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Mesh and Finite volumes

The basic idea of FVM is to divide domain Ω into a set of disjoint finite
volumes and apply the conservation law on each finite volume. The
division of Ω gives rise to the mesh or grid.

Ωi, i = 1, 2, . . . , NΩ

Ω =

NΩ⋃
i=1

Ωi

For simplicity we take each Ωi to be a polygonal cell.
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Mesh and Finite volumes

The mesh can consist of different types of cells, e.g., triangular and
quadrilateral cells in 2-D. Such a mesh is called hybrid mesh.

Usually the mesh is taken to be conforming in the sense that there are no
hanging nodes. But it is possible to use grids with hanging nodes also,
which can be advantageous when doing grid adaptation.
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Mesh and Finite volumes

Let us denote the set of vertices in the mesh by

V = {Vi : i = 1, 2, . . . , NV }
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Finite volumes

Once a mesh has been formed, we have to create the finite volumes on
which the conservation law will be applied. This can be done in two ways,
depending on where the solution is stored.

1 If the solution is stored at the center of each Ωi, then Ωi itself is the
finite volume or cell, Ci = Ωi. This gives rise to the cell-centered
finite volume scheme.

2 If the solution is stored at the vertices of the mesh, then around each
vertex i we have to construct a cell Ci. This gives rise to the
vertex-centered finite volume scheme.
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Finite volumes

In either case we obtain a collection of disjoint finite volumes {Ci},
i = 1, 2, . . . , Nc such that

Ω =

Nc⋃
i=1

Ci
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Some geometric information
Interior Face

Sij = ∂Ci ∩ ∂Cj = common face between Ci and Cj

Boundary face

Sib = ∂Ci ∩ ∂Ω = face of Ci on boundary of Ω

For each cell Ci

Ni = {Cj : Ci and Cj have a common face Sij}

Ci Ci
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Some geometric information

Remark: Instead of saying

Cj ∈ Ni

we will simply say that

j ∈ Ni
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Vertex-centered finite volumes
There are several ways to define the finite volume around a vertex.
• Join the mid-point of the edges and cell centers. This leads to the

median dual cell.
• (Triangular grids only) Join the circum-center of the triangles to the

edge mid-points. For obtuse angled triangles, use the mid-point of
largest side. This is called the containment dual cell. Useful in
boundary layers.

For vertices on the boundary, the finite volume is closed by a portion of
the boundary edges.

Centroid

Mid−point
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Vertex-centered finite volumes
containment dual

Median-dual cells containment-dual cells
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Vertex-centered finite volumes

150 Chapter 5. Unstructured Finite Volume Schemes 

Figure  5.10: Comparison of median-dual (a) and containment-dual (b) control 
volumes for a stretched right-angle triangulation. 
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Figure  5.10: Comparison of median-dual (a) and containment-dual (b) control 
volumes for a stretched right-angle triangulation. 

Median-dual cells containment-dual cells
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Vertex-centered finite volumes
Turbulent flow over RAE2822 airfoil: vertex-centered scheme

Mach = 0.729, α = 2.31 deg, Re = 6.5 million
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FVM for Compressible NS equations

Ut + Fx +Gy = Px +Qy

Integrating over cell Ci∫
Ci

∂U

∂t
dV +

∫
Ci

(Fx +Gy)dV =

∫
Ci

(Px +Qy)dV

Define cell average value

Ui(t) =
1

|Ci|

∫
Ci

U(x, y, t)dV

Using divergence theorem

|Ci|
dUi
dt

+

∫
∂Ci

(Fnx +Gny)dS =

∫
∂Ci

(Pnx +Qny)dS
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FVM for Compressible NS equations

|Ci|
dUi
dt

+
∑
j∈Ni

∫
Sij

(Fnx +Gny)dS +
∑

Sib∈∂Ω

∫
Sib

(Fnx +Gny)dS

=
∑
j∈Ni

∫
Sij

(Pnx +Qny)dS +
∑

Sib∈∂Ω

∫
Sib

(Pnx +Qny)dS

C

n

C

i

j

ij

We have to approximate the flux integral by quadrature. For first order
and second order accurate schemes, it is enough to use mid-point rule of
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FVM for Compressible NS equations
integration. ∫

Sij

(Fnx +Gny)dS ≈ (Fnx +Gny)ij |Sij |

How to compute the flux ? We have two states Uij and Uji coming from
cells Ci and Cj . We will use a numerical flux function of Godunov-type or
flux vector splitting, etc

