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Euler equations with gravity

Flow properties

ρ = density, u = velocity

p = pressure, E = total energy

Gravitational potential φ; force per unit volume of fluid

−ρ∇φ

System of conservation laws

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂

∂t
(ρu) +

∂

∂x
(p+ ρu2) = −ρ∂φ

∂x
∂E

∂t
+

∂

∂x
(E + p)u = −ρu∂φ

∂x
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Euler equations with gravity

Perfect gas assumption

p = (γ − 1)

[
E − 1

2
ρu2

]
, γ =

cp
cv
> 1

In compact notation

∂q

∂t
+
∂f

∂x
= −

 0
ρ
ρu

 ∂φ
∂x

where

q =

 ρρu
E

 , f =

 ρu
p+ ρu2

(E + p)u
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Hydrostatic solutions

• Fluid at rest
ue = 0

• Mass and energy equation satisfied

• Momentum equation
dpe
dx

= −ρe
dφ

dx
(1)

• Need additional assumptions to solve this equation

• Assume ideal gas and some temperature profile Te(x)

pe(x) = ρe(x)RTe(x), R = gas constant

integrate (1) to obtain

pe(x) = p0 exp

(
−
∫ x

x0

φ′(s)

RTe(s)
ds

)
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Hydrostatic solutions
• If the hydrostatic state is isothermal, i.e., Te(x) = Te = const, then

pe(x) exp

(
φ(x)

RTe

)
= const (2)

Density

ρe(x) =
pe(x)

RTe
• If the hydrostatic solution is polytropic then we have following

relations

peρ
−ν
e = const, peT

− ν
ν−1

e = const, ρeT
− 1
ν−1

e = const (3)

where ν > 1 is some constant. From (1) and (3), we obtain

νRTe(x)

ν − 1
+ φ(x) = const (4)

E.g., pressure is

pe(x) = C1 [C2 − φ(x)]
ν−1
ν
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Existing schemes

• Isothermal case: Xing and Shu [2], well-balanced WENO scheme

• If ν = γ we are in isentropic case

h(x) + φ(x) = const

has been considered by Kappeli and Mishra [1].

• Desveaux et al: Relaxation schemes, general hydrostatic states
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Well-balanced scheme

• Scheme is well-balanced if it exactly preserves hydrostatic solution.

• General evolutionary PDE

∂q

∂t
= R(q)

• Stationary solution qe
R(qe) = 0

• We are interested in computing small perturbations

q(x, 0) = qe(x) + εq̃(x, 0), ε� 1

• Perturbations are governed by linear equation

∂q̃

∂t
= R′(qe)q̃
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Well-balanced scheme

• Some numerical scheme

∂qh
∂t

= Rh(qh)

• qh,e = interpolation of qe onto the mesh

• Scheme is well balanced if

Rh(qh,e) = 0 =⇒ ∂qh
∂t

= 0

• Suppose scheme is not well-balanced Rh(qh,e) 6= 0. Solution

qh(x, t) = qh,e(x) + εq̃h(x, t)
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Well-balanced scheme
• Linearize the scheme around qh,e

∂

∂t
(qh,e + εq̃h) = Rh(qh,e + εq̃h) = Rh(qh,e) + εR′h(qh,e)q̃h

or
∂q̃h
∂t

=
1

ε
Rh(qh,e) +R′h(qh,e)q̃h

• Scheme is consistent of order r: Rh(qh,e) = Chr‖qh,e‖

∂q̃h
∂t

=
1

ε
Chr‖qh,e‖+R′h(qh,e)q̃h

• ε� 1 then first term may dominate the second term; need h� 1

• Canonical approach

∂ρu

∂t
+

∂

∂x
(p+ ρu2) = −ρ∂φ

∂x

d

dt
(ρu)i +

1

∆x
[f̂i+ 1

2
− f̂i− 1

2
] = −ρi

φi+1 − φi−1

2∆x
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Scope of present work

• Second order finite volume scheme

• Ideal gas model: well-balanced for both isothermal and polytropic
solutions

• Most numerical fluxes can be used
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Source term [2]
Define

ψ(x) = −
∫ x

x0

φ′(s)

