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Approaches to optimization

Gradient-based Gradient-free

Finite 
Difference Adjoint GA PSO

...

• Local optimum

• FD accuracy problem

• Adjoint solver required

• Issues with adjoint consistency

• Global optimum possible

• “Easy” to implement for engg.
problems

• Slow convergence: surrogate
models and parallelization
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Elements of shape optimization

Shape parameters Surface grid Volume grid CFD solution I

Optimizer
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Shape parameterization
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Shape parameterization approaches

• Aerodynamic DVs:
I LE radius, max camber, taper ratio

• PARSEC, Kulfan parameterization, etc.

• BSplines/NURBS

• Need to re-generate surface/volume grid whenever shape is
changed

• Or, use a free-form approach like RBF-based grid deformation
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Free Form Deformation

• Originated in computer graphics field

• Embed the object inside a box and deform the box

• Independent of the representation of the object

• Deform CFD grid also, independent of grid type
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Free Form Deformation

j.a.samareh@larc.nasa.gov

Free!Form Deformation

Consistent parameterization

Airplane shape DVs

Compact set of DVs

Smooth geometry

Local control

Analytical sensitivity

Grid deformation

Setup time

Existing grids

CAD connection

(Samareh)
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Free Form Deformation: Example

(R. Duvigneau, INRIA)
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Free Form Deformation

• X0(P ) = coordinate of point P wrt reference shape

• Movement of point P under the deformation

X(P ) = X0(P ) +

ni∑
i=0

nj∑
j=0

nk∑
k=0

YijkB
ni
i (ξp)B

nj

j (ηp)B
nk
k (ζp)

• Bernstein polynomials

Bn
m(t) = Cnmt

m(1− t)n−m, t ∈ [0, 1], m = 0, 1, . . . , n

• Design variables

{Yijk}, 0 ≤ i ≤ ni, 0 ≤ j ≤ nj , 0 ≤ k ≤ nk

• Cannot change wing planform

• Wing twist can be added as additional variables
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Optimizer
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Particle swarm optimization

• Kennedy and Eberhart (1995)

• Modeled on behaviour of animal swarms: ants, bees, birds

• Cooperative behaviour of large number of individuals through
simple rules

• Emergence of swarm intelligence

Optimization problem

min
x∈D

J(x), D ⊂ Rd
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Particle swarm optimization

Particles distributed in design space

xi ∈ D, i = 1, ..., Np

X
2

X1
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Particle swarm optimization

Each particle has a velocity

vi ∈ Rd, i = 1, ..., Np

X
2

X1
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Particle swarm optimization

• Particles have memory (t = iteration number)

Local memory : pti = argmin
0≤s≤t

J(xsi )

Global memory : pt = argmin
i

J(pti)

• Velocity update

vt+1
i = ωvti + c1r

t
1 ⊗ (pti − xti)︸ ︷︷ ︸

Local

+ c2r
t
2 ⊗ (pt − xti)︸ ︷︷ ︸
Global

• Position update
xt+1
i = xti + vt+1

i
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PSO: embarassingly parallel

xn1 xn2 . . . xnNp

↓ ↓ ↓
J (xn1 ) J (xn2 ) . . . J (xnNp

)

↓ ↓ ↓

vn+1
1 vn+1

2 . . . vn+1
Np

↓ ↓ ↓
xn+1

1 xn+1
2 . . . xn+1

Np

Parallel evaluation of cost functions using MPI
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Test case: Wing shape optimization

• Minimize drag under lift
constraint

min
Cd
Cd0

s.t.
Cl
Cl0
≥ 0.999

• FFD parameterization, n = 20
design variables

• Particle swarm optimization:
120 particles

M∞ = 0.83, α = 2o

(Piaggio Aero. Ind.)
Grid: 31124 nodes

Cost function

J =
Cd
Cd0

+ 104 max

(
0, 0.999− Cl

Cl0

)
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Wing optimization

Initial shape
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Wing optimization

Optimized shape
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PSO computational cost

• Slow convergence: O(100)-O(1000) iterations

• Require large swarm size: O(100) particles

• CFD is expensive: few minutes to hours

• Example: Transonic wing optimization (coarse CFD grid)

(10 min/CFD) (120 CFD/pso iter) (200 pso iter) = 4000 hours
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Surrogate Models
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Metamodels

• Expensive PDE-based model

Shape parameters Surface grid Volume grid CFD solution J, C

• Replace costly model with cheap model:
metamodel or surrogate model

Shape parameters Surrogate model J̃ , C̃

• Approximation of cost function and constraint function(s)

I Response surfaces (polynomial model)
I Neural networks
I Radial basis functions
I Kriging/Gaussian Random Process models

Praveen. C (TIFR-CAM) Shape optimization IISc, 11 Aug 2010 22 / 49



Kriging I

Unknown function f : Rd → R

Given the data as FN = {f1, f2, . . . , fN} ⊂ R sampled at
XN = {x1, x2, . . . , xN} ⊂ Rd, infer the function value at a new point
xN+1.

