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Euler equations with gravity

Flow properties
p = density, u = velocity

p = pressure, E = total energy

Gravitational potential ¢; force per unit volume of fluid

—pVo

System of conservation laws

op 0 B
N + %(PU) =0
9 0 N ¢
at(pu)Jr%(zoeru ) = oy
OE 0 96
B + %(E +pu = —pu%
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Euler equations with gravity

Perfect gas assumption

1
p=(y—1) [E—puz}, y=251
2 Cy
In compact notation
oq of _ |"]os
ot "oz | P | oa
pU
where
p pu
q= |pu|, f=|p+pu?

E (E+p)u
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Hydrostatic solutions

e Fluid at rest
Ue = 0

Mass and energy equation satisfied

e Momentum equation
dpe d¢

= — 1
dzx Pe dx (1)
Need additional assumptions to solve this equation

Assume ideal gas and some temperature profile T, ()
De(z) = pe(x)RT(x), R = gas constant

integrate (1) to obtain

)

Pe() = poexp <— RT.(5)
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Hydrostatic solutions

e If the hydrostatic state is isothermal, i.e., T.(x) = T, = const, then

(2)

pe() exp <¢(”“")> — const

RT,
Density
pe()
€Tr) =
pe(T) RT.
o If the hydrostatic solution is polytropic then we have following
relations
__v_ __1
Pep, = const, peTe "~ = const, peTe “~' = const

where v > 1 is some constant. From (1) and (3), we obtain

1/157:6(13?) + ¢(x) = const

E.g., pressure is

v—1

pe(x) = C1[C2 = p(2)] 7

6
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Existing schemes

e Isothermal case: Xing and Shu [2], well-balanced WENO scheme

e If v =~ we are in isentropic case
h(z) + ¢(x) = const

has been considered by Kappeli and Mishra [1].

e Desveaux et al: Relaxation schemes, general hydrostatic states
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Well-balanced scheme

General evolutionary PDE

Jdq

— =R

5 — 1@
e Stationary solution g,

R(qe) =0

e We are interested in computing small perturbations

q(z,0) = ge(x) + eq(x,0), ekl

Perturbations are governed by linear equation

o4 ., .
(%—R(qe)q

Scheme is well-balanced if it exactly preserves hydrostatic solution.
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Well-balanced scheme

e Some numerical scheme

oqn
ot Rh(Qh)

® gj . = interpolation of g. onto the mesh

Scheme is well balanced if

9an

o

Rp(qne) =0 =
e Suppose scheme is not well-balanced Ry, (gp ) # 0. Solution

an(z,t) = qne() + eqp(x,t)
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Well-balanced scheme
e Linearize the scheme around gy, .

0 - -
—(@he +2qn) = Ru(qhe +2qn) = Ri(qne) + €Ry,(an.e)an

ot
or o )
g, _ 1 Ry
% = ERh(Qh,e) + Ry (gh.e)dn
e Scheme is consistent of order r: Ry, (qn.c) = Ch"||qh.e||
aqn, 1 , -
T ZCn||gnell + Rl (e
5 = 2Ol lanell + B(gn.e)an

—

e £ < 1 then first term may dominate the second term; need h <
e Canonical approach

Opu 0 oy 09

ot o T P = "y,
d N N e
E(pu)l+ﬂ[fi+% fifé]_ Pi AL
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Scope of present work

e Second order finite volume scheme

o |deal gas model: well-balanced for both isothermal and polytropic
solutions

e Most numerical fluxes can be used
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Source term [2]

Define .
P(z) = — . ]?152) ds, xg is arbitrary

Then

W0 [, d

Ox oz J,, RT(s) RT ()
and .

