
Two dimensional heat equation

Deep Ray, Ritesh Kumar, Praveen. C, Mythily Ramaswamy, J.-P. Raymond

IFCAM Summer School on Numerics and Control of PDE
22 July - 2 August 2013

IISc, Bangalore
http://praveen.cfdlab.net/teaching/control2013

1 The PDE model

Let z = z(x, y, t) denote the temperature. The shifted 2-D heat equation is given by

zt = µ∆z + ωz, (x, y) ∈ Ω = (0, 1)× (0, 1), t ∈ [0, T]

with boundary conditions, see figure (1)

z(x, 0, t) = z(x, 1, t) = 0, z(1, y, t) = u(y, t),
∂z

∂x
(0, y, t) = 0

and initial condition
z(x, y, 0) = z0(x, y)

Here ω ≥ 0 and µ > 0. Let us denote the Dirichlet part of the boundary by ΓD

ΓD = {y = 0} ∪ {y = 1} ∪ {x = 1}

the Neumann part as
ΓN = {x = 0}

and the part on which the control is applied as

Γc = {x = 1}

1

z = 0

z = 0

z = uzx = 0 Ω

Figure 1: Problem definition

1.1 Observations

We will measure an average value of the temperature on strips along the left vertical
boundary

Ii = [ai, bi], i = 1, 2, 3

as shown in figure (2). Thus the observations are

yi(t) =
1

bi − ai

∫ bi

ai

z(0, y, t)dy, i = 1, 2, 3 (1)

Note: Do not confuse the observation yi with the spatial coordinate y.

1.2 Weak formulation

We assume z0 ∈ L2(Ω). We wish to find z ∈ L2(0, T ;H1(Ω)) such that

d

dt
(z(t), φ)L2 = −µ

∫

Ω

∇z · ∇φdx+ ω

∫

Ω

zφdx, ∀φ ∈ H1
ΓD

(Ω)

z(x, 0, t) = z(x, 1, t) = 0, z(1, y, t) = u(y, t)

(z(0), φ)L2 = (z0, φ)L2

2

y1

y2

y3

Ω

Figure 2: Observations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Example of a finite element mesh

3

4.5 The finite element method in the multi-dimensional case 83

As in the one-dimensional case, each function vh ∈ Vh is characterized, univocally,
by the values it takes at the nodes Ni, with i = 1, . . . , Nh, of the grid Th (excluding
the boundary nodes where vh = 0); consequently, a basis in the space Vh can be the
set of the characteristic Lagrangian functions ϕj ∈ Vh, j = 1, . . . , Nh, such that

ϕj(Ni) = δij =

{
0 i "= j,
1 i = j,

i, j = 1, . . . , Nh. (4.41)

In particular, if r = 1, the nodes are vertices of the elements, with the exception of
those vertices belonging to the boundary of Ω, while the generic function ϕj is linear
on each triangle and is equal to 1 at the node Nj and 0 at all the other nodes of the
triangulation (see Fig. 4.12).

ϕj

Nj

Fig. 4.12. The basis function ϕj of the spaceX1h and its support

A generic function vh ∈ Vh can be expressed through a linear combination of the
basis functions of Vh in the following way

vh(x) =
Nh∑

i=1

viϕi(x) ∀ x ∈ Ω, with vi = vh(Ni). (4.42)

By expressing the discrete solution uh in terms of the basis {ϕj} via (4.42), uh(x) =∑Nh
j=1 ujϕj(x), with uj = uh(Nj), and imposing that it verifies (4.40) for each func-

tion of the basis itself, we find the following linear system of Nh equations in theNh
unknowns uj , equivalent to problem (4.40),

Nh∑

j=1

uj

∫

Ω

∇ϕj ·∇ϕi dΩ =
∫

Ω

fϕi dΩ, i = 1, . . . , Nh. (4.43)

The stiffness matrix has dimensionsNh ×Nh and is defined as

A = [aij] with aij =

∫

Ω

∇ϕj ·∇ϕi dΩ. (4.44)