Treat result of a computer simulation as a fictional gaussian process

FN is assumed to be one sample of a multivariate Gaussian process
with joint probability density

p(FN ) =
exp

(
−1

2F
>
NC

−1
N FN

)√
(2π)N det(CN )

(1)

where CN is the N ×N covariance matrix.
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Kriging II

When adding a new point xN+1, the resulting vector of function values
FN+1 is assumed to be a realization of the (N + 1)-variable Gaussian
process with joint probability density

p(FN+1) =
exp

(
−1

2F
>
N+1C

−1
N+1FN+1

)√
(2π)N+1 det(CN+1)

(2)

Using Baye’s rule we can write the probability density for the unknown
function value fN+1, given the data (XN , FN ) as

p(fN+1|FN ) =
p(FN+1)

p(FN )
=

1

Z
exp

[
−(fN+1 − f̂N+1)2

2σ2
fN+1

]

where

f̂N+1 = k>C−1
N FN︸ ︷︷ ︸

Inference

, σ2
fN+1

= κ− k>C−1
N k︸ ︷︷ ︸

Error indicator

(3)
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Kriging III

Covariance matrix: Given in terms of a correlation function,
CN = [Cmn],

Cmn = corr(fm, fn) = c(xm, xn)

c(x, y) = θ1 exp

[
−1

2

d∑
i=1

(xi − yi)2

ri2

]
+ θ2

Parameters Θ = (θ1, θ2, r1, r2, . . . , rd) determined to maximize the
likelihood of known data

max
Θ

log(p(FN ))
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Kriging: Illustration
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Figure 8. The solid line represents an objective function that has been sampled at the five

points shown as dots. The dotted line is a DACE predictor fit to these points.
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Figure 9. The DACE predictor and its standard error for a simple five-point data set.

surface, update the surface, and iterate, we are clearly only going to get a highly

accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that

this procedure does not acknowledge our uncertainty about that surface. It puts too

much emphasis on exploiting the predictor and no emphasis on exploring points

where we are uncertain. To eliminate this problem, we must put some emphasis

on sampling where we are uncertain, as measured by the standard error of the

predictor.

Figure 9 shows the standard error of the predictor. Because of the large number

of sampled points around x = 2, our uncertainty, and hence the standard error of

the predictor, is very low in that region. In fact, the standard error in this region is

so low that, in order for the reader to see it, we have had to magnify it in an inset.

Notice that the standard error does indeed go to zero at all the sampled points, as

it should. In rises up in between, but sometimes only by a little. The standard error

is maximized around x = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent

to putting all our emphasis on global search, and this is just as bad (if not worse)

than putting all our emphasis on local search. What we need is a figure of merit

that balances local and global search.
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Exploration verses exploitation

• Need a reasonably accurate surrogate model to represent global
behaviour.

• But final goal is to find minimum of J , not to construct the most
accurate model.

• In large dimensional spaces, it is quite impossible to construct a
uniformly accurate model – Curse of dimensionality.

• Exploration refers to sampling all regions of design space.
I Sample in regions where σ is large

• Exploitation refers to doing greater sampling around promising
regions.