RT (s)
ds, x0 is arbitrary

Then
∂ψ

∂x
= − ∂

∂x

∫ x

x0

φ′(s)

RT (s)
ds = − φ′(x)

RT (x)

and
∂

∂x
exp(ψ(x)) = exp(ψ(x))

∂ψ

∂x
= − exp(ψ(x))

φ′(x)

RT (x)

so that

−ρ(x)
∂φ

∂x
= p(x) exp(−ψ(x))

∂

∂x
exp(ψ(x))

Euler equations

∂q

∂t
+
∂f

∂x
=

 0
p
pu

 exp(−ψ(x))
∂

∂x
exp(ψ(x))

12 / 61



1-D finite volume scheme

• Divide domain into N finite volumes each of size ∆x

• i’th cell = (xi− 1
2
, xi+ 1

2
)

• semi-discrete finite volume scheme for the i’th cell

dqi
dt

+
f̂i+ 1

2
− f̂i− 1

2

∆x
= e−ψi

(
e
ψ
i+1

2 − e
ψ
i− 1

2

∆x

) 0
pi
piui

 (5)

• ψi, ψi+ 1
2

etc. are consistent approximations to the function ψ(x)

• consistent numerical flux f̂i+ 1
2

= f̂(qL
i+ 1

2

, qR
i+ 1

2

)
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1-D finite volume scheme

Def: Property C

The numerical flux f̂ is said to satisfy Property C if for any two states

qL = [ρL, 0, p/(γ − 1)] and qR = [ρR, 0, p/(γ − 1)]

we have
f̂(qL, qR) = [0, p, 0]>

• states qL, qR in the above definition correspond to a stationary
contact discontinuity.

• Property C =⇒ numerical flux exactly support a stationary contact
discontinuity.

• Examples of such numerical flux: Roe, HLLC
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1-D finite volume scheme

• First order scheme

qL
i+ 1

2

= qi, qR
i+ 1

2

= qi+1

• Higher order scheme: To obtain the states qL
i+ 1

2

, qR
i+ 1

2

, reconstruct

the following set of variables

w =
[
ρe−ψ, u, pe−ψ

]>
• Once wL

i+ 1
2

etc. are computed, the primitive variables are obtained as

ρL
i+ 1

2

= e
ψ
i+1

2 (w1)L
i+ 1

2

, uL
i+ 1

2

= (w2)L
i+ 1

2

, pL
i+ 1

2

= e
ψ
i+1

2 (w3)L
i+ 1

2

, etc.
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Well-balanced property

Theorem

The finite volume scheme (5) together with a numerical flux which
satisfies property C and reconstruction of w variables is well-balanced in
the sense that the initial condition given by

ui = 0, pi exp(−ψi) = const, ∀ i (6)

is preserved by the numerical scheme.

Proof: Start computation with an initial condition that satisfies (6). Since
we reconstruct the variables w, at any interface i+ 1

2 we have

(w2)L
i+ 1

2

= (w2)R
i+ 1

2

= 0, (w3)L
i+ 1

2

= (w3)R
i+ 1

2

Hence

uL
i+ 1

2

= uR
i+ 1

2

= 0, pL
i+ 1

2

= pR
i+ 1

2

= pi exp(ψi+ 1
2
− ψi) =: pi+ 1

2
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Well-balanced property

and at i− 1
2

uL
i− 1

2

= uR
i− 1

2

= 0, pL
i− 1

2

= pR
i− 1

2

= pi exp(ψi− 1
2
− ψi) =: pi− 1

2

Since the numerical flux satisfies property C, we have

f̂i− 1
2

= [0, pi− 1
2
, 0]>, f̂i+ 1

2
= [0, pi+ 1

2
, 0]>

Mass and energy equations are already well balanced, i.e.,

dq
(1)
i

dt
= 0,

dq
(3)
i

dt
= 0

Momentum equation: on the left we have

f̂
(2)

i+ 1
2

− f̂
(2)

i− 1
2

∆x
=
pi+ 1

2
− pi− 1

2

∆x
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Well-balanced property

while on the right

pie
−ψi e

ψ
i+1

2 − e
ψ
i− 1

2

∆x
=
pie

ψ
i+1

2
−ψi − pie

ψ
i− 1

2
−ψi

∆x
=
pi+ 1

2
− pi− 1

2

∆x

and hence

dq
(2)
i

dt
= 0

This proves that the initial condition is preserved under any time
integration scheme.
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Approximation of source term

• How to approximate ψi, ψi+ 1
2

, etc. ? Need some quadrature

• well-balanced property independent of quadrature rule to compute ψ.