5 () = exp((0) 57 =~ expl(a)

so that

Euler equations

0
g‘tl + gj: = !p] eXp(—IZJ(m))(% exp(¢(z))

pu
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1-D finite volume scheme

Divide domain into N finite volumes each of size Ax

i'th cell = (z;_1, ;1)

e semi-discrete finite volume scheme for the i'th cell

dg; + Firs = Fiy s e'itd —e'i4 0 (5)
—=e 7 .
dt Az Az b
piug
° Py, ¥, 1 etc. are consistent approximations to the function ()
F(L R
e consistent numerical flux f+f = f(qH%,qH%)
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1-D finite volume scheme

Def: Property C
The numerical flux f is said to satisfy Property C if for any two states
qL = [pL707p/(’y - 1)] and qR = [pRa Oap/(’y - 1)]

we have X
f(q",q") =10,p,0]"

e states g”, g% in the above definition correspond to a stationary
contact discontinuity.

e Property C = numerical flux exactly support a stationary contact
discontinuity.

e Examples of such numerical flux: Roe, HLLC
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1-D finite volume scheme

e First order scheme

L _ . R _
qi+% = q;, ql+% ={qi+1

e Higher order scheme: To obtain the states qf+l,qﬁl, reconstruct
2 2
the following set of variables

.
w=|pe ", u, pe”¥

e Once wf , etc. are computed, the primitive variables are obtained as
2

L (T L L L L Vi1 L
= 2 = = 2
Pir=e (wl)H%, Uil (wg)H%, Pihi=e (wg)H%, et
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Well-balanced property

Theorem

The finite volume scheme (5) together with a numerical flux which
satisfies property C and reconstruction of w variables is well-balanced in
the sense that the initial condition given by

u; = 0, pi exp(—1;) = const, ) (6)

is preserved by the numerical scheme.

Proof: Start computation with an initial condition that satisfies (6). Since
we reconstruct the variables w, at any interface 7 + % we have

L R L R
(w2)i1 = (w2)ii1 =0, (w3)i 1 = (ws);l1
Hence
Wi =uiy =0, pia =pls =piep(Y g — %) =p
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Well-balanced property

andati—%

UL 1 = 'LLR 0,
i—5 i—

= pl o =pt L =piexp(y;_
KA 1 3

1
2

- ¢z) ='Pi_

D=

1
2

NI

Since the numerical flux satisfies property C, we have

2

f‘_l = [O7pi_%70]—r7 fﬁ_% = [O,pi_’_%,O]T

Mass and energy equations are already well balanced, i.e.,

o’ 4
dt ’ dt

Momentum equation: on the left we have

71—

2

Az Ax

F(2) F(2)
‘fi—&-% -5 _ Pipl =P 1
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Well-balanced property

while on the right

_d,.ew”% — e%*% pie ity — p;e =5 Pipl =P 1
e [ — —
pi Ax Ax Ax
and hence
2
dql( ) _0
d¢

This proves that the initial condition is preserved under any time
integration scheme.

18 /61



Approximation of source term

e How to approximate ;, 1; 1, etc. ? Need some quadrature
2

e well-balanced property independent of quadrature rule to compute 2.
e To preserve isothermal /polytropic solutions exactly, the quadrature

rule has to be exact for these cases.
e To compute the source term in the i'th cell, we define the function

¥ (x) as follows

T P(s)
x)=— ds

where we chose the reference position as ;.
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Approximation of source term
e To approximate the integrals we define the piecewise constant

temperature as follows

T($):T;+%, T <X < Tjgq
where Ti+l is the logarithmic average given by
2
P Tiy1 —T;
2 log Ty —logT;

e The integrals are evaluated using the approximation of the

temperature given in (7) leading to the following expressions for .

i = 0
1 [Ty, $i — ;1
= —— s)ds = —=
heb = [ o
1 xiJr% , ¢z_¢z+l
= —— s)ds = —
e N A o
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Approximation of source term

e Gravitational potential required at faces ¢, 1
2

e ¢ is governed by Poisson equation and hence is a smooth function.
We can interpolate

1
Pipl = §(¢i + div1)

Sufficient to obtain second order accuracy. Then

_ Gi — di o b= %in
%_ - 2Rjjz_ ’ Tﬂz 07 1/}1_1_ 2 (8)

N[

[N
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Approximation of source term

The source term discretization given by (8) is second order accurate.

Theorem J

Proof. The source term in (5) has the factor

¢1 ¢z+l ¢z ¢z 1
. ) exp — exp
s Vi _ Vel <2RT 1 ) ( 2RT, >

Az = s using (8)

Using a Taylor expansion around x; we get

11 ) 1
=1+ 0], =
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Approximation of source term

and
Pi—Pit1 bi—bi—1
2RT 2RT. 1
e T2 — e =3
_ TR (CHAT—ATPHO(ADY) e (+6[A0—0/ Aa®+0(Aa?)
= _’.A_’.’AZ = (A2 A3
1
— 1+ Az — ¢'Ax?) + ———— (¢t Az)? + O(Az?
= - ! 4 A A 3
RT. (x;)Ax + O(Ax?)
Hence the source term discretization is second order accurate. O

23 /61



Theorem

Any hydrostatic solution which is isothermal or polytropic is exactly
preserved by the finite volume scheme (5).

