope of the best straight line fit for the error as a function of 4 in log-log scale

FM Report 10:2003 Department of Aerospace Engg.
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GI‘ld Ll L2 Loo
Uniform | 2.27 | 2.21 | 1.97
Random | 2.19 | 2.12 | 1.90

Table 1: Computed order of accuracy on uniform and non-uniform grids.
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Figure 3: (a) Conservation error versus point spacing, and (b) solution

on the line y = 0.

gives the order of accuracy and these are listed in table. The best fit lines are also
shown in figure (2). These results show an effective second order accuracy for the
method. The initial condition specified on z = 0 is convected along circles centered
at the origin, and the same profile should be obtained on y = 0 at steady state.
Any difference in the two is a measure of loss of conservation. Hence to investigate
the conservation property of the numerical method, we compute the L; norm of the
solution error on the line y = 0 and this is plotted in figure (3a) against the point
spacing on that line. The slope of these lines are found to be 2.33 and 2.14 for the
uniform and random grids, respectively. The solution on the line y = 0 obtained
on the final grid of 10201 points is shown in figure (3b), and is compared with the
exact solution. This also shows an effective second order accuracy. Numerical results
for transonic and supersonic flows indicate that the method has good conservation
property since otherwise shocks would not have been captured correctly. Note that
such methods cannot be conservative in the finite-volume sense; the best that can
be done is to show that the conservation error decreases with the discretization size
h.

The above numerical evidence suggests that the method given by (17), (18), (19),
(20), might have effective second order accuracy even though the formal accuracy is
one. The numerical test on highly non-uniform grids indicates that formal second

order accuracy might be obtained on smooth grids and slightly non-uniform grids
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though a proof of this is not available at present. The selection of the connectivity
will also play an important role in determining the accuracy. For arbitrary distribu-
tion of points, a good connectivity can be obtained by performing a local delaunay
triangulation on a local cloud of points and selecting the nearest neighbours. If the
given point distribution is not smooth then it is also possible to use some grid im-
provement strategies to obtain a better point distribution. Alternately, non-uniform
Cartesian grids based on quadtree technique can be generated relatively easily even
for complex geometries and provide an ideal way of obtaining the point distribution
required for meshless methods. These grids are smooth since the local point spacing

jumps only by a factor of two.

10 Numerical results

The numerical results presented here are computed on unstructured grids since they
are very easy to generate in 2-D and many public domain softwares are available.
The vertices of the unstructured grid (triangles) provide the point distribution for
the domain of the problem. The grid information is only used to generate the
connectivity information and no other grid information is used in the solution pro-
cess. In all the results presented below (except for subsonic flows), the limiter of
Venkatakrishnan is used and time integration is performed using a 3-stage scheme
of Shu and Osher [33] which for the equation

dU
— =
3 — L)

is given by

v® = pyr
v = U+ AtL(UO)
v® = Som4 U0+ ALUO))

4
Ul = %U” + %(U@) + AtL(U®@))
U'IL—I—l — U(3)

The time-step is chosen based on the maximum local wave-speed (|i| + ¢), the

minimum point spacing in the connectivity, and a CFL number of 2.
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10.1 Subsonic flow over cylinder

Subsonic flow over a cylinder is computed at a free-stream Mach number of 0.38
with a total 4111 points with 250 points on the cylinder; a close-up view is shown
in figure (4). The computed Mach number on cylinder shows very good left-right
symmetry in figure (5) The pressure and Mach contours around the cylinder are
shown in figure (6) which also show good symmetry in the solution. Any asymmetry
will be seen more prominently in the Mach number contours and this is found to
be very less in this case. The entropy production is very less with Sy, = 1.59731,
Smax = 1.59886 while the free-stream value is Soo = 1.59869, the maximum change
being 0.097% of the freestream value. The lift and drag coefficients are 0.0006 and
0.0012 respectively.

10.2 Subsonic flow over Williams airfoil

The Williams airfoil is a two element airfoil for which potential solution is available.
Figure (7) shows a close-up view of the grid and the computed streamlines through
the gap between the airfoil and the flap. Figure (8) shows very good comparison
between the computed pressure coefficient and the potential solution for both the
main airfoil and the flap, while figure (9) shows the pressure and Mach contours. The
minimum and maximum entropy in the domain are Sy, = 3.45724, Spax = 3.46488
while the free-stream value is S, = 3.45776, the maximum change being 0.22% of
the freestream value. The lift and drag coefficients are 3.7608 and -0.0069 while the
potential solution gives 3.736 and -0.0001 respectively.

10.3 Supersonic flow over cylinder

Supersonic flow over a cylinder at My, = 3.0 is computed on a grid of 12857 points.
The interior scheme is applied on the wall boundary points also and no special
treatment is done except to kill the normal component of the velocity. The pressure
and Mach contours are shown in figure (10); the Mach contours reveal a slip line
on the leeward side of the cylinder. This can be seen in the velocity vector plot in
figure (11). There are two counter-rotating vortices on the leeward side and one of
them is seen in the streamline pattern in figure (12), while both of them can be seen
in the vector plot (11) and entropy contours in figure (13). At the stagnation point
behind the shock, the computed total pressure and total temperature are 0.3234
and 1.0006, while the exact values are 0.3283 and 1.0000 respectively.
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10.4 Transonic Aow over NACA-0012

We have computed the transonic flow over NACA-0012 at My, = 0.85, AOA=1° on a
series of solution adapted grids. The grid generation and adaptation was performed
using BAMG [2,14]. The adaptation is based on all the conserved variables and
figure (14) shows the sequence of adapted grids with five levels of adaptation, with
1989 (initial grid), 1636, 2222, 2999, 4335 and 6938 points. Figures (15), (16) show
the pressure and Mach contours on the adapted grids, while figure (17) shows the
contours on the final grid. In figure (18) the pressure coefficient on the final grid is
compared with that on a grid of 4385 points. The lift and drag coefficients on the
final grid are 0.389 and 0.054 respectively.

