Convergence acceleration techniques

Praveen. C
praveen@math.tifrbng.res.in

Tata Institute of Fundamental Research
Center for Applicable Mathematics
Bangalore 560065
http://math.tifrbng.res.in/~praveen

April 8, 2013

31

http://math.tifrbng.res.in/~praveen

Time step restrictions

Time step of explicit methods restricted by stability condition, CFL
condition.

Convection problems

A
At < Tx’ A = largest wave speed = |u| 4+ a

Diffusion problems

2
At < A2—lgj, v = kinematic viscosity
We solve unsteady Euler/NS equations even when we are interested in the
steady state solution. We march the solution forward in time until steady
solution is obtained. This is because unsteady Euler equations are
hyperbolic at all Mach numbers and we can construct good schemes for
hyperbolic equations.

)

31

Time step restrictions

Steady Euler equations are not of fixed type. In subsonic regions they are

of elliptic type and in supersonic regions they are of hyperbolic type.
Constructing schemes for this case is complicated.

Semi-discrete finite volume scheme
dU;
Cil—2 + R;(U)=0
‘ .7| dt +]()
We want the steady state solution U such that

R;(U*) =0, j=1,2,...,N,
Forward Euler explicit scheme
+1
urt =uy

\Cj’jT + R;(U") =0

31

Time step restrictions

Update equation
At
n+1l _ rrn . n
Ui =Uj - —‘CWR](U)
J
Set initial condition U°. For aerodynamic problems, we use free-stream
conditions as initial conditions throughout the domain. Then apply update
scheme repeatedly until convergence is achieved, e.g., the residual
becomes small

|R"|| < TOL
where
IR = | Y[R (U™
J

The convergence is usually measured with respect to the initial residual

122
<TOL
1=

Time step restrictions

For stability the time step should satisfy (assuming convection problem)
hj .
At < —| for j'th cell
Aj

If we are doing a time accurate simulation, then we have to choose the
smallest time step from all the cells

b
At < min -2
J)\j

which gives us the global time step
B
At = CFLmin —
J)\j

The smallest cell determines the global time step.

Time step restrictions

If we want only steady state solution, we do not care for time accuracy.
Then in each cell we can use the local allowed time step
h; At
L oy n+1 __ n o _ J . n
At]—CFL)\', U™ =U; 7|C| ;(U™)
J J
This is known as local time stepping and leads to faster convergence to

steady state than global time stepping.

6

31

Time step restrictions

1.19

1.16

113 4

it coefficient

1.10

1.07 4
—v— local time-stepping

—o— global time-stepping

104 T T T T T
0.00400 200403 400403 6.0e403 8.00403 1.00+04
CPU-time [s]

Figure 9.1: Comparison of convergence histories of the lift coefficient with and
without local time-stepping for an inviscid subsonic flow on an unstructured
grid.

Multi-stage RK scheme

(0)
WO = wr
PO WO o AU RO
Wit =W - o B
I
7@ _ O Atf (1)
W] _WI RI
il _ rir(m) _ 1i(0) Aty zm-1)
wrtl = wim™ = WO _ o, ZLRS
Qy
[first-order scheme second-order scheme
stages 3 4 5 3 4 5
4 1.5 2.0 2.5 0.69 0.92 1.15
oy 0.1481 | 0.0833 | 0.0533 || 0.1918 | 0.1084 | 0.0695
Qg 0.4000 | 0.2069 | 0.1263 || 0.4929 | 0.2602 | 0.1602
as 1.0000 | 0.4265 | 0.2375 || 1.0000 | 0.5052 | 0.2898
oy 1.0000 | 0.4414 1.0000 | 0.5060
as 1.0000 1.0000

Table 6.1: Multistage scheme: optimised stage coefficients () and CFL num-

bers (o) for first- and second-order upwind spatial discretisations.