Proof. Take initial condition to be a hydrostatic solution. We have to
verify that the initial condition satisfies equation (6).

Isothermal case: TH; = T, = const, and using (2) we obtain
2

pisie” P iy Vit _ Pl <¢z‘+1 - ¢z’) _ piv1exp(¢it1/RTe
pie™ Vi pi pi RT. piexp(¢i/ RTe)

Polytropic case:

et ) )
Pi1€” " Pit1 iy _ Pitl exp Qit1 — Pi

pie Vi Di Di RTZ- +1
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But from (3), (4) we have

v

Giv1 — i VR1(T1'+1_TZ‘) 1 < T; )”‘1
_ — log

[ 025 O M T
BTy R g D —Tog () i+1
and hence
pigre Vit pi+1Tz+11/(V71) =1
pie—Vi 1D

Hence in both cases, the initial condition is preserved by the finite volume
scheme. n
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Summary of the scheme

Using the approximations given by (8), the semi-discrete finite volume
scheme is given by

dg; . fi-i-% - fi—% e

at Az Az pi
piu;

B,y 1(i—diy1) B, 1(pi—ci1) 0
+3 — ¢ 732

where we have introduced the quantity

By

=
\V)
oy
~

As an example of reconstruction, we discuss the minmod-type scheme for
the interface 7 + % which is given by

1
wiﬂ% = wi + 5m((wi — wi-1), (Wis1 — w;—1)/2,0(wit1 — w;))

26
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Summary of the scheme

1
wﬁ% = wit1 — 5Mm0(wis1 — wi), (Wir2 — wis1)/2,0(wir2 — Wit1))

where 6 € [1,2] and m(-,-,-) is the minmod limiter function given by

m(a,b,c) =

smin(|al, |b],|c|) if s =sign(a) = sign(b) = sign(c)
otherwise

The variables w are defined using the potential relative to z,

Y A C)
1/’(33) - _/xH—l RT(S)dS

+
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Summary of the scheme

Then
Gi— pio1  Pirl @i . .
i1 = - + ~ =20, 1(¢;i — ¢i—1) + B 1 (Piv1 —
i RT,_; RT. Bi_1(di = di-1) + Biy 1 (it
o= T g G- 6
i = ———— =B (i1 — @i
RTH—% ’
¢Z+1 ¢i+l A
Yiv1 = —f = —5i+%(¢i+1 - ¢z)
i+
Git1 = Pt Ll i — diss R R
Vitz = — 2 T = B 1 (i — ) — 2By,
RTH—% RTH% ’

In terms of the above 1;'s, the variables w are defined as follows
pje i
w; = uj , j=i—-14,i+1,i4+2
pje ¥

®i)

s (Die
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Summary of the scheme

Since 9, 1 = 0 we obtain the reconstructed values as
2

L R

hS
hS)

L R
= i+%’

i+1 Pliy

SIS
|

S

I

g

[N

For the first and last cells, we extrapolate the potential from inside the
domain to the faces located on the domain boundary

3 1 3 1
¢% = §¢1 - §¢27 ¢N+5 = §¢N — 5¢N—1
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Isothermal examples: well-balanced test

Density and pressure are given by
pe(ﬂf) = pe(x) = exp(—(j)(:b))

N =100, 1000, final time = 2

Potential 1 | Potential 2 | Potential 3
o(x) x sa? sin(27x)

Table: Potential functions used for well-balanced tests
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Isothermal examples: well-balanced test

Potential | Cells Density Velocity Pressure
x 100 | 8.21676e-15 | 4.98682e-16 | 9.19209e-15
1000 | 8.00369e-14 | 1.51719e-14 | 9.15152e-14
%xQ 100 | 1.01874e-14 | 2.49332¢-16 | 1.06837e-14
1000 | 1.05202e-13 | 4.10434e-16 | 1.11861e-13
sin(2rx) | 100 | 1.12466e-14 | 5.79978e-16 | 1.74966e-14
1000 | 1.16191e-13 | 2.93729e-15 | 1.76361e-13