I Sample in regions where J̃ is small

• First iteration: sample uniformly in design space using LHS to
create a database of design variables and objective function values
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Merit functions

• Merit function based on a statistical lower bound

min
x
Jκ(x) := J̃(x)− κσ(x)

κ = 0 =⇒ exploitation
κ = large =⇒ exploration

• Choose a set of κ = 0, 1, 2, 3

• Minimize four merit functions

minx J0(x) =⇒ x0

minx J1(x) =⇒ x1

minx J2(x) =⇒ x2

minx J3(x) =⇒ x3

• Evaluate x0, x1, x2, x3 on exact model (CFD)

• Add J(x0), J(x1), J(x2), J(x3) to database

• Update metamodel Ĵ
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Minimization of 2-D Branin function: Initial database

−5 0 5 10
0

5

10

15
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Minimization of 2-D Branin function: after 20 iter

−5 0 5 10
0

5

10

15
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Transonic wing optimization
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Transonic wing optimization: 8 design variables
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Transonic wing optimization: 16 design variables
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Transonic wing optimization: 32 design variables

0 5000 10000
Number of CFD

0.4

0.5

0.6

0.7

0.8

0.9

1

C
os

t f
un

ct
io

n
PSO
IPE-EI
GMO-LB

Praveen. C (TIFR-CAM) Shape optimization IISc, 11 Aug 2010 34 / 49



Transonic wing optimization

No of DV No. of CFD Drag reduction

8, PSO 11136 0.526
8, PSO+Surrogate 181 0.523

16, PSO 9920 0.525
16, PSO+Surrogate 218 0.503

32, PSO 12736 0.483
32, PSO+Surrogate 305 0.485
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Transonic, turbulent airfoil
optimization
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TA5 test case

• Optimize RAE5243 airfoil to reduce drag under lift constraint

Mach Re Cl Flow condition

0.68 19 million 0.82 Fully turbulent

• Modify shape of upper airfoil surface by adding a bump

Xcr

Xbr

Xbl

∆Yh
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Reference solution: Pressure

α = 2.5 deg.
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Optimization test

• 5 design variables

• Initial database of 48
using LHS

• 4 merit functions based
on statistical lower
bound with
κ = 0, 1, 2, 3

• Gaussian process
models

• Merit functions
minimized using PSO
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Annotation = Number of CFD evaluations
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Shape parameters

Case Xcr Xbl Xbr ∆Yh × 10−3

Present 0.688 0.399 0.257 8.578

Qin et al. 0.597 0.313 0.206 5.900

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05
RAE5243
Optimized
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Force and Pressure coefficient

Case Cd ∆Cd Cl AOA

Present 0.01266 -22.2% 0.8204 2.19

Qin et al. 0.01326 -18.2% 0.82 -

0 0.2 0.4 0.6 0.8
x/c
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-0.5

0

0.5

1

1.5

-C
p
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Optimized
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Pressure contours
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Optimal control parameters for
cylinder flow
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• Flow past 2-D cylinder at Re = 200

• Periodic vortex shedding, oscillatory forces

Ref. St Cd

Bergmann et al. (2005) 0.195 1.382
Braza et al. (1986) 0.200 1.400
Henderson (1997) 0.197 1.341
Homescu et al. (2002) - 1.440

current study 0.198 1.370
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Oscillating cylinder

Oscillating cylinder: Apply oscillating velocity boundary condition to
cylinder wall

ω(t) = A sin(2πNt)

ω

U

Find (A,N) to minimise
1

t1 − t0

∫ t1

t0

CD(t;A,N)dt

Non-dimensional variables and bounds:

A∗ =
AD

U∞
∈ [0, 5], N∗ =

ND

U∞
∈ [0, 1]
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Optimization

Initial sample of 16 using LHS

0 2 4 6 8 10 12
optimization iterations

0.8
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st
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Good convergence in 3 iterations, 24 CFD solutions
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Controlled case

Ref. Method A? N? ∆Cd

Bergmann et al.(2004) POD 2.2 0.53 25%
Bergmann et al.(2004) POD-ROM 4.25 0.74 30%
He et al.(2002) NS 2D 3.00 0.75 30%

current study NS 3D 3.20 0.80 25%
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Optimization problem

Optimization

min
x∈Rd

J (x, ao)

C(x, ao) ≤ 0

Robust optimization

min
x∈Rd

{ µJ(x) =

∫
Ω(A)
J (x, a) ρA(a) da

σ2
J(x) =

∫
Ω(A)

[J (x, a)− µJ ]2 ρA(a) da

Prob[C(x,A) ≤ 0] ≥ p
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Summary

• Numerical optimization using CFD

• Gradient-free + Metamodels + Free-form + CFD + MPI

• Major obstacle: CAD −→ Grid

• Other shape parameterizations + Radial basis function
deformation = free-form approach

• Develop numerical tools

• In future:
I 3-D RANS-based optimization
I Multi-point/Multi-objective optimization
I Optimization under uncertainties/robust optimization
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