(Fnx +Gny)ij ≈ H(Uij , Uji, nij)

On boundary faces Sib the flux is determined using appropriate boundary
conditions

(Fnx +Gny)ib ≈ Hb(Uib, Ub, nib)

The viscous fluxes are computed using central difference type
approximations which we discuss later

(Pnx +Qny)ij ≈ Rij , (Pnx +Qny)ib ≈ Rib
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FVM for Compressible NS equations

Finally we have the semi-discrete scheme

|Ci|
dUi
dt

+
∑
j∈Ni

H(Uij , Uji, nij)|Sij |+
∑

Sib∈∂Ω

Hb(Uib, Ub, nib)|Sib|

=
∑
j∈Ni

Rij |Sij |+
∑

Sib∈∂Ω

Rib|Sib|

We now have a system of ODE which we can integrate in time using
various schemes like Runge-Kutta or implicit schemes.
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First order finite volume

In this case, we assume that the solution inside each cell is a constant in
space. Then on any interior face Sij we have the two states

Uij = Ui, Uji = Uj

The convective flux is then approximated as

H(Ui, Uj , nij)

which leads to a first order accurate scheme. If the numerical flux H is
designed well, then these schemes are very stable, robust and have good
properties like monotonicity and entropy condition. But they introduce too
much error and lead to poor resolution of shocks, contact waves and
vorticity.
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Reconstruction

To achieve more than first order accuracy, we can reconstruct the solution
inside each cell. The simplest approach is to perform piecewise linear
reconstruction. The reconstruction can be performed on

• conserved variables

• primitive variables (ρ, u, v, p) or (T, u, v, p)

• characteristic variables

� �� �� ��� �� �� �

� �� �� ��� �� �� �U

U L

R

C

C

i

j
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Reconstruction

Conserved variables allow satisfaction of conservation of reconstucted
solution very easily.

Primitive variables make it easy to ensure positivity of density and pressure
which leads to a more robust scheme.

Characteristics variables leads to more accurate schemes at a slightly more
computational cost.

Let us denote by W the set of variables that are going to be
reconstructed. Using the reconstruction process, obtain two states Wij

and Wji at each face Sij and compute the flux

H(Wij ,Wji, nij)
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Gradient-based reconstruction: Cell/vertex-centered case

Assume that we have the gradient of W at the cell centers. Then inside
each cell Ci the reconstructed solution is

W (x, y) = Wi + (r − ri) · ∇Wi, r = (x, y), ri = (xi, yi)

At the mid-point r = rij of face Sij we obtain two states

Wij = Wi + (rij − ri) · ∇Wi, Wji = Wj + (rij − rj) · ∇Wj

In order to ensure monotone solutions, a limiter function is calculated on
each cell and the limited reconstructed values are

Wij = Wi + φi(rij − ri) · ∇Wi, Wji = Wj + φj(rij − rj) · ∇Wj

Since W has several components, the limiter function is computed for
each component. Popular limiters are min-max limiter of Barth-Jespersen
and Venkatakrishnan limiter which are explained later.
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MUSCL-type Reconstruction: vertex-centered case

L R

i i+1
i−1

i+2

UL = Ui +
1

2
Limiter

[
(Ui+1 − Ui),

|PiPi+1|
|PiPi−1|

(Ui − Ui−1)

]
or, using vertex-gradients

UL = Ui +
1

2
Limiter

[
(Ui+1 − Ui), (~Pi+1 − ~Pi) · ∇Ui

]
Van-albada limiter

Limiter(a, b) =
(a2 + ε)b+ (b2 + ε)a

a2 + b2 + 2ε
, ε� 1
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MUSCL-type Reconstruction: vertex-centered case

(See Lohner, Section 10.4.2) This extends the MUSCL idea to
unstructured grids.

Wij = Wi +
1

4
[(1− k)∆−i + (1 + k)(Wj −Wi)]

Wji = Wj −
1

4
[(1− k)∆+

j + (1 + k)(Wj −Wi)]

where the forward and backward difference operators are given by

∆−i = Wi −Wi−1 = 2rij · ∇Wi − (Wj −Wi)

∆+
j = Wj+1 −Wj = 2rij · ∇Wj − (Wj −Wi)

where
rij = rj − ri

In 1-D case, k = 1/3 gives third order accurate scheme.
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MUSCL-type Reconstruction: vertex-centered case

With limiter

Wij = Wi +
si
4

[(1− ksi)∆−i + (1 + ksi)(Wj −Wi)]