Figure 4: Piecewise affine basis functions

2 FEM approximation

Consider a division of Ω into disjoint triangles as shown in figure (3). We will assume
that the vertices of the mesh are numbered in some manner. Let us define the following
sets of vertices

Nc = vertices on Γc

Nd = vertices on {y = 0} ∪ {y = 1}
Nf = remaining vertices (unknown degrees of freedom)

For each vertex i, define the piecewise affine functions φi(x, y), see figure (4), with the
property that

φi(xj, yj) = δij

We will take the control to be of the form

u(y, t) = v(t) sin(πy)

Then the finite element solution is of the form

z(x, y, t) =
∑

j∈Nf

zj(t)φj(x, y) + v(t)
∑

j∈Nc

sin(πyj)φj(x, y)

The approximate weak formulation is given as

d

dt
(z(t), φi)L2 = −µ

∫

Ω

∇z · ∇φidx+ ω

∫

Ω

zφidx, ∀i ∈ Nf

4

i.e.,

∑

j∈Nf

dzj
dt

∫

Ω

φjφi +
dv

dt

∑

j∈Nc

sin(πyj)

∫

Ω

φjφi

= −µ
∑

j∈Nf

zj

∫

Ω

∇φj · ∇φi − µv
∑

j∈Nc

sin(πyj)

∫

Ω

∇φj · ∇φi

+ω
∑

j∈Nf

zj

∫

Ω

φjφi + ωv
∑

j∈Nc

sin(πyj)

∫

Ω

φjφi, ∀i ∈ Nf

In order to simplify the presentation we will ignore the term containing dv
dt

1 and then we
can write the FEM formulation as

∑

j∈Nf

dzj
dt

∫

Ω

φjφi

=
∑

j∈Nf

zj

[
−µ
∫

Ω

∇φj · ∇φi + ω

∫

Ω

φjφi

]

v
∑

j∈Nc

[
−µ sin(πyj)

∫

Ω

∇φj · ∇φi + ω sin(πyj)

∫

Ω

φjφi

]
∀i ∈ Nf

This can be written as a system of ordinary differential equations

M
dz

dt
= Az + Bv

where z denotes all the unknown degrees of freedom.

2.1 Finite element assembly

The finite element basis functions have compact support. Hence we can compute the
integrals ∫

Ω

φiφj and

∫

Ω

∇φi · ∇φj

by adding the contributions from a small number of triangles. For example, the elements
of the mass matrix can be computed as

∫

Ω

φiφj =
∑

K : i,j∈K

∫

K

φiφj

1This term vanishes if we use the trapezoidal rule for integration.

5

1

2

3

K

Figure 5: Triangle

and similarly the stiffness matrix is computed as

∫

Ω

∇φi · ∇φj =
∑

K : i,j∈K

∫

K

∇φi · ∇φj

The integrals on each triangle K will be evaluated exactly. For a triangle K with vertices
labelled 1, 2, 3 as in figure (5), the local mass and stiffness matrices are given by

MK =
1

24
det

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]


2 1 1
1 2 1
1 1 2




AK =
1

2
det




1 1 1
x1 x2 x3

y1 y2 y3


GG> where G =




1 1 1
x1 x2 x3

y1 y2 y3



−1 


0 0
1 0
0 1




The numerical process can be summarized by the following algorithm:

Set M = 0, A = 0.
For each triangle K in the mesh

• Compute MK and AK

• Add the contributions from MK into M and from AK into A

More details on the assembly process can be found in this paper

Jochen Alberty, Carsten Carstensen and Stefan A. Funken: “Remarks around 50 lines of
Matlab: short finite element implementation”, Numerical Algorithms 20 (1999) 117-137
http://math.tifrbng.res.in/~praveen/notes/control2013/acf.pdf

6

0 0.05 0.1 0.15 0.2
0.15

0.2

0.25

Figure 6: Triangular mesh with 100 edges on each side. The figure shows a zoomed view
near the left boundary. Notice that the first observation zone {x = 0, 0.2 ≤ y ≤ 0.25} is
exactly covered by five boundary edges.