• To preserve isothermal/polytropic solutions exactly, the quadrature
rule has to be exact for these cases.

• To compute the source term in the i’th cell, we define the function
ψ(x) as follows

ψ(x) = −
∫ x

xi

φ′(s)

RT (s)
ds

where we chose the reference position as xi.
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Approximation of source term
• To approximate the integrals we define the piecewise constant

temperature as follows

T (x) = T̂i+ 1
2
, xi < x < xi+1 (7)

where T̂i+ 1
2

is the logarithmic average given by

T̂i+ 1
2

=
Ti+1 − Ti

log Ti+1 − log Ti

• The integrals are evaluated using the approximation of the
temperature given in (7) leading to the following expressions for ψ.

ψi = 0

ψi− 1
2

= − 1

RT̂i− 1
2

∫ x
i− 1

2

xi

φ′(s)ds =
φi − φi− 1

2

RT̂i− 1
2

ψi+ 1
2

= − 1

RT̂i+ 1
2

∫ x
i+1

2

xi

φ′(s)ds =
φi − φi+ 1

2

RT̂i+ 1
2
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Approximation of source term

• Gravitational potential required at faces φi+ 1
2

• φ is governed by Poisson equation and hence is a smooth function.
We can interpolate

φi+ 1
2

=
1

2
(φi + φi+1)

Sufficient to obtain second order accuracy. Then

ψi− 1
2

=
φi − φi−1

2RT̂i− 1
2

, ψi = 0, ψi+ 1
2

=
φi − φi+1

2RT̂i+ 1
2

(8)
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Approximation of source term

Theorem

The source term discretization given by (8) is second order accurate.

Proof: The source term in (5) has the factor

e−ψi
e
ψ
i+1

2 − e
ψ
i− 1

2

∆x
=

exp

(
φi−φi+1

2RT̂
i+1

2

)
− exp

(
φi−φi−1

2RT̂
i− 1

2

)
∆x

using (8)

Using a Taylor expansion around xi we get

1

T̂i− 1
2

=
1

Ti
[1 +O(∆x2)],

1

T̂i+ 1
2

=
1

Ti
[1 +O(∆x2)]
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Approximation of source term

and

e

φi−φi+1

2RT̂
i+1

2 − e

φi−φi−1

2RT̂
i− 1

2

= e
1

2RTi
(−φ′i∆x−φ′′i ∆x2+O(∆x3)) − e

1
2RTi

(+φ′i∆x−φ′′i ∆x2+O(∆x3))

=

[
1 +

1

2RTi
(−φ′i∆x− φ′′i ∆x2) +

1

2(2RTi)2
(φ′i∆x)2 +O(∆x3)

]
−
[
1 +

1

2RTi
(φ′i∆x− φ′′i ∆x2) +

1

2(2RTi)2
(φ′i∆x)2 +O(∆x3)

]
= − 1

RTi
φ′(xi)∆x+O(∆x3)

Hence the source term discretization is second order accurate.
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Theorem

Any hydrostatic solution which is isothermal or polytropic is exactly
preserved by the finite volume scheme (5).

Proof: Take initial condition to be a hydrostatic solution. We have to
verify that the initial condition satisfies equation (6).

