#### Numerical shape optimization using CFD

# Praveen. C praveen@math.tifrbng.res.in



Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

12'th AeSI CFD Symposium IISc, Bangalore 11–12 August, 2010

#### 1 Approaches to optimization

- **2** Elements of shape optimization
  - Shape parameterization
  - ▶ Grid generation/deformation
  - ▶ CFD solution/Adjoint solution
  - Optimizer
- **3** Free-form deformation (FFD)
- **4** Particle swarm method
- **5** Surrogate models
- 6 Examples

## Approaches to optimization



- Local optimum
- FD accuracy problem
- Adjoint solver required
- Issues with adjoint consistency

- Global optimum possible
- "Easy" to implement for engg. problems
- Slow convergence: surrogate models and parallelization



# Shape parameterization

- Aerodynamic DVs:
  - ▶ LE radius, max camber, taper ratio
- PARSEC, Kulfan parameterization, etc.
- BSplines/NURBS
- Need to re-generate surface/volume grid whenever shape is changed
- Or, use a free-form approach like RBF-based grid deformation

- Originated in computer graphics field
- Embed the object inside a box and deform the box
- Independent of the representation of the object
- Deform CFD grid also, independent of grid type



## Free Form Deformation





(Samareh)

#### Free Form Deformation: Example



#### (R. Duvigneau, INRIA)

#### Free Form Deformation

- $X^0(P) =$ coordinate of point P wrt reference shape
- Movement of point P under the deformation

$$X(P) = X^{0}(P) + \sum_{i=0}^{n_{i}} \sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{k}} \frac{Y_{ijk}B_{i}^{n_{i}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{i}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{k=0}^{n_{j}} \frac{Y_{ijk}B_{i}^{n_{j}}(\xi_{p})B_{j}^{n_{j}}(\eta_{p})B_{k}^{n_{k}}(\zeta_{p})}{\sum_{j=0}^{n_{j}} \sum_{j=0}^{n_{j}} \frac{Y_{ijk}B_{j}^{n_{j}}(\xi_{p})}{\sum_{j=0}^{n_{j}} \sum_{j=0}^{n_{j}} \sum_{j=0}^{n_{j}} \frac{Y_{ijk}B_{j}^{n_{j}}(\xi_{p})}{\sum_{j=0}^{n_{j}} \sum_{j=0}^{n_{j}} \sum_{j=0}^{n_{j}}$$

• Bernstein polynomials

$$B_m^n(t) = C_m^n t^m (1-t)^{n-m}, \quad t \in [0,1], \quad m = 0, 1, \dots, n$$

• Design variables

$$\{Y_{ijk}\}, \quad 0 \le i \le n_i, \quad 0 \le j \le n_j, \quad 0 \le k \le n_k$$

- Cannot change wing planform
- Wing twist can be added as additional variables

# Optimizer

- Kennedy and Eberhart (1995)
- Modeled on behaviour of animal swarms: ants, bees, birds
- Cooperative behaviour of large number of individuals through simple rules
- Emergence of swarm intelligence

#### Optimization problem

 $\min_{x \in D} J(x), \quad D \subset \mathbb{R}^d$ 

- Kennedy and Eberhart (1995)
- Modeled on behaviour of animal swarms: ants, bees, birds
- Cooperative behaviour of large number of individuals through simple rules
- Emergence of swarm intelligence

#### Optimization problem

$$\min_{x \in D} J(x), \quad D \subset \mathbb{R}^d$$

#### Particle swarm optimization

Particles distributed in design space

$$x_i \in D, \quad i = 1, ..., N_p$$



X1

Praveen. C (TIFR-CAM)

#### Particle swarm optimization

Each particle has a velocity

$$v_i \in \mathbb{R}^d, \quad i = 1, ..., N_p$$



X1

Praveen. C (TIFR-CAM)

#### Particle swarm optimization

• Particles have memory (t = iteration number)

Local memory 
$$: p_i^t = \underset{0 \le s \le t}{\operatorname{argmin}} J(x_i^s)$$