Wji = Wj −
sj
4

[(1− ksj)∆+
j + (1 + ksj)(Wj −Wi)]

si = L(∆−i ,Wj −Wi), sj = L(∆+
j ,Wj −Wi)

Limiter function, van-Albada type limiter

L(a, b) = max

[
0,

2ab+ ε

a2 + b2 + ε

]
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Gradient computation: least squares

Given data

W0,W1,W2, . . . ,Wn

at positions

r0, r1, r2, . . . , rn, ri = (xi, yi)

1

2

3

4

0
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Gradient computation: least squares

Compute ∇W0 = (a, b). From Taylor formula

Wi = W0 + (ri − r0) · ∇W0 +O
(
h2
)

= W0 + (xi − x0)a+ (yi − y0)b+O
(
h2
)

Define

∆Wi = Wi −W0, ∆xi = xi − x0, ∆yi = yi − y0

Neglecting higher order terms, we have an over-determined system of
equations

∆Wi = ∆xia+ ∆yib, i = 1, 2, . . . , n

Let us determined (a, b) by solving the weighted minimization problem

min
a,b

n∑
i=1

ωi [∆Wi −∆xia−∆yib]
2
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Gradient computation: least squares
The weight function is usually chosen to be of the form

ωi =
1

|ri − r0|p
, p = 0 or p = 2

Conditions for extremum are

∂

∂a

n∑
i=1

ωi [∆Wi − ∆xia− ∆yib]
2 = 2

n∑
i=1

ωi

[
−∆Wi∆xi + (∆xi)

2a + ∆xi∆yib
]

= 0

∂

∂b

n∑
i=1

ωi [∆Wi − ∆xia− ∆yib]
2 = 2

n∑
i=1

ωi

[
−∆Wi∆yi + ∆xi∆yia + (∆yi)

2b
]

= 0

We obtained two coupled equations

(
∑
i

ωi∆x
2
i )a+ (

∑
i

ωi∆xi∆yi)b =
∑
i

ωi∆Wi∆xi

(
∑
i

ωi∆xi∆yi)a+ (
∑
i

ωi∆y
2
i )b =

∑
i

ωi∆Wi∆yi
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Gradient computation: least squares

In matrix form[ ∑
i ωi∆x

2
i

∑
i ωi∆xi∆yi∑

i ωi∆xi∆yi
∑

i ωi∆y
2
i

] [
a
b

]
=

[∑
i ωi∆Wi∆xi∑
i ωi∆Wi∆yi

]
Assume that the points do not all lie on the same straight line. Then the
matrix on the left has determinant

(
∑
i

ωi∆x
2
i )(
∑
i

ωi∆y
2
i )− (

∑
i

ωi∆xi∆yi)
2 > 0

and hence is invertible.

Choice of stencil: We need atleast two neighbouring cells to apply least
squares method. We can choose the face neighbouring cells Ni which is
usually sufficient to apply least squares. If necessary one can add extra
cells by using the neighbours of neighbours.
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Gradient computation: least squares

Remark: The LS derivative formula is exact for linear polynomials. The
derivatives obtained by this approach are in general first order accurate,
i.e.,

Wx −W exact
x = O (h)

On smooth and symmetric stencils, we can obtain close to second order
accuracy.

Remark: The least squares method gives accurate gradient estimates. But
on highly stretched grids, it can lead to unstable schemes. The use of
distance based weight alleviates the problem to some extent.

Remark: This idea can be easily extended to three dimensions. We can
also use quadratic reconstruction where we retain terms involving second
derivatives in the Taylor expansion. This gives derivatives which are
second order accurate (exact for quadratic polynomials) and we also
obtain second derivatives which are first order accurate.

28 / 52



Gradient computation: Green-Gauss

Green theorem applied to cell Ci∫
Ci

∇WdV =

∫
∂Ci

WndS

∇Wi =
1

|Ci|
∑
j∈Ni

1

2
(Wi +Wj)nij |Sij |

This formula has to be modified for boundary cells.
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min-max limiter

The basic idea is that the reconstructed states Wij must remain between
the minimum and maximum values in the stencil of Ci. Define

Wm
i = min

j∈Ni

(Wj ,Wi), WM
i = max

j∈Ni

(Wj ,Wi)

Then we want to choose the largest value of 0 ≤ φi ≤ 1 so that

Wm
i ≤Wi + φi(rij − ri) · ∇Wi ≤WM

i , ∀Cj ∈ Ni

Define

∆ij = (rij − ri) · ∇Wi

φij =


min

(
1,

WM
i −Wi

∆ij

)
if ∆ij > 0

min
(

1,
Wm

i −Wi

∆ij

)
if ∆ij < 0

1 otherwise
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min-max limiter

Then

φi = min
j∈Ni

φij

For scalar conservation laws, one can show that the FV scheme with a
monotone flux satisfies local maximum principle and hence is stable in
maximum norm.