Isothermal case: T̂i+ 1
2

= Te = const, and using (2) we obtain

pi+1e−ψi+1

pie−ψi
=
pi+1

pi
eψi−ψi+1 =

pi+1

pi
exp

(
φi+1 − φi
RTe

)
=
pi+1 exp(φi+1/RTe)

pi exp(φi/RTe)
= 1

Polytropic case:

pi+1e−ψi+1

pie−ψi
=
pi+1

pi
eψi−ψi+1 =

pi+1

pi
exp

φi+1 − φi
RT̂i+ 1

2
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But from (3), (4) we have

φi+1 − φi
RT̂i+ 1

2

= −
νR
ν−1(Ti+1 − Ti)
R Ti+1−Ti

log(Ti+1)−log(Ti)

= log

(
Ti
Ti+1

) ν
ν−1

and hence

pi+1e−ψi+1

pie−ψi
=
pi+1T

−ν/(ν−1)
i+1

piT
−ν/(ν−1)
i

= 1

Hence in both cases, the initial condition is preserved by the finite volume
scheme.
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Summary of the scheme

Using the approximations given by (8), the semi-discrete finite volume
scheme is given by

dqi
dt

+
f̂i+ 1

2
− f̂i− 1

2

∆x
=

e
β̂
i+1

2
(φi−φi+1) − e

β̂
i− 1

2
(φi−φi−1)

∆x

 0
pi
piui


where we have introduced the quantity

β̂i+ 1
2

=
1

2RT̂i+ 1
2

As an example of reconstruction, we discuss the minmod-type scheme for
the interface i+ 1

2 which is given by

wL
i+ 1

2

= wi +
1

2
m(θ(wi −wi−1), (wi+1 −wi−1)/2, θ(wi+1 −wi))
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Summary of the scheme

wR
i+ 1

2

= wi+1 −
1

2
m(θ(wi+1 −wi), (wi+2 −wi+1)/2, θ(wi+2 −wi+1))

where θ ∈ [1, 2] and m(·, ·, ·) is the minmod limiter function given by

m(a, b, c) =

{
smin(|a|, |b|, |c|) if s = sign(a) = sign(b) = sign(c)

0 otherwise

The variables w are defined using the potential relative to xi+ 1
2

ψ(x) = −
∫ x

x
i+1

2

φ′(s)

RT (s)
ds
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Summary of the scheme
Then

ψi−1 =
φi − φi−1

RT̂i− 1
2

+
φi+ 1

2
− φi

RT̂i+ 1
2

= 2β̂i− 1
2
(φi − φi−1) + β̂i+ 1

2
(φi+1 − φi)

ψi =
φi+ 1

2
− φi

RT̂i+ 1
2

= β̂i+ 1
2
(φi+1 − φi)

ψi+1 = −
φi+1 − φi+ 1

2

RT̂i+ 1
2

= −β̂i+ 1
2
(φi+1 − φi)

ψi+2 = −
φi+1 − φi+ 1

2

RT̂i+ 1
2

− φi+2 − φi+1

RT̂i+ 3
2

= −β̂i+ 1
2
(φi+1 − φi)− 2β̂i+ 3

2
(φi+2 − φi+1)

In terms of the above ψi’s, the variables w are defined as follows

wj =

ρje−ψjuj
pje
−ψj

 , j = i− 1, i, i+ 1, i+ 2
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Summary of the scheme

Since ψi+ 1
2

= 0 we obtain the reconstructed values as

ρu
p

L
i+ 1

2

= wL
i+ 1

2

,

ρu
p

R
i+ 1

2

= wR
i+ 1

2

For the first and last cells, we extrapolate the potential from inside the
domain to the faces located on the domain boundary

φ 1
2

=
3

2
φ1 −

1

2
φ2, φN+ 1

2
=

3

2
φN −

1

2
φN−1
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Isothermal examples: well-balanced test

Density and pressure are given by

ρe(x) = pe(x) = exp(−φ(x))

N = 100, 1000, final time = 2

Potential 1 Potential 2 Potential 3

φ(x) x 1
2x

2 sin(2πx)

Table: Potential functions used for well-balanced tests
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Isothermal examples: well-balanced test

Potential Cells Density Velocity Pressure

x 100 8.21676e-15 4.98682e-16 9.19209e-15
1000 8.00369e-14 1.51719e-14 9.15152e-14

1
2x

2 100 1.01874e-14 2.49332e-16 1.06837e-14
1000 1.05202e-13 4.10434e-16 1.11861e-13

sin(2πx) 100 1.12466e-14 5.79978e-16 1.74966e-14
1000 1.16191e-13 2.93729e-15 1.76361e-13