31

Hybrid Multi-stage RK scheme

Residual is made of convective and dissipation flux (includes artificial

dissipation)

(R =3 |[Fe(Wa)AS] — (G0
k;Fl

(Ba) =3 [Foas+D]
k=1

Diffusive flux is not computed in every stage. Example: (5,3)-scheme

31

Hybrid Multi-stage RK scheme

W

-

wi

50y _ p0)

RO _ F¢]1

3 0

-

B® ﬁ((izm]]

5(3) _ p(2,0) - - S0
RY) — Ry]1 RO = B,RY 4 (1 - B3) BV
p4) _ p4,2) =(4,2 54 5(2,0
R - Ry]1’ Rfi)ZﬁsRé)Jr(l—ﬂs)R,(i)

10/31

Hybrid Multi-stage RK scheme

central scheme || 1st-order upwind | 2nd-order upwind
=236 o=20 =10
stage «a I6) @ 8 a I}
1 0.2500 | 1.00 || 0.2742 1.00 0.2742 1.00
2 0.1667 | 0.00 || 0.2067 0.00 0.2067 0.00
3 0.3750 | 0.56 || 0.5020 0.56 0.5020 0.56
4 0.5000 | 0.00 || 0.5142 0.00 0.5142 0.00
5 1.0000 | 0.44 || 1.0000 | 0.44 1.0000 0.44

Table 6.2: Hybrid multistage scheme: optimised stage (&) and blending (3)
coefficients, as well as CFL numbers (o) for central and upwind spatial discreti-
sations. Note the identical coefficients for the 1st- and the 2nd-order upwind

scheme but the different CFL numbers.

11/31

Implicit scheme

Backward Euler scheme

At

Un+1 Ur — 7R (Un—l-l)
o
Crank-Nicholson scheme
U”H U _ At [R;(U™) + Rj(U”“)
I (O] 2

The unknown U™t is inside the non-linear term R. We have to solve this
iteratively using some Newton-type method. For steady state problems, we
need not solve for U™*! exactly which allows us to make approximations
in the Newton method.

Remark: One can try to solve R(U) = 0 directly using Newton method.
But this problem is usually ill-conditioned and would require a good
preconditioner.

12/31

Backward Euler scheme
Let us look at the backward Euler scheme. Write

urtt=ur+our, UM =U" -U"

Then we linearize the residual term

n n 8R n n n
Rj(U™) = R;(U™) + ilip —L(Um™)sU; +Z<9Uk (U™MUR + O (5U)?

The summation on the right is over all cells in the stencil of j'th cell. For
a first order scheme, the stencil involves only the neighbouring cells
(maybe more for NS) while for second order scheme, the stencil contains
neighbours of neighbours due to the reconstruction process.

For steady state problems, we can use the first order scheme to compute
the Jacobian terms. So we linearise as

n+1 n aR(l) n n aR(l) n
Rj(U™) = Rj(U™) + 8U —L(U™)SUT + > 6Uk (umsup
kEN;

13/31

Backward Euler scheme

(1)

RV
1G] n OR, n
SUT + E aUk SUP = —R;(U™)

At 8U

We have one such equation from each cell and they form a coupled matrix
equation.

AU™)SU™ = —R(U™)

The most obvious way to solve them is using a Gauss-Jacobi, Gauss-Seidel
method or Symmetric Gauss-Seidel method.

The matrix A is sparse since it mostly has zeroes. We can store only the
non-zero blocks in the matrix in sparse format.

Remark: In the case of Navier-Stokes equations, the jacobians must
include the viscous fluxes also.