For Euler equations, this leads to a very robust scheme but it is not very
accurate since it can clip smooth extrema also.

Moreover, the limiter is not a smooth function due to use of min and max
functions. This leads to slow convergence to steady state solutions and in
fact we do not obtain convergence to machine zero in most cases.
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Venkatakrishnan limiter

This is a smooth modification of the minmax limiter which has good
convergence properties for steady state problems.

φij =


L(WM

i −Wi,∆ij) if ∆ij > 0

L(Wm
i −Wi,∆ij) if ∆ij < 0

1 otherwise

L(a, b) =
a2 + 2ab+ ω

a2 + 2b2 + ab+ ω

Then
φi = min

j∈Ni

φij

We have essentially replaced the min function in min-max limiter with the
above smooth function. There is a paramater ω which is chosen as

ω = (Kh)3
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Venkatakrishnan limiter
Here h represents the cell size. One can take

h = (area of cell)1/2, h = (volume of cell)1/3

or take h to be average cell size in the grid. The value of K affects the
amount of limiting, with K = 0 giving highest amount of limiting.
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Venkatakrishnan limiter

• Performance depends on K

• Oscillations are not completely avoided

• May fail with strong strongs, hypersonic flows

• Works best when used with non-dimensional variables
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Third order scheme

U L
1

U R
1

U L
2

U R
2

� �� �� ��� �� �� �

� �� �� ��� �� �� �

C

C

i

j

Quadratic reconstruction in cell Ci

Ũ(x, y) = Ui + ai(x− xi) + bi(y − yi)
+ ci(x− xi)2 + di(x− xi)(y − yi) + ei(y − yi)2
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Third order scheme
2-point Gauss quadrature for flux

Fij = ω1F (UL1 , U
R
1 , n̂ij) + ω2F (UL2 , U

R
2 , n̂ij)

For more, see Barth, VKI Lecture notes, 1994.
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F igure  5.14: Stencil of the quadratic reconstruction method due to Delanaye 
[62], [63] in 2D (filled rectangles). Dashed line represents the integration path 
of the Green-Gauss gradient evaluation (control volume gtt). Crosses denote the 
quadrature points for integration of the fluxes. 

5.3.4 E v a l u a t i o n  of  t h e  G r a d i e n t s  

An open point, which remains from the discussion of the piecewise linear and the 
quadratic reconstruction, is the determination of the gradient. Gradients of the 
velocity components and the temperature are also required for the evaluation 
of the viscous fluxes (Section 5.4). Two approaches will be presented in the 
following: the first is based on the Green-Gauss theorem, and the second utilises 
the least-squares method. 

G r e e n - G a u s s  A p p r o a c h  

This method approximates the gradient of some scalar function U as the surface 
integral of the product of U with an outward-pointing unit normal vector over 
some control volume gt ~, i.e., 

1 ~o UgdS .  V U  ~ -~  a, (5.49) 

Median-Dual Scheme 

Barth and Jespersen [30] derived a particular discretisation of the Green-Gauss 
approach from the Galerkin finite element method. Later on, the discretisation 
was extended to 3D by Barth [64]. Barth and Jespersen applied Eq. (5.49) to 
the region formed by the union of the elements meeting at a node. They proved 
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Viscous flux

Viscous flux requires gradients of velocity and temperature at the
mid-point of the cell face. There are two options

• Compute gradient at cell centers and average to obtain gradient at
face. These gradients are anyway already computed for reconstruction
purpose. It can be used in cell-centered or vertex-centered schemes.

• Compute gradient at face center directly. This approach can be used
in the cell centered case. It requires additional least squares or
Green-Gauss technique to be applied at each face. Hence it requires
more computations.

• Vertex-centered grids: A finite element type approach can also be
used which leads to a compact stencil for viscous fluxes.