Table: Error in density, velocity and pressure for isothermal example
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Isentropic examples: well-balanced test
Isentropic hydrostatic solution

1

-1 1
L) =1="=0@).  pe=To"  pe=4l
N =100, 1000, final time = 2

Potential | Cells Density Velocity Pressure
x 100 | 6.86395e-15 | 2.65535e-16 | 7.88869e-15
1000 | 7.03820e-14 | 7.79350e-16 | 8.03623e-14
%xQ 100 | 1.06604e-14 | 2.27512e-16 | 1.04128e-14
1000 | 1.10726e-13 | 1.15415e-15 | 1.09185e-13
sin(2rz) | 100 | 1.27570e-14 | 5.18212¢-16 | 1.65185e-14
1000 | 1.29020e-13 | 1.12837e-15 | 1.66566e-13

Table: Error in density, velocity and pressure for isentropic example
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Polytropic examples: well-balanced test

Polytropic hydrostatic solutions

1
L@ =1-""Lo@),  p=TF, =il
v=1.2, N =100, 1000, final time = 2

Potential | Cells Density Velocity Pressure
x 100 | 6.86395e-15 | 2.65535e-16 | 7.88869e-15
1000 | 7.03820e-14 | 7.79350e-16 | 8.03623e-14
%xQ 100 | 1.06604e-14 | 2.27512e-16 | 1.04128e-14
1000 | 1.10726e-13 | 1.15415e-15 | 1.09185e-13
sin(2mrx) | 100 | 1.27570e-14 | 5.18212e-16 | 1.65185e-14
1000 | 1.29020e-13 | 1.12837e-15 | 1.66566e-13

Table: Error in density, velocity and pressure for polytropic example
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Non-isothermal example
e Stationary solution

Ba) = 5% pu@) =exp(—a),  pele) = (1 +0)exp(—a)

e corresponds to a non-uniform temperature profile
Te(x) =142z

e Neither isothermal nor polytropic; present scheme will not be able to
preserve the exact hydrostatic solution

e Instead, we construct an approximation to the above hydrostatic
solution by numerically integrating the hydrostatic equations (1)

P1 = Pe(x1), p1 = _n
RTe(I‘l)

pi = pi—l exp(_28i— (¢i_¢i—1))7 Pz = RTpiz.T')7 Z == 27 37 sety-

1
2



Non-isothermal example

e The above solution satisfies equation (6) and hence is preserved by

the numerical scheme.

e Solution converges at second order; velocity is zero upto machine
precision indicating that we have a stationary solution

Cells p error p rate Velocity P error p rate
50 5.41510e-06 - 3.90665e-16 | 8.51248e-06

100 | 1.37964e-06 | 1.97 | 1.06754e-15 | 2.16486e-06 | 1.97
200 | 3.48173e-07 | 1.98 | 4.82755e-16 | 5.45846e-07 | 1.98
400 | 8.74530e-08 | 1.99 | 1.94554e-15 | 1.37043e-07 | 1.99
800 | 2.19146e-08 | 1.99 | 2.62298e-15 | 3.43336e-08 | 1.99
1600 | 5.48521e-09 | 1.99 | 6.56911e-15 | 8.59273e-09 | 1.99

Table: Convergence of error for hydrostatic solution of section (34).
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Evolution of small perturbations

The initial condition is taken to be the following

1
o =52 u=0, p(z)=exp(—¢(z))
Add small perturbation to equilibrium pressure
p(x) = exp(—é(z)) + e exp(—100(z — 1/2)?), 0<exl

Non-well-balanced scheme

%(xi> ~ Pit1 — ¢i—17

reconstruct p,u
Oz 2Ax prUs P

Using exact derivative of potential does not improve results. In practice, ¢
is only available at grid points.
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Evolution of small perturbations

" _
10720 — — 10720 ‘ —————
/N |7 Initial 2o |- - - itial
11 |[—Well-balanced 11 |—Well-balanced
8r /\ [~ 'Non well-balanced}| 8+ /% |-~ Non well-balanced|]