14 /31

Simplifications

The first order residual

1
RY = 3" H(U;, U, njn) Sl
kEN;

Use Steger-Warming flux
H(Uj, U, i) = AT (Uj, nj)Uj + A (U, i) Ui

Then Jacobians are approximated as

oRr\Y oR\Y
S = > AT U, nk)ISinl, o = A Uk i) 1Syl
I ken; k
Lax-Friedrich's type flux
o+ 1
H(Uj, U, nji) = J; 5 L "Mk — iAjk(Uk - Uj)

15/31

Simplifications

where Ajj is maximum wave speed along nj, e.g.,
Ajke = luji - il + aji

Then the split Jacobians are approximated as

1
AT (Ujmge) = SLAWUG ngk) + Aje]

1
A~ (U, njx) = §[A(Uk7njk) — Njrl]

This simplifies the Jacobian terms, e.g.,

1
_ 1 Z (U mge) + Md) = 5 | D Al Syl | 1
kGN kEN;

16 /31

Simplifications

The implicit scheme becomes

Cj
T S Sl [07+ 32 SAWin) — AL = —Ry(U)
kEN; kEN;

The coefficient of 6Uj; is a scalar which makes it easy to implement
Jacobi/Seidel methods.

17/31

Structure of the implicit matrix

Un+l n
[eRp: N +RUML UM UM =0
OR Cil or
SU- I+ oo | U7+ 50 -R Uy,
U4 1+[At +3U} Uj+ o =~
stencil implicit operator
L D U
'LDU
LDU
LDU
LDU
grid LESU
0 LD

Figure 6.1: 1-D structured grid and the associated implicit operator matrix
for a 3-point stencil.

1)

18/31

Structure of the implicit matrix

16 10 5 _ _
" "= "
9 12 n = ==
2 L LI =
18 13 = l.]
(]] u
] nm
[|] u
15 3 - -
20 e | I] ..l n
H 17 m m mmE
m n
(T)
u ['}
19 14 4 " u e
1 8 6 7

Figure 6.3: 2-D unstructured grid (left) and the associated implicit operator
matrix for a nearest neighbour stencil (right). Nonzero block matrices displayed

as filled rectangles.

19/31

Structure of the implicit matrix

19
15 14
20 10
11
16 7
12 5
17 8 3
13 6
18 9 1

Figure 6.4: Reduced bandwidth (from 18 to 5) of the implicit operator from
Fig. 6.3 with reverse-Cuthill-McKee ordering. Nonzero block matrices displayed

as filled rectangles.

20/31

LU-SGS method

Consider the implicit matrix equation

ASU™ = —R(U™)

where A might involve the Jacobian simplifications we have discussed.

A=L+D+U
We can approximately factorize matrix A
(L+D)D Y (U + D)sU" = —R(U™)
Note that there is some error in the factorization

(L+D)D'(U+D)=A+LD U

21/31

LU-SGS method

The factorised system can be solved in two steps
(L+D)sU = —R(U")
(U + D)oU™ = D&U
First step (L + D)6U = —R(U™). For j'th cell
AjoU; + > ApdUy = —R;(U™)
keL(j)
Forward loop: For j =1,2,..., N,
Ajj5Uj = — Z Agk(sUk
keL(j
Second step (U + D)dU™ = DSU which for j'th cell is

Aj6UR + Y ApbUR = Aj;60;
KeU (j)

LU-SGS method

Backward loop: For j = N, N, —1,...,2,1

Aj;0UT = Aj;0U; — Z A U7
keU(j

23/31

Matrix-free LU-SGS method

Let
L(j) = {Cj: neighbour of C; such that k < j}
U(j) = {Ck: neighbour of C; such that k& > j}
First step (L + D)0U = —R(U™). For j'th cell

D 5U ™ Z 5 Ukvnjk) -)‘jkl](sﬁk — _R](Un)
keL(j)

A(Ukanjk)(SUk ~ F(Uk + 5Uk,njk) — F(Uk,njk) = 5Fk

D;oU; + Z 5Fk — A\rbUi] = —R;(U™)
keL(j)

The first step involves forward loop: j =1,2,..., N

_ 1 . _
Dj(;Uj = —R](Un) - Z 5[5Fk - AjkéUk]
kEL(H)

24 /31

Matrix-free LU-SGS method

Second step (U 4 D)dU™ = DU which for j'th cell is
1 _
DU +) 5[AUk k) = NI J0U} = D;00;
keU(j)
A(Uk,n]k)dUg ~ F(Uk + 6U,?,njk) - F(Uk,n]’k) =0k},

The second step involves: j =N, N —1,...,2,1

_ 1
DU} = DysU; — Y 5 [0Fk = AjidU]
keU(j)

Remark: For details about including viscous fluxes in the implicit scheme
and further refinements, see Blazek, section 6.2.4 and the quoted
references.