Global memory : 
$$p^t = \underset{i}{\operatorname{argmin}} J(p_i^t)$$

• Velocity update

$$v_i^{t+1} = \omega v_i^t + \underbrace{c_1 r_1^t \otimes (p_i^t - x_i^t)}_{Local} + \underbrace{c_2 r_2^t \otimes (p^t - x_i^t)}_{Global}$$

• Position update

$$x_i^{t+1} = x_i^t + v_i^{t+1}$$

#### PSO: embarassingly parallel



Parallel evaluation of cost functions using MPI

#### Test case: Wing shape optimization

• Minimize drag under lift constraint

$$\min \frac{C_d}{C_{d_0}} \quad \text{s.t.} \quad \frac{C_l}{C_{l_0}} \ge 0.999$$

- FFD parameterization, n = 20 design variables
- Particle swarm optimization: 120 particles



(Piaggio Aero. Ind.) Grid: 31124 nodes

#### Cost function

$$\mathcal{J} = \frac{C_d}{C_{d_0}} + 10^4 \max\left(0, 0.999 - \frac{C_l}{C_{l_0}}\right)$$

17 / 49

#### Test case: Wing shape optimization

• Minimize drag under lift constraint

$$\min \frac{C_d}{C_{d_0}} \quad \text{s.t.} \quad \frac{C_l}{C_{l_0}} \ge 0.999$$

- FFD parameterization, n = 20 design variables
- Particle swarm optimization: 120 particles



(Piaggio Aero. Ind.) Grid: 31124 nodes

#### Cost function

$$\mathcal{J} = \frac{C_d}{C_{d_0}} + 10^4 \max\left(0, 0.999 - \frac{C_l}{C_{l_0}}\right)$$

17 / 49

## Wing optimization





Praveen. C (TIFR-CAM)

## Wing optimization

#### Optimized shape



Praveen. C (TIFR-CAM)

- Slow convergence: O(100)-O(1000) iterations
- Require large swarm size: O(100) particles
- CFD is expensive: few minutes to hours
- Example: Transonic wing optimization (coarse CFD grid)

(10 min/CFD) (120 CFD/pso iter) (200 pso iter) = 4000 hours

# Surrogate Models

• Expensive PDE-based model

 $\fbox{Shape parameters} \longrightarrow \vspace{-1mm} space{-1mm} space_{-1mm} space{-1mm} space{-1mm} space{-1mm} spa$ 

• Replace costly model with cheap model: metamodel or surrogate model



- Approximation of cost function and constraint function(s)
  - ▶ Response surfaces (polynomial model)
  - Neural networks
  - Radial basis functions
  - ▶ Kriging/Gaussian Random Process models

Unknown function  $f : \mathbb{R}^d \to \mathbb{R}$ 

Given the data as  $F_N = \{f_1, f_2, \dots, f_N\} \subset \mathbb{R}$  sampled at  $X_N = \{x_1, x_2, \dots, x_N\} \subset \mathbb{R}^d$ , infer the function value at a new point  $x_{N+1}$ .

Treat result of a computer simulation as a fictional gaussian process

 $F_N$  is assumed to be one sample of a multivariate Gaussian process with joint probability density

$$p(F_N) = \frac{\exp\left(-\frac{1}{2}F_N^{\top}C_N^{-1}F_N\right)}{\sqrt{(2\pi)^N \det(C_N)}}$$
(1)

where  $C_N$  is the  $N \times N$  covariance matrix.

# Kriging II

When adding a new point  $x_{N+1}$ , the resulting vector of function values  $F_{N+1}$  is assumed to be a realization of the (N + 1)-variable Gaussian process with joint probability density

$$p(F_{N+1}) = \frac{\exp\left(-\frac{1}{2}F_{N+1}^{\top}C_{N+1}^{-1}F_{N+1}\right)}{\sqrt{(2\pi)^{N+1}\det(C_{N+1})}}$$
(2)