7

2.2 Computing the observation

We will assume that the intervals [ai, bi] on which the observation is computed is exactly
covered by the edges of the finite element mesh, see figure (6). Let Ei denote the edges
on [ai, bi]. Then

yi =
1

bi − ai

∫ bi

ai

z(0, y, t)dy, i = 1, 2, 3

=
1

bi − ai
∑

e∈Ei

∫

e

z(0, y, t)dy

=
1

bi − ai
∑

e∈Ei

1

2
(ze1 + ze2)|e|

The set of observations can be written as

y = Hz

The observation zones are defined by the following parameters

Value/i 1 2 3
ai 0.20 0.50 0.80
bi 0.25 0.55 0.85

2.3 Grid information

The grid information consists of following files

• coordinates.dat: contains x, y coordinates of all the vertices

• elements3.dat: contains verices forming each triangle

• dirichlet.dat: contains boundary edges on the dirichlet boundary

• neumann.dat: contains boundary edges on the neumann boundary

An example of this type of data is given in figures (7), (8). In each file, the first column
is the serial number.

Note: In our current programs we use a mesh consisting of only triangles.
Also, the serial numbers are not stored in the files.

The domain Ω is the unit square. The program square.m generates the mesh and
creates the above four files. You have to specify the number of vertices on the side of the
square. E.g., to have 11 points on each side, you do the following in matlab

8

120 J. Alberty et al. / Matlab program for FEM

Figure 1. Example of a mesh.

coordinates.dat contains the coordinates of each node in the given mesh. Each
row has the form

node # x-coordinate y-coordinate.

In our code we allow subdivision of ! into triangles and quadrilaterals. In both
cases the nodes are numbered anti-clockwise. elements3.dat contains for each
triangle the node numbers of the vertices. Each row has the form

element # node1 node2 node3.

Similarly, the data for the quadrilaterals are given in elements4.dat. Here,
we use the format

element # node1 node2 node3 node4.

elements3.dat
1 2 3 13
2 3 4 13
3 4 5 15
4 5 6 15

elements4.dat
1 1 2 13 12
2 12 13 14 11
3 13 4 15 14
4 11 14 9 10
5 14 15 8 9
6 15 6 7 8

neumann.dat and dirichlet.dat contain in each row the two node num-
bers which bound the corresponding edge on the boundary:

Neumann edge # node1 node2 resp. Dirichlet edge # node1 node2.

Figure 7: Example of a mesh

9

120 J. Alberty et al. / Matlab program for FEM

Figure 1. Example of a mesh.

coordinates.dat contains the coordinates of each node in the given mesh. Each
row has the form

node # x-coordinate y-coordinate.

In our code we allow subdivision of ! into triangles and quadrilaterals. In both
cases the nodes are numbered anti-clockwise. elements3.dat contains for each
triangle the node numbers of the vertices. Each row has the form

element # node1 node2 node3.

Similarly, the data for the quadrilaterals are given in elements4.dat. Here,
we use the format

element # node1 node2 node3 node4.

elements3.dat
1 2 3 13
2 3 4 13
3 4 5 15
4 5 6 15

elements4.dat
1 1 2 13 12
2 12 13 14 11
3 13 4 15 14
4 11 14 9 10
5 14 15 8 9
6 15 6 7 8

neumann.dat and dirichlet.dat contain in each row the two node num-
bers which bound the corresponding edge on the boundary:

Neumann edge # node1 node2 resp. Dirichlet edge # node1 node2.

J. Alberty et al. / Matlab program for FEM 121

Figure 2. Hat functions.

neumann.dat
1 5 6
2 6 7
3 1 2
4 2 3

dirichlet.dat
1 3 4
2 4 5
3 7 8
4 8 9
5 9 10
6 10 11
7 11 12
8 12 1

The spline spaces S and SD are chosen globally continuous and affine on each
triangular element and bilinear isoparametric on each quadrilateral element. In figure 2
we display two typical hat functions ηj which are defined for every node (xj , yj) of
the mesh by

ηj(xk, yk) = δjk, j, k = 1, . . . ,N.