! 1

1 ‘| 1
c ! ' c '
2 / \ S 6 !
S ' 154 '
£ [} £ 1
2 =1 '
3 S 4 ,
© ©
2 >
@ 7]
14 [2]
£ o 2
a o

0
) . . . . >
0 0.2 0.4 0.6 0.8 1 0

e =103, N = 100 cells e =105 N = 100 cells

37/61



Evolution of small

perturbations

Jox10° . ‘ x10° e :
!N - - -Initial !N - - -Initial
—— Well-balanced v —WB, cells=100
\ - -'WB, cells=500|

Pressure perturbation

\ | = = Non well-balanced||

Pressure perturbation

e =105 N = 500 cells
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Shock tube under gravitational field

Gravitational field

¢(x) =z
The domain is [0, 1] and the initial conditions are given by
(prusp) = (1,0,1) r <3
Y (0.125,0,0.1) =z >1

Solid wall boundary conditions. Final time ¢t = 0.2, N = 100, 2000 cells
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Shock tube under gravitational field

Pressure

1.4
o cells =100
12 —cells = 2000 08
1 0.6
0.8 2 04
k]
k=3
06 2 02
0.4] 0
0.2 -0.2
t;[) 0.2 0.4 0.6 0.8 04 0.2 0.4 0.6 0.8 1
3.5
3
25
3z 2|
I3
2
ul 15|
1
0.5
0
0 0.2 0.4 0.6 0.8 1
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2-D Euler equations with gravity
2-D Euler equations in Cartesian coordinates

Here the conserved variables g, fluxes (f,g) and source terms s are given
by

p pu pv 0
_|pu F= p+ pu? _ puv s — —P%
T= oo puv | I T pape? | —p%2
P P
E (E+pu (E+pv —p(ua—ﬁ + va—f

In the above equations
p = density, (u,v) = Cartesian components of the velocity

p = pressure, FE = total energy per unit volume

¢ = ¢(x,y) = gravitational potential
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Hydrostatic solution

The hydrostatic equilibrium is characterized by the following set of
equations

Ope 9% e 0

P— pr— 0 = -— = —
te = Ve ’ Oz Pe gy oy Pe oy

These equations can be integrated along y = const lines

pelo) = atyesp (- [ e as )
and x = const lines
Pe(x,y) = blz) exp (‘ /yy mds>

As in the 1-D case, we will exploit the structure of these solutions to
construct the well-balanced scheme.
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Source term

Define

@D(l‘,y) = - ’ Mds, X(x,y) — /y Mds

v RT(s,y) . RT(x,s)

Then the gravitational force can be written as

0 5
- =pe ¥ —e¥ — = pe~ XX
p(br pe 81’ €, P¢y pe 8y €
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2-d finite volume scheme on Cartesian meshes

e Partition computational domain into rectangular cells
Qg = @iy i) % W3 Yj41)

with
Tipl =T 1 = Az and Yjr1 — Y1 = Ay

¢ semi-discrete finite volume scheme for the cell (i, j)

d R R
Q ,J dtq%J + fz+2,j fz % ,]—l—% - gi,j—% = Sij (10)
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2-d finite volume scheme on Cartesian meshes

e The gravitational source term is discretized as

&) = o0

éf? = pije Vi [ew”%’j - ewi*%vj}
sg?;) = p; e X [ex"’”% — exi’f—%}
égjlj) = ums( ) +v; ;8 1(3])

e Following the steps in the 1-D case, we can write the source terms as

(72]) = b |:eﬁi+%’j(¢i+1,j—¢i,j) B eﬁi_%’j(¢i—l,j_¢i,j):|
8(3) = i |:e 2]+%(¢2]+1 ®i,5) eﬁi’j_%(d)i,jlﬁbi,j)]
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2-d finite volume scheme on Cartesian meshes

e To obtain the values at the face q . we reconstruct the

L qR
i+, it
following set of variables

L R

and to obtain URSTRRR A TEE
’ 2 7 2

we reconstruct the following set of

variables

w = [pe X u, v,pe*X]T
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Theorem

The finite volume scheme (10) together with a numerical flux which
satisfies property C and reconstruction of w variables is well-balanced in
the sense that the initial condition given by

u; =vi; =0,  pijexp(—tij) =aj,  pijexp(—=xij) =bi, Vi, j

(11)

v

is preserved by the numerical scheme.