Using Baye's rule we can write the probability density for the unknown function value  $f_{N+1}$ , given the data  $(X_N, F_N)$  as

$$p(f_{N+1}|F_N) = \frac{p(F_{N+1})}{p(F_N)} = \frac{1}{Z} \exp\left[-\frac{(f_{N+1} - \hat{f}_{N+1})^2}{2\sigma_{f_{N+1}}^2}\right]$$

where

$$\underbrace{\hat{f}_{N+1} = k^{\top} C_N^{-1} F_N}_{\text{Inference}}, \qquad \underbrace{\sigma_{f_{N+1}}^2 = \kappa - k^{\top} C_N^{-1} k}_{\text{Error indicator}}$$
(3)

Covariance matrix: Given in terms of a correlation function,  $C_N = [C_{mn}],$ 

$$C_{mn} = \operatorname{corr}(f_m, f_n) = c(x_m, x_n)$$
$$c(x, y) = \theta_1 \exp\left[-\frac{1}{2} \sum_{i=1}^d \frac{(x_i - y_i)^2}{r_i^2}\right] + \theta_2$$

Parameters  $\Theta = (\theta_1, \theta_2, r_1, r_2, \dots, r_d)$  determined to maximize the likelihood of known data

 $\max_{\Theta} \log(p(F_N))$ 

# Kriging: Illustration



- Need a reasonably accurate surrogate model to represent global behaviour.
- But final goal is to find minimum of J, not to construct the most accurate model.
- In large dimensional spaces, it is quite impossible to construct a uniformly accurate model *Curse of dimensionality*.
- Exploration refers to sampling all regions of design space.
  - Sample in regions where  $\sigma$  is large
- Exploitation refers to doing greater sampling around promising regions.
  - Sample in regions where  $\tilde{J}$  is small
- First iteration: sample uniformly in design space using LHS to create a database of design variables and objective function values

### Merit functions

• Merit function based on a statistical lower bound

$$\min_{x} J_{\kappa}(x) := \tilde{J}(x) - \kappa \sigma(x)$$

- $\begin{array}{rcl} \kappa &=& 0 &\Longrightarrow & {\rm exploitation} \\ \kappa &=& {\rm large} &\Longrightarrow & {\rm exploration} \end{array}$
- Choose a set of  $\kappa = 0, 1, 2, 3$
- Minimize four merit functions

$$\min_x J_0(x) \implies x_0 \min_x J_1(x) \implies x_1 \min_x J_2(x) \implies x_2 \min_x J_3(x) \implies x_3$$

- Evaluate  $x_0, x_1, x_2, x_3$  on exact model (CFD)
- Add  $J(x_0), J(x_1), J(x_2), J(x_3)$  to database
- Update metamodel  $\hat{J}$

## Minimization of 2-D Branin function: Initial database



#### Minimization of 2-D Branin function: after 20 iter



# Transonic wing optimization

#### Transonic wing optimization: 8 design variables



#### Transonic wing optimization: 16 design variables



#### Transonic wing optimization: 32 design variables



Praveen. C (TIFR-CAM)

| No of DV          | No. of CFD | Drag reduction |
|-------------------|------------|----------------|
| 8, PSO            | 11136      | 0.526          |
| 8, PSO+Surrogate  | 181        | 0.523          |
| 16, PSO           | 9920       | 0.525          |
| 16, PSO+Surrogate | 218        | 0.503          |
| 32, PSO           | 12736      | 0.483          |
| 32, PSO+Surrogate | 305        | 0.485          |

# Transonic, turbulent airfoil optimization

• Optimize RAE5243 airfoil to reduce drag under lift constraint

| Mach | Re         | $C_l$ | Flow condition  |
|------|------------|-------|-----------------|
| 0.68 | 19 million | 0.82  | Fully turbulent |

• Modify shape of upper airfoil surface by adding a bump



#### Reference solution: Pressure



## Optimization test

- 5 design variables
- Initial database of 48 using LHS
- 4 merit functions based on statistical lower bound with κ = 0, 1, 2, 3
- Gaussian process models
- Merit functions minimized using PSO



| Case       | $X_{cr}$ | $X_{bl}$ | $X_{br}$ | $\Delta Y_h 	imes 10^{-3}$ |
|------------|----------|----------|----------|----------------------------|
| Present    | 0.688    | 0.399    | 0.257    | 8.578                      |
| Qin et al. | 0.597    | 0.313    | 0.206    | 5.900                      |