37 / 52



Viscous flux: Using cell gradients

Assume that gradients of W at cell center are available using least squares
or Green-Gauss technique. To compute viscous flux at face Sij , obvious
thing to do is

∇Wij = ∇W ij =
1

2
(∇Wi +∇Wj)

and then compute viscous flux using these gradients. But this leads to
odd-even decoupling problem. To avoid this we approximate gradient as

∇Wij = ∇W ij +

(
Wj −Wi

|rj − ri|
− ∇W ij · r̂ij

)
r̂ij

where

r̂ij =
rj − ri
|rj − ri|

= unit vector from i to j
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Viscous flux: Using cell gradients

This definition is consistent in the sense that it gives correct directional
derivative

∇Wij · r̂ij = ∇W ij · r̂ij +

(
Wj −Wi

|rj − ri|
− ∇W ij · r̂ij

)
r̂ij · r̂ij

=
Wj −Wi

|rj − ri|

This corrected scheme avoids the odd-even decoupling problem.

Remark: The stencil for this scheme is large since it involves secondary
neighbours.
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Viscous flux: using face gradient approach

This is used in case of cell-centered schemes. There are several approaches.

One possibility is to

• interpolate W from cell centers to the vertices.

• compute gradient using Green-Gauss theorem on the face centered
control volume

Second approach: Compute gradient at the vertices using Green-Gauss
formula. Then average gradient to find gradient at face center.
(Jameson’s vertex-centroid scheme)

Another approach due to Frink also makes use of vertex values

(xj − xi)Wx + (yj − yi)Wy = Wj −Wi

(x2 − x1)Wx + (y2 − y1)Wy = W2 −W1

This coupled system can be solved to obtain the derivatives Wx and Wy.
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Viscous flux: FEM approach

This approach can be used for vertex-centered scheme on triangular and
tetrahedral grids. The boundary ∂Ci of dual cell Ci contains portions
located inside different triangles. On each triangle T we know the solution
at its three vertices i, j, k and we can approximate the gradient using
Green-Gauss theorem

∇WT =
1

|T |

[
Wi +Wj

2
Nij +

Wj +Wk

2
Njk +

Wk +Wi

2
Nki

]

Nij =

[
+(yj − yi)
−(xj − xi)

]
= normal to edge ij

The flux across the face inside triangle T is computed using ∇WT . Thus
the stencil of the scheme involves only the nearest neighbours.
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Boundary conditions

There are

• natural boundaries: solid wall

• artificial boundaries: inlet, outlet, farfield, symmetry plane, etc.

Natural boundary conditions are known from the PDE problem itself.
Artificial boundary conditions have to be cooked up to lead to a stable
scheme. Characteristics are useful to know how much information has to
be specified.

In the finite volume method, boundary conditions are implemented
through fluxes (mostly).
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Solid wall: inviscid flux

The condition is that normal velocity must be zero. Fluid cannot enter
into a solid surface. This is true of both inviscid and viscous flows. In
inviscid flows, there can be a tangential component of velocity but this has
to be determined from the numerical scheme. If normal velocity is zero,
the flux is 

0
pnx
pny
0


Cell-centered case: First order scheme, use the pressure in the adjacent
cell to compute the flux. To get higher order accuracy, one can
extrapolate the pressure from the cell center to the face mid-point.

Vertex-centered case: We already know pressure on the boundary face.
Use it to calculate the flux.
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Solid wall: inviscid flux using ghost cells
We can introduce a ghost cell inside the solid surface and set the values in
the ghost cell to appropiately recover the flux.

Inviscid flows:

• The density and pressure in ghost cell are set to be same as in the
real cell.

• The tangential velocity is same as in real cell but normal velocity is
reversed.

Viscous flows:

• Adiabatic wall: Density and pressure are set same as in real cell.

• Isothermal wall: Pressure is same as in real cell, density is computed
using specified temperature and known pressure.

• All velocity components are reversed in the ghost cell.

Now we have two states at the boundary face and we can use a numerical
flux function to compute the flux. It is important to ensure that mass and
energy fluxes are zero.
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Solid wall: Viscous flux

We know the gradients of velocity at the solid wall face by some
procedure. We use this to calculate shear stress and the viscous fluxes due
to shear stress.

If we have adiabatic wall, then the heat flux is set to zero. For isothermal
wall, heat flux is calculated from Fourier law and added to energy equation.

Vertex-centered case: We have unknowns on the solid wall. It is usual
practice to set the velocity at these location to zero after updating the
solution. For isothermal wall, the temperature is set to the specified wall
temperature.
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Supersonic inflow and outflow

At supersonic inflow, all wave speeds are positive. So the flux must be
determined from the inflow conditions.