Theorem

Any hydrostatic solution which is isothermal or polytropic is exactly
preserved by the finite volume scheme (10).
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Isothermal hydrostatic solution

unit square, potential

pe(,y) = poexp(—pog(z+y)/po),
po = 1.21,

pOZ]-a

g=1,

o(z,y) =r+y

pe(,y) = poexp(—pog(z+y)/po)

final time =1

Grid

p

u

v

p

50 x 50
200 x 200

0.19050E-14
0.75677E-14

0.14660E-15
0.12908E-14

0.14439E-15
0.12853E-14

0.20428E-14
0.83936E-14

Table: Error in density, velocity and pressure for isothermal hydrostatic example
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Isothermal hydrostatic solution

To study the accuracy of the scheme, we add an initial perturbation to the
pressure and take the following initial condition

p(z,y,0) = po exp(—pog(z+y)/po)+nexp(—100pog((z—0.3)*+(y—0.3)%) /p

mesh = 50 x 50, transmissive bc, final time = 0.15

pressure perturbation with n = 0.1
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Isothermal hydrostatic solution

well-balanced

non well-balanced

20 equally spaced contours between -0.03 and 40.03 are shown
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Isothermal hydrostatic solution

pressure perturbation with n = 0.001

;oo - =

lyor - = =

well-balanced
20 contours in [-0.00026, +0.00026]

non well-balanced
20 contours in [-0.02, +0.00026]

51/61




Polytropic hydrostatic solution

Unit square, potential ¢(z,y) =z +y

vV — 1 l/il l/il
Te:]_— (l‘—l—y), pe:Te ) pe:T@
v =12, final time =1
Grid p U v D
50 x 50 | 0.20449E-14 | 0.41148E-15 | 0.39802E-15 | 0.24637E-14
200 x 200 | 0.83747E-14 | 0.18037E-14 | 0.17986E-14 | 0.10107E-13

Table: Error in density, velocity and pressure
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Polytropic hydrostatic solution

Perturbation of the initial pressure from the above polytropic solution

p(2,y,0) = pe(x,y) + nexp(—100pog((x — 0.3)* + (y — 0.3)%)/po)

mesh = 50 x 50, transmissive bc, final time = 0.15

pressure perturbation with n = 0.1
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Polytropic hydrostatic solution

non well-balanced

well-balanced
20 equally spaced contours between -0.03 and +0.03
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Polytropic hydrostatic solution

pressure perturbation with n = 0.001

/s T === N

well-balanced
20 contours in [-0.00025,+0.00025]

non well-balanced
20 contours in [-0.015,+0.0003]
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Rayleigh-Taylor instability

e isothermal radial solution with potential ¢ = r: p = p = exp(—r)

e Add perturbation: initial pressure and density are given by

e " r<rg e " r<r;
P=9 _r ., G- ) p= e (1—a)
e a0y T>T0 ée atroT— >

ri = ro(1 4 ncos(k0)), a = exp(—ro)/(exp(—ro) + Ap)

e density jumps by an amount A, > 0 at interface r = r;, pressure is

continuous.

A,=0.1, 7n=0.02 k=20, mesh= 240 x 240 cells

domain = [—1,+1] x [—1,+1].

56
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Rayleigh-Taylor instability

e In the regions r < ro(1 —n) and r > ro(1 4 n) the initial condition is
in stable equilibrium

e but due to the discontinuous density, a Rayleigh-Taylor instability
develops near interface defined by r = ;.

e Due to well-balanced scheme, instability is concentrated only around
the discontinuous interface
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Rayleigh-Taylor instability
t=0
t=38
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Extensions, ongoing work
e 2/3-D curvilinear meshes

o General equation of state, e.g., ideal gas with radiation pressure

1
p=pRT + §QT4

No exact hydrostatic solutions known, preserve an approximate
hydrostatic solution
e Weak formulation

find weV suchthat a(u,v)=4v) YveV
e Galerkin method
find w, € V3, such that a(up,vp) = £L(vy) Yo, € Vi
In practice
find wup € Vi, such that ap(up,vp) = Cp(vp) Yop, € Vi

Exact solution u is not a solution of above problem.
e Discontinuous Galerkin method: well-balanced for isothermal

hydrostatic solution
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