25 /31

Unsteady simulations: dual time stepping
Crank-Nicholson, second order accurate

A I
M - n n+1 —
o+ 5RO + RUM =0

Second order BDF time integration
M%Un+1 U™ + %Unfl
At

Now we have to compute U™ ! exactly since want time accurate solution.
We cannot perform approximate linearizations on this problem. But exact
linearization will lead to a bigger matrix problem with more fillin. Define

+RU™) =0

3 1rm—1

sU =20 + 5U"
At

Use pseudo-time integration: Solve for steady state solution of

ouv .o
M%— 4+ R (U) =0

RU)=M

+ R(U)

26 /31

Multigrid method

(For good introduction see: Briggs, Emden, McCormick, “Multigrid
Tutorial”, SIAM)

Classical iterative methods like Jacobi, LU-SGS, GMRES are effective in
removing high frequency errors.
Basic idea of multi-grid: Construct a sequence of meshes

® Apply a smoother on the finest mesh

® Transfer solution (correction) to coarser mesh

® On the coarse mesh, the low frequency errors appear as high frequency

® Apply a smoother on the coarse mesh

® Go down to still coarser mesh
® On coarsest mesh, solve matrix problem exactly
® Transfer solution (correction) to finer mesh

® Do some post-smoothing

27 /31

Multigrid method

Structured grids: Straightforward to generate coarser meshes.

Unstructured grids: Not easy to generate coarser meshes unless the fine
mesh was itself obtained by successive refinement. In realistic CFD
situations we usually only have the fine mesh. Then we can generate
coarser meshes by agglomerating the cells to form bigger cells. This is
the approach used in SU2.

28 /31

Non-linear multigrid method

Backward Euler

Un+1 _yun
M—— =
A TRUTT) =0
Loy R(U™) = Lo
At At

Denote the unknown solution u;, = U™t on the finest mesh Q,
Lh(uh) = fh in Qh

Apply a few iterations of smoothing (usually 1 to 3) to obtain new
approximation @y. But Lp(up) # fr,. Define residual

Lip(an) = fa=r1n
r, has smooth part of error. Improved solution

up = Up, + Ch, Ly(un) = Ly(tn + cp) = f

29 /31

Non-linear multigrid method
Ly(up, + cn) — Lp(un) = fr — Lp(un) = =13

We will solve for the correction ¢p, on a coarser mesh €. We need to
transfer the above problem onto Qg. This is achieved using a restriction

operator.
Conservative restriction operator: used for residual
If:Qh%QH, TH:I}?Th
Interpolatory restriction operator: used for solution
I_}IL{:Qh—>QH, uH:f;IL{ﬂh+cH
Coarse grid problem
LH(j,{{ﬂh —I—CH) — LH(f]?ﬂh) = —I}IL{T}Z
LH(UH) = LH(I_}?ﬂh) — I}{{T‘h

30/31

Non-linear multigrid method

We apply a few iterations of the smoother to compute an approximation
to ug. This gives us the correction

CH:uH—jfﬂh

This correction term is also smooth since the high frequency errors have
been eliminated. We now transfer the correction cy to the finer mesh €,
and update the solution on fine mesh

e = ay, 4+ ey

In practice we may have several levels of coarse meshes but the above
procedure can be still applied. The levels can be arranged in a V-cycle or a
W-cycle.

Remark: For the agglomeration procedure, see the SU2 AIAA paper and
the quoted references.

31/31