Table: Error in density, velocity and pressure for isothermal example
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Isentropic examples: well-balanced test
Isentropic hydrostatic solution

Te(x) = 1− γ − 1

γ
φ(x), ρe = T

1
γ−1
e , pe = ργe

N = 100, 1000, final time = 2

Potential Cells Density Velocity Pressure

x 100 6.86395e-15 2.65535e-16 7.88869e-15
1000 7.03820e-14 7.79350e-16 8.03623e-14

1
2x

2 100 1.06604e-14 2.27512e-16 1.04128e-14
1000 1.10726e-13 1.15415e-15 1.09185e-13

sin(2πx) 100 1.27570e-14 5.18212e-16 1.65185e-14
1000 1.29020e-13 1.12837e-15 1.66566e-13

Table: Error in density, velocity and pressure for isentropic example
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Polytropic examples: well-balanced test

Polytropic hydrostatic solutions

Te(x) = 1− ν − 1

ν
φ(x), ρe = T

1
ν−1
e , pe = ρνe

ν = 1.2, N = 100, 1000, final time = 2

Potential Cells Density Velocity Pressure

x 100 6.86395e-15 2.65535e-16 7.88869e-15
1000 7.03820e-14 7.79350e-16 8.03623e-14

1
2x

2 100 1.06604e-14 2.27512e-16 1.04128e-14
1000 1.10726e-13 1.15415e-15 1.09185e-13

sin(2πx) 100 1.27570e-14 5.18212e-16 1.65185e-14
1000 1.29020e-13 1.12837e-15 1.66566e-13

Table: Error in density, velocity and pressure for polytropic example
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Non-isothermal example

• Stationary solution

φ(x) =
1

2
x2, ρe(x) = exp(−x), pe(x) = (1 + x) exp(−x)

• corresponds to a non-uniform temperature profile

Te(x) = 1 + x

• Neither isothermal nor polytropic; present scheme will not be able to
preserve the exact hydrostatic solution

• Instead, we construct an approximation to the above hydrostatic
solution by numerically integrating the hydrostatic equations (1)

p1 = pe(x1), ρ1 =
p1

RTe(x1)

pi = pi−1 exp(−2β̂i− 1
2
(φi−φi−1)), ρi =

pi
RTe(xi)

, i = 2, 3, . . . , N
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Non-isothermal example

• The above solution satisfies equation (6) and hence is preserved by
the numerical scheme.

• Solution converges at second order; velocity is zero upto machine
precision indicating that we have a stationary solution

Cells ρ error ρ rate Velocity p error p rate

50 5.41510e-06 - 3.90665e-16 8.51248e-06
100 1.37964e-06 1.97 1.06754e-15 2.16486e-06 1.97
200 3.48173e-07 1.98 4.82755e-16 5.45846e-07 1.98
400 8.74530e-08 1.99 1.94554e-15 1.37043e-07 1.99
800 2.19146e-08 1.99 2.62298e-15 3.43336e-08 1.99
1600 5.48521e-09 1.99 6.56911e-15 8.59273e-09 1.99

Table: Convergence of error for hydrostatic solution of section (34).
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Evolution of small perturbations

The initial condition is taken to be the following

φ =
1

2
x2, u = 0, ρ(x) = exp(−φ(x))

Add small perturbation to equilibrium pressure

p(x) = exp(−φ(x)) + ε exp(−100(x− 1/2)2), 0 < ε� 1

Non-well-balanced scheme

∂φ

∂x
(xi) ≈

φi+1 − φi−1

2∆x
, reconstruct ρ, u, p

Using exact derivative of potential does not improve results. In practice, φ
is only available at grid points.

