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Euler equations in 1-D

oU  OF P pu
5_‘_87:0’ U=|pu|, FU=| p+pu?
v E (E+p)u
p = density, wu = velocity, p = pressure
1
FE = total energy per unit volume = pe + 3 pu?

pe = internal energy per unit volume
e = internal energy per unit mass

The pressure p is related to the internal energy e by the caloric equation of
state p = p(p, e); for a calorically ideal gas, p = (v — 1)pe, so that

p=(r-1) B o]

N
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Flux Jacobian
The flux jacobian A € R3*3 is defined as

_oF
- oU

The jacobian can be computed by first expressing the flux vector in terms
of the conserved variables

A(U) = F'(U)

Us
1 Us
FU)=| 38=7F +0—-1Us

UsU U3
7 (- D

The jacobian is then given by
0 1 0
2
A(U) = —1(v-3) (%ﬁ) (3—7)F v—1

3 2
— %+ (v = 1) (%) vgE - 5(v 1) (%ﬁ) T



Flux Jacobian

Defining the total specific enthalpy H

a
H=(E = —u?
(E+p)/p 1t
The jacobian matrix can be written as
0 1 0
A(U) = (v —3)u? B-yu  y-1
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Hyperbolicity

We can write Euler equations in quasi-linear form

ou ou

The flux Jacobian A has eigenvalues A\ = u —a, Ao = u and A3 = u + a.
The corresponding right eigenvectors are

0

1 1 1
rmn=\\uv—a |, ro= U, r3=| uta
H—ua %uz H + ua

which are linearly independent. Thus the time dependent Euler equations
are hyperbolic. The flux Jacobian can be expressed in terms of the
eigenvalues and eigenvectors by the following diagonal decomposition

A= RAR™!



Hyperbolicity

where the matrix R has the eigenvectors on its columns and
A = diag(A1, A2, A3). The rows of R~! are the left eigenvectors of A; the

left and right eigenvectors are mutually orthogonal

R1=1|71_2¢L

we have lirj = 51]

. In fact, since

1

_y=lw 1  y=1
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Homogeneity property

If the equation of state satisfies

plap,e) = ap(p,e), for every a >0

then it is easy to check! that the flux vector satisfies
F(aU) =aF(U) forevery a>0

This implies that
OF
F=_—-U=AU
oU

which is called the homogeneity property. It can also be directly checked
by computing the product AU. This special property of the Euler

equations is used in the Steger-Warming flux splitting scheme and in the
Beam-Warming scheme.

See [7]
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Primitive form
Primitive variables
_ T
V - [pv U, p]

The transformation between U and V is given by

Up=p p=U1

U2 = pu u="Us/U;

=p/(y—=1)+pu*/2 | p= (v = 1)(Us — U3/(2U1))

Defining the jacobian M := U’(V'), the Euler equations can be
transformed to the primitive form

v LoV S
S TAS =0, A=MTtAM

The Jacobian of the transformation is

M =

MFM S =
T O
‘»—‘ o O

)

S
2
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Primitive form

This matrix is invertible since det(M) = p/(y — 1) > 0. The matrix A can
be computed as

u p 0
A — 1
A=10 u 5
0 pa’® u

whose eigenvalues are again u — a, v and u + a. This is obvious since A
and A are related by a similarity transformation.

The primitive form can also be derived by manipulating the conservation
form in the following way. The continuity equation gives

Op dp ou

which is in the primitive form. The momentum equation can be written as

u 0p, aOp w0
pat+u6t+uax+pu8x 8:1;_0



Primitive form

Using the continuity equation to eliminate the time derivative of p we have

du ou 10p_
ot oxr  poxr

Similarly, from the energy equation and eliminating p; and u;, we obtain

Writing the three equations as a system, we have

PR u p (1) PR
— 0 u =|—=— =0
ot ul ) P 8.'L' b

P 0 pa* wu

which immediately gives us the matrix A.
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Entropy equation

Consider the quantity s = p/p”. Using the primitive form of the Euler
equations, we can show that

9s _ 1 (0p  ,0p
o p\ar "ot

_ L (O p0p
B up‘*(@x af)a:)

which gives us an additional conservation law

0s i 0s 0
T
ot Ox
This equation tells us that the quantity s which is the entropy, is
convected along with the fluid; the entropy of a fluid element remains
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Entropy equation

constant. This is however not always true, e.g. when shocks are present.
Using the continuity equation this can also be written in conservation form

