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The Compressible Euler Our Well-Balanced Scheme
Equations with Gra\[ity We use a second-order finite volume scheme developed by Praveen Chandrashekar (based on [1]).

| _ The scheme consists of three steps:
The compressible Euler equations coupled to a

ravitational source term are: . .
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> These equations are used to model inviscid > Discretize the source term correctly, for one spatial dimension e.g.
compressible fluid dynamics. - - T
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> To close the problem, an equation of state (EOS) 5 _
is added. An EOS is a relation of the form
p=p(p,T). This scheme satisfies the well-balanced property.

Hydrostatic Equilibria Numerical Tests

To find a static solution of the problem, we set

v,V; = 0. Applying these conditions to the Euler
equations above, we find p; = E; = 0 and the

hydrostatic equation

We use the well-balanced scheme combined with a low Mach-solver (Miczek-
preconditioned Roe solver [2]). In one simulation we use a sinusoidal grid.
Right: Structure of the sinusoidal grid (Source: [3]).
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> For one spatial dimension, a finite volume scheme 8(3) :88@5) _
would be a semi-discrete scheme of the form —0.3 —1.00 —
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dt Ax Advantages of the Scheme Astrophysical Application
> Any time mtggrator can be used to evolve these > Applicable in one, two or three spatial > Stars are typically near a hydrostatic
ODEs numerically. dimensions. equilibrium.
> |In general, a finite volume scheme is not able to > Adaptable for any hydrostatic equilibrium — > Dynamics such as
preserve a hydrostatic equilibrium. even if it is not known analytically. convective mixing

ProCesses are orders

> Applicable on arbitrary curvilinear grids. of magnitude smaller
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hydrostatic > Independent of the equation of state. than the
equilibrium : background.
i > Independent of the reconstruction scheme. 5
. . > This dynamics can only be resolved if the
/ \ > Independent of the numerical flux function. v 1’ . L y_ }
. ) : : rostatic equilibrium IS preserved near
( arbitrary scheme well-balanced — can be combined with a low Mach flux. y _ q _ P
machine precision.
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