36 / 61



Evolution of small perturbations
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Evolution of small perturbations
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Shock tube under gravitational field

Gravitational field

φ(x) = x

The domain is [0, 1] and the initial conditions are given by

(ρ, u, p) =

{
(1, 0, 1) x < 1

2

(0.125, 0, 0.1) x > 1
2

Solid wall boundary conditions. Final time t = 0.2, N = 100, 2000 cells
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Shock tube under gravitational field
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2-D Euler equations with gravity
2-D Euler equations in Cartesian coordinates

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= s

Here the conserved variables q, fluxes (f , g) and source terms s are given
by

q =


ρ
ρu
ρv
E

 , f =


ρu

p+ ρu2

ρuv
(E + p)u

 , g =


ρv
ρuv

p+ ρv2

(E + p)v

 , s =


0

−ρ∂φ∂x
−ρ∂φ∂y

−ρ(u∂φ∂x + v ∂φ∂y )


In the above equations

ρ = density, (u, v) = Cartesian components of the velocity

p = pressure, E = total energy per unit volume

φ = φ(x, y) = gravitational potential
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Hydrostatic solution

The hydrostatic equilibrium is characterized by the following set of
equations

ue = ve = 0,
∂pe
∂x

= −ρe
∂φ

∂x
,

∂pe
∂y

= −ρe
∂φ

∂y

These equations can be integrated along y = const lines

pe(x, y) = a(y) exp

(
−
∫ x

x0

φx(s, y)

RT (s, y)
ds

)
and x = const lines

pe(x, y) = b(x) exp

(
−
∫ y

y0

φy(x, s)

RT (x, s)
ds

)
As in the 1-D case, we will exploit the structure of these solutions to
construct the well-balanced scheme.
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Source term

Define

ψ(x, y) = −
∫ x

x0

φx(s, y)

RT (s, y)
ds, χ(x, y) = −

∫ y

y0

φy(x, s)

RT (x, s)
ds

Then the gravitational force can be written as

−ρφx = pe−ψ
∂

∂x
eψ, −ρφy = pe−χ

∂

∂y
eχ (9)
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2-d finite volume scheme on Cartesian meshes

• Partition computational domain into rectangular cells

Ωi,j = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)

with

xi+ 1
2
− xi− 1

2
= ∆x and yj+ 1

2
− yj− 1

2
= ∆y

• semi-discrete finite volume scheme for the cell (i, j)

Ωi,j
d

dt
qi,j + f̂i+ 1

2
,j − f̂i− 1

2
,j + ĝi,j+ 1

2
− ĝi,j− 1

2
= ŝi,j (10)
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2-d finite volume scheme on Cartesian meshes

• The gravitational source term is discretized as

ŝ
(1)
i,j = 0

ŝ
(2)
i,j = pi,je

−ψi,j
[
e
ψ
i+1

2 ,j − e
ψ
i− 1

2 ,j

]
ŝ

(3)
i,j = pi,je

−χi,j
[
e
χ
i,j+1

2 − e
χ
i,j− 1

2

]
ŝ

(4)
i,j = ui,j ŝ

(2)
i,j + vi,j ŝ

(3)
i,j

• Following the steps in the 1-D case, we can write the source terms as

ŝ
(2)
i,j = pi,j

[
e
β̂
i+1

2 ,j
(φi+1,j−φi,j) − e

β̂
i− 1

2 ,j
(φi−1,j−φi,j)

]
ŝ

(3)
i,j = pi,j

[
e
β̂
i,j+1

2
(φi,j+1−φi,j) − e

β̂
i,j− 1

2
(φi,j−1−φi,j)

]
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2-d finite volume scheme on Cartesian meshes

• To obtain the values at the face qL
i+ 1

2
,j

, qR
i+ 1

2
,j

we reconstruct the

following set of variables

w = [ρe−ψ, u, v, pe−ψ]>

and to obtain qL
i,j+ 1

2

, qR
i,j+ 1

2

, we reconstruct the following set of

variables

w = [ρe−χ, u, v, pe−χ]>

46 / 61



Theorem

The finite volume scheme (10) together with a numerical flux which
satisfies property C and reconstruction of w variables is well-balanced in
the sense that the initial condition given by

ui,j = vi,j = 0, pi,j exp(−ψi,j) = aj , pi,j exp(−χi,j) = bi, ∀ i, j
(11)

is preserved by the numerical scheme.