2 (05) + - (psu) = 0

We can replace s by any convex function 7(s) and derive a similar
conservation law for 7. In the presence of shocks, the equality must be
replaced by an inequality and the equation interpreted in the weak sense.
For smooth solutions, the entropy equation implies that p = constp” along
a particle path. For 1-D problems, if the inflow is uniform in time then the
entropy is constant everywhere.
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Characteristic form

We can put the Euler equations in the form

N
A=
ot + Ox =0
which leads to the characteristic equation
do dx
T 0 along T

The entropy equation is already in this form, i.e.,

d d
£ =0, along *

dt

A

=Uu

Combining the primitive form of the momentum and pressure equations,

we have

dp Op 28 8

Ou  Op\
a+a>—0
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Characteristic form

or
Op dp ou ou
=0
at—i—(u—i—a)(9 —i—pa[at (u—i—a)ax}
which implies that
1dp du dz
e T 1 D
padt+ 1 0 along & u+a

Integrating this equation we have

/<dp+du>:C along d—x:qua
pa dt

The entropy condition implies that p, a can be written as functions of
pressure so that the first integral can be evaluated to

a
v—1

N U ‘ 1 dx n
— = cons along — =u+a
2 ’ & I
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Characteristic form

Similarly we get

a U ‘ 1 dx
— — = cons alon — =U—a
N1 2 ’ & W
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Riemann problem (Shock tube problem)

Two gases are separated by a diaphragm inside a tube. The gases on the
two sides of the diaphragm are at different states; when the diaphragm is
ruptured, a pattern of waves is set up in the tube which may travel along
the length of the tube.

Diaphragm

Pr, Ui, P Pry Ur; Pr

We have seen that for a linear system of n hyperbolic PDEs, the Riemann
problem consists of n discontinuity waves propagating with speeds given
by the eigenvalues. For the 1-D Euler equations, the Riemann problem has
in general three waves known as shock, contact and expansion wave.
What type of waves are actually present in the solution will depend on the
initial conditions of the Riemann problem.
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Riemann problem (Shock tube problem)

t t t

/
Ve

U U / U Tail
Shock Contact

Head

U,

e A shock is a discontinuity across which all the flow variables density,
velocity, pressure, are discontinuous. A shock is associated with the
characteristic fields corresponding to the eigenvalues Ay = v — a and
A3 = u + a. The characteristics on either side of the shock intersect
into the shock. Fluid particles can cross the shock; when this
happens, their velocity decreases, and, density and pressure increase.
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Riemann problem (Shock tube problem)

e A contact is a discontinuity across which density is discontinuous but
pressure and velocity are continous. It is associated with the
characteristic field corresponding to the eigenvalue Ao = u. The
characteristics on either side of the contact are parallel to the contact
line. Fluid particles do not cross a contact discontinuity.

o A rarefaction or expansion wave is a continous wave which consists of
a head and a tail; all the flow quantities vary continuously through
the wave and the entropy is constant. This wave is associated with
the characteristic fields corresponding to the eigenvalues \1 = u —a
and A\3 = u + a.
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Riemann problem (Shock tube problem)
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Fig. 4.2. Possible wave patterns in the solution of the Riemann problem: (a) left
rarefaction, contact, right shock (b) left shock, contact, right rarefaction (c) left
rarefaction, contact, right rarefaction (d) left shock, contact, right shock
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Riemann problem (Shock tube problem)

Test oL uL L PR uR PR
1 1.0 0.0 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 1.0 0.0 0.01 1.0 0.0 100.0
5 5.99924 | 19.5975 | 460.894 | 5.99242 | -6.19633 | 46.0950

Table 4.1. Data for five Riemann problem tests
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Riemann problem (Shock tube problem)
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Fig. 4.7. Test 1: Exact solution for density, velocity, pressure and specific internal

energy at time t = 0.25 units
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Riemann problem (Shock tube problem)
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Fig. 4.8. Test 2: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.15 units



Riemann problem (Shock tube problem)
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Fig. 4.9. Test 3: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.012 units
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Riemann problem (Shock tube problem)
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Fig. 4.10. Test 4: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.035 units
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Riemann problem (Shock tube problem)
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Fig. 4.11. Test 5: Exact solution for density, velocity, pressure and specific internal
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