Similarly, at a supersonic outflow, the flux is determined from the state in
the boundary cell.
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Subsonic inflow

We have three positive and one negative eigenvalue.

un − a, un, un < 0 un + a > 0

So we have to specify three pieces of information on the inflow side and
the remaining information must be taken from the interior cell. One choice
is to specify velocity and pressure or density from the inflow conditions and
the remaining is taken from the interior cell.

Alternately one can use local characteristic variables.

Alternately, we can use an upwind numerical flux like Steger-Warming
which is already based on characteristic splitting to compute the flux at
inflow face

Hsw(U0, U∞, n) = A+(U0, n)U0 +A−(U∞, n)U∞
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Subsonic outflow
We have three positive and one negative eigenvalue.

un − a < 0 un, un, un + a > 0

So we have to specify three pieces of information on the interior side and
the remaining information must be taken from the exterior of the domain.
Usually, one knows the pressure on the outlet side so this can be specified.
The density and velocity is taken from the interior cell.

Alternately one can use local characteristic variables. This is explained in
the far-field boundary conditions.

Alternately, we can use an upwind numerical flux like Steger-Warming to
compute the flux at outflow face

Hsw(U0, Uout, n) = A+(U0, n)U0 +A−(Uout, n)Uout

Uout is determined using the known outlet pressure and remaining values
are taken from the interior cell.
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Farfield conditions

This is typical of aerospace applications like flow around an airfoil or
aircraft. The real domain contains the whole exterior of the airfoil but for
computational purpose, we have to use a finite domain. It is important to
place the farfield domain sufficiently far away from the lifting bodies.

Characteristic approach: (See Wesseling, section 12.4) We look at a one
dimensional problem in the direction of the outward normal ignoring the
variation in other directions. Then one can find characteristic variables
(Riemann invariants) and corresponding speeds as

W1 = un −
2a

γ − 1
, λ1 = un − a

W2 = S, λ2 = un

W3 = ut, λ3 = un

W4 = un +
2a

γ − 1
, λ4 = un + a
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Farfield conditions

At the far-field face we calculate Wf as

Wf,i =

{
W0,i λi ≥ 0

W∞,i λi < 0
, i = 1, . . . , 4

Once Wf is obtained then we can calculate the state (ρ, u, v, p) at the
face from which the flux can be obtained.

un,f =
1

2
(Wf,1 +Wf,4), af =

γ − 1

4
(Wf,4 −Wf,1)

ut,f = Wf,3, Sf =
pf
ργf

= Wf,2

Remark: At some outflow boundaries, one usually knows the outlet
pressure, maybe the atmospheric pressure. In that case, the known
pressure can be used.
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Farfield conditions

Remark: There are other sets of characteristic variables, see Lohner,
section 8.5 and Blazek, section 8.3.1

Characteristic-based flux approach: Alternately, we can use an upwind
numerical flux like Steger-Warming which is already based on
characteristic splitting to compute the flux at farfield face

Hsw(U0, U∞, n) = A+(U0, n)U0 +A−(U∞, n)U∞

Remark: For lifting problems like airfoils in 2-D, the far-field domain may
have to be placed about 50-100 chord lengths away from the airfoil in
order to minimize the effect of artificial boundary conditions. One can use
point vortex model to correct the far-field conditions which allow placing
the outer boundary closer to the airfoil, see Blazek, Chap. 8. It is good to
do some study on the effect of outer boundary position on lift and drag
coefficients.
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Farfield conditions
8.3. Fartield 285 
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F i g u r e  8.7: Effects of distance to the farfield boundary and of single vortex on 
the lift coefficient. NACA 0012 airfoil, M ~  - 0 . 8 ,  a -  1.25 ~ 

investigated. The farfield radius was set to 5, 20, 50, and 99 chords. As we can 
see, simulations without the vortex correction experiences a strong dependence 
on the farfield distance. On the contrary, simulations with the vortex remain 
sufficiently accurate up to a distance of about 20 chords. This leads to a sig- 
nificant reduction of the number of grid cells/points. It was demonstrated in 
Ref. [19] that  by using higher-order terms in the vortex correction, the farfield 
boundary can be placed only about 5 chords away without loss of accuracy. 

V o r t e x  C o r r e c t i o n  in 3D 

The effect of a wing on the farfield boundary can be approximated by a horse- 
shoe vortex. In the case of compressible flow, the modified freestream velocity 
components can be obtained from [20], [21] 

FZ 2 u~-u~  + - ~ A  
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