Theorem

Any hydrostatic solution which is isothermal or polytropic is exactly
preserved by the finite volume scheme (10).
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Isothermal hydrostatic solution

unit square, potential

φ(x, y) = x+ y

ρe(x, y) = ρ0 exp(−ρ0g(x+y)/p0), pe(x, y) = p0 exp(−ρ0g(x+y)/p0)

ρ0 = 1.21, p0 = 1, g = 1, final time = 1

Grid ρ u v p

50× 50 0.19050E-14 0.14660E-15 0.14439E-15 0.20428E-14
200× 200 0.75677E-14 0.12908E-14 0.12853E-14 0.83936E-14

Table: Error in density, velocity and pressure for isothermal hydrostatic example

48 / 61



Isothermal hydrostatic solution

To study the accuracy of the scheme, we add an initial perturbation to the
pressure and take the following initial condition

p(x, y, 0) = p0 exp(−ρ0g(x+y)/p0)+η exp(−100ρ0g((x−0.3)2+(y−0.3)2)/p0)

mesh = 50× 50, transmissive bc, final time = 0.15

pressure perturbation with η = 0.1
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Isothermal hydrostatic solution

well-balanced non well-balanced
20 equally spaced contours between -0.03 and +0.03 are shown
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Isothermal hydrostatic solution

pressure perturbation with η = 0.001

well-balanced non well-balanced
20 contours in [-0.00026, +0.00026] 20 contours in [-0.02, +0.00026]
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Polytropic hydrostatic solution

Unit square, potential φ(x, y) = x+ y

Te = 1− ν − 1

ν
(x+ y), pe = T

ν
ν−1
e , ρe = T

1
ν−1
e

ν = 1.2, final time = 1

Grid ρ u v p

50× 50 0.20449E-14 0.41148E-15 0.39802E-15 0.24637E-14
200× 200 0.83747E-14 0.18037E-14 0.17986E-14 0.10107E-13

Table: Error in density, velocity and pressure
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Polytropic hydrostatic solution

Perturbation of the initial pressure from the above polytropic solution

p(x, y, 0) = pe(x, y) + η exp(−100ρ0g((x− 0.3)2 + (y − 0.3)2)/p0)

mesh = 50× 50, transmissive bc, final time = 0.15

pressure perturbation with η = 0.1
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Polytropic hydrostatic solution

well-balanced non well-balanced
20 equally spaced contours between -0.03 and +0.03
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Polytropic hydrostatic solution

pressure perturbation with η = 0.001

well-balanced non well-balanced
20 contours in [-0.00025,+0.00025] 20 contours in [-0.015,+0.0003]
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Rayleigh-Taylor instability

• isothermal radial solution with potential φ = r: ρ = p = exp(−r)
• Add perturbation: initial pressure and density are given by

p =

{
e−r r ≤ r0

e−
r
α

+r0
(1−α)
α r > r0

, ρ =

{
e−r r ≤ ri
1
αe−

r
α

+r0
(1−α)
α r > ri

ri = r0(1 + η cos(kθ)), α = exp(−r0)/(exp(−r0) + ∆ρ)

• density jumps by an amount ∆ρ > 0 at interface r = ri, pressure is
continuous.

∆ρ = 0.1, η = 0.02, k = 20, mesh = 240× 240 cells

domain = [−1,+1]× [−1,+1].
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Rayleigh-Taylor instability

• In the regions r < r0(1− η) and r > r0(1 + η) the initial condition is
in stable equilibrium

• but due to the discontinuous density, a Rayleigh-Taylor instability
develops near interface defined by r = ri.

• Due to well-balanced scheme, instability is concentrated only around
the discontinuous interface
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Rayleigh-Taylor instability

t = 0 t = 2.9

t = 3.8 t = 5.0
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Extensions, ongoing work
• 2/3-D curvilinear meshes
• General equation of state, e.g., ideal gas with radiation pressure

p = ρRT +
1

3
aT 4

No exact hydrostatic solutions known, preserve an approximate
hydrostatic solution

• Weak formulation

find u ∈ V such that a(u, v) = `(v) ∀v ∈ V
• Galerkin method

find uh ∈ Vh such that a(uh, vh) = `(vh) ∀vh ∈ Vh
In practice

find uh ∈ Vh such that ah(uh, vh) = `h(vh) ∀vh ∈ Vh
Exact solution u is not a solution of above problem.

• Discontinuous Galerkin method: well-balanced for isothermal
hydrostatic solution
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Thank You
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