#### Force and Pressure coefficient

| Case       | $C_d$   | $\Delta C_d$ | $C_l$  | AOA  |
|------------|---------|--------------|--------|------|
| Present    | 0.01266 | -22.2%       | 0.8204 | 2.19 |
| Qin et al. | 0.01326 | -18.2%       | 0.82   | -    |



Praveen. C (TIFR-CAM)



# Optimal control parameters for cylinder flow

- Flow past 2-D cylinder at Re = 200
- Periodic vortex shedding, oscillatory forces



| Ref.                       | St    | Cd    |
|----------------------------|-------|-------|
| Bergmann $et al.$ (2005)   | 0.195 | 1.382 |
| Braza <i>et al.</i> (1986) | 0.200 | 1.400 |
| Henderson $(1997)$         | 0.197 | 1.341 |
| Homescu $et al.$ (2002)    | -     | 1.440 |
| current study              | 0.198 | 1.370 |

# Oscillating cylinder

Oscillating cylinder: Apply oscillating velocity boundary condition to cylinder wall



$$\omega(t) = A\sin(2\pi Nt)$$

Find 
$$(A, N)$$
 to minimise  $\frac{1}{t_1 - t_0} \int_{t_0}^{t_1} C_D(t; A, N) dt$ 

Non-dimensional variables and bounds:

$$A^* = \frac{AD}{U_{\infty}} \in [0, 5], \quad N^* = \frac{ND}{U_{\infty}} \in [0, 1]$$

Praveen. C (TIFR-CAM)

Initial sample of 16 using LHS



Good convergence in 3 iterations, 24 CFD solutions

Praveen. C (TIFR-CAM)

Shape optimization

IISc, 11 Aug 2010 46 / 49



| Ref.                    | Method  | $A^{\star}$ | $N^{\star}$ | $\Delta Cd$ |
|-------------------------|---------|-------------|-------------|-------------|
| Bergmann $et al.(2004)$ | POD     | 2.2         | 0.53        | 25%         |
| Bergmann $et al.(2004)$ | POD-ROM | 4.25        | 0.74        | 30%         |
| He <i>et al.</i> (2002) | NS $2D$ | 3.00        | 0.75        | 30%         |
| current study           | NS 3D   | 3.20        | 0.80        | 25%         |

### Optimization problem

#### Optimization

$$\min_{\substack{x \in \mathbb{R}^d}} \mathcal{J}(x, a_o)$$
$$\mathcal{C}(x, a_o) \le 0$$

#### Robust optimization

$$\min_{x \in \mathbb{R}^d} \begin{cases} \mu_J(x) = \int_{\Omega(A)} \mathcal{J}(x, a) \,\rho_A(a) \, da \\ \sigma_J^2(x) = \int_{\Omega(A)} [\mathcal{J}(x, a) - \mu_J]^2 \,\rho_A(a) \, da \end{cases}$$
$$\operatorname{Prob}[\mathcal{C}(x, A) \le 0] \ge p$$

## Optimization problem

#### Optimization

$$\min_{x \in \mathbb{R}^d} \mathcal{J}(x, a_o)$$
$$\mathcal{C}(x, a_o) \le 0$$

#### Robust optimization

$$\min_{x \in \mathbb{R}^d} \begin{cases} \mu_J(x) = \int_{\Omega(A)} \mathcal{J}(x, a) \,\rho_A(a) \, da \\ \sigma_J^2(x) = \int_{\Omega(A)} [\mathcal{J}(x, a) - \mu_J]^2 \,\rho_A(a) \, da \end{cases}$$
$$\operatorname{Prob}[\mathcal{C}(x, A) \le 0] \ge p$$

- Numerical optimization using CFD
- Gradient-free + Metamodels + Free-form + CFD + MPI
- Major obstacle: CAD  $\longrightarrow$  Grid
- Other shape parameterizations + Radial basis function deformation = free-form approach
- Develop numerical tools
- In future:
  - ▶ 3-D RANS-based optimization
  - Multi-point/Multi-objective optimization
  - Optimization under uncertainties/robust optimization