The subspace SD ⊂ S is the spline space which is spanned by all those ηj for
which (xj , yj) does not lie on !D. Then UD, defined as the nodal interpolant of uD,
lies in S.

With these spaces S and SD and their corresponding bases, the integrals in (8)
can be calculated as a sum over all elements and a sum over all edges on !N, i.e.,

Ajk =
∑

T∈T

∫

T
∇ηj · ∇ηk dx, (9)

bj =
∑

T∈T

∫

T
fηj dx +

∑

E⊂!N

∫

E
gηj ds −

N∑

k=1

Uk

∑

T∈T

∫

T
∇ηj · ∇ηk dx. (10)

5. Assembling the stiffness matrix

The local stiffness matrix is determined by the coordinates of the vertices of the
corresponding element and is calculated in the functions stima3.m and stima4.m.

Figure 8: Structure of mesh files

>> square (11)

When you run the above program, you can see a picture of the mesh. Examine the four
files created by this program. For our actual computations, we will use 101 points on each
side of the square. In this case, there are 5 edges which exactly cover each of the three
observation zones.

3 Parameters and initial condition

Let us take

µ =
1

50
, ω = 0.4

Then the heat equation has one unstable eigenvalue given by

λ = −π
2

40
+ ω = 0.015325988997

The corresponding eigenfunction is

φ(x, y) = cos(πx/2) sin(πy)

which is shown in figure (9). We will use the unstable eigenfunction as the initial condition

10

0

0.5

1

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

x

Unstable eigenfunction

y

z

Figure 9: Unstable eigenfunction

11

for the heat equation. This initial condition satisfies the following boundary conditions

φ(x, 0) = φ(x, 1) = φ(1, y) = 0, φx(0, y) = 0

4 Excercises I

1. Generate the mesh by running the square program and use 81 points on each side
of the square.

2. The value of ω is set in the file parameters.m. Set ω = 0 and calculate five eigen-
values with largest real part using eigs function. Is there an unstable eigenvalue
?

3. With ω = 0, run the program. Observe that the energy is decreasing with time. The
energy is plotted with linear scale for time and log scale for energy. The straight
line behaviour indicates that the energy is decaying exponentially wrt time.

4. With ω = 0, find the decay rate of the solution.

5. Set ω = 0.4 and caculate five eigenvalues with largest real part using eigs function.
Is there an unstable eigenvalue ? Compare it with exact unstable eigenvalue given
above.

6. With ω = 0.4, run the program. Observe that the energy is increasing exponentially
with time.

5 Feedback control

The feedback control is determined by solving the lqr problem using the matrices M, A
and B. Since the dimensions of these matrices are very large, we determine the feedback
matrix K by considering only the unstable components of the system.

6 Excercises II

1. Set ω = 0.4. In fem 50.m, insert the code to determine the the feedback matrix K
using only the unstable components (in this case, there will be just one unstable
component). Refer back to the codes for the 1D heat problem if needed. Remember
to modify the matrix A1 in the code accordingly. Run the code.

2. Save the matrix K obtained above. Set ω = 0 and load K into the code instead
of evaluating it. Run the code and observe the decay rate of the solution. Is it as
expected?

12

7 Estimation and control

We now consider the case where we have partial observation as discussed in the previous
sections. Thus we need to solve the estimation problem. This requires the evauation
of the filtering gain matrix L. Once again, the large dimensions of the system matrices
forces us to evaluate L using only the unstable components.

8 Excercises III

1. Set ω = 0.4. In fem 50 est.m, insert lines of code to determine K as above, and to
evaluate L using just the unstable components. You will need the matrix H which
is already generated by get matrices.m. Run the code and observe the solution.

2. Save the matrix K and L obtained above. Set ω = 0 and load these matrices into
the code instead of evaluating them. Run the code and evaluate the decay rate of
the solution. Is it as expected?

9 List of matlab programs

The programs are under the directory heat 2d.

13