10.5 Transonic low over RAE-2822

A similar adaptation sequence is carried out for transonic flow over RAE-2822 airfoil
at M, = 0.75 and AOA=3°. The initial and adapted grids are shown in figure (19)
which contain 1966 (initial grid), 1624, 2027, 2696, 3828 and 5482 points. The
pressure and Mach contours are shown in figure (20) and (21). The contours on
the final grid are shown in figure (22). The lift and drag coefficients are 1.141 and
0.0445 respectively.

11 An alternative formulation

We can give an alternative formulation of KMM which has some resemblance to
finite volume methods. For this we follow the shape function approach that is

common in finite element methods and approximate f around the node 7 by
fi(@) = Ai+) A} (a® - 1)
o

Note that in the previous formulation the value of A; is fixed by the known value
of f at node i, while here it is left as an additional variable. Performing a least

squares minimization as before, we obtain the following equations for the derivatives

= _vili

L 1<

at node %
of

oz«

where the coefficients, which have the units of inverse-length, sum to zero

ZV%:O

JEC;

Indian Institute of Science FM Report 10:2003



20 Praveen and Deshpande

Using this approximation in the Boltzmann equation and taking moments we obtain

a semi-discrete equation

ulG = (23)

a jeC;
where the flux Fj is defined as before. The finite volume approximation can be

written as

ns S FS

ZZ zg )5 -0

o jeC;

assuming the points in C; define a finite volume around node 7. Note that the
coefficients in the above equation have the property

Z nf‘jSij =0

JEC
and hence we have the following structural similarity between the two methods

i

We have not explored this approach or its further similarities with the finite vol-
ume method, but it is possible that the above similarity might have much deeper
consequences. For a related discussion, see the paper by Junk [20].

In the shape function approach, it is not necessary to use only polynomial basis
functions; some authors have used radial basis functions to better represent some
local behaviour which has cylindrical or spherical symmetry. Interpolation using a
combination of polynomial and radial basis functions has been shown to be superior

to pure polynomial-based interpolation [34].

12 Summary

A kinetic meshless method for the numerical solution of hyperbolic conservation
laws which are derivable from a Boltzmann-type equation has been presented and
applied to many 2D problems involving subsonic to supersonic flows. These re-
sults amply demonstrate the ability of the method to model compressible flows and
capture the important flow features. While formally the method is only first or-
der accurate, the results indicate much better accuracy; and a numerical order of
accuracy of approximately two has been demonstrated for a scalar convection equa-
tion even on highly non-uniform grids. The extension of the method to formally
higher order accuracy is straight-forward. Future work is aimed at using the al-
ternative formulation described in the previous section together with higher order

basis functions.
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Appendix: Expressions for split Auxes

The expressions for the split fluxes as defined in equation (21) are given below.

Q“.yA§cIE
guy(umAiE + B;)
(p + oul) AL

U U
(F + p)uy AL + %Bm

The fluxes F* are the usual kinetic z-split fluxes, which are given by,

Q(UIA;;E + B,)
(p + ou2) AF + ou. B,

guy(umAiE + By)

| (B + pusAE £ (B +p/2)B, |

where ,
po_P o
v—1 2
and for a = z, 9,
Sa = ua\/B
1
A = 5[1 + erf(sqy)]
b _ el
“ 2¢/np
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Figure 4: Unstructured grid for a 2-D cylinder.
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Figure 6: Pressure and Mach contours for flow over a cylinder at M., = 0.38 and AOA =
0°.
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Figure 8: Pressure coefficient for Williams airfoil, M., = 0.15 and AOA = 0°.
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Figure 9: Pressure and Mach contours for Williams airfoil, M, = 0.15 and AOA = 0°.

Indian Institute of Science FM Report 10:2003



30 Praveen and Deshpande

Pressure

Mach number

Figure 10: Pressure and Mach contours for cylinder, M, = 3 and AOA = 0°.
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//

Figure 11: Velocity vectors on leeward side of cylinder, M, = 3 and AOA = 0°.
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Figure 12: Streamline pattern on leeward side of cylinder, M, = 3 and AOA = (0°.
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Figure 13:

Entropy contours around cylinder, M,, = 3 and AOA = 0°.
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Figure 15: Sequence of pressure contours for NACA-0012, M, = 0.85 and AOA = 1.0°.
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Figure 16: Sequence of mach contours for NACA-0012, M, = 0.85 and AOA = 1.0°.
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Figure 17: Pressure and Mach contours on final mesh for NACA-0012, M., = 0.85 and

AOA =1.0°
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Figure 19: Sequence of adapted grids for RAE-2822
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Figure 20: Pressure contours on adapted grids for RAE-2822
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Figure 21: Mach contours on adapted grids for RAE-2822
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Figure 22: Pressure and Mach contours on final mesh for RAE-2822
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