Arbitrary (Almost) Lagrangian-Eulerian Discontinuous Galerkin method for 1-D Euler equations

Praveen Chandrashekar & Jayesh Badwaik¹ praveen@tifrbng.res.in

Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India http://cpraveen.github.io

Hyp2016, Aachen, 1-5 August, 2016

Supported by Airbus Foundation Chair at TIFR-CAM, Bangalore http://math.tifrbng.res.in/airbus-chair

¹now at Univ. of Würzburg

Euler equations in 1-D

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial t} &+ \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} = 0\\ \boldsymbol{u} &= \begin{bmatrix} \rho\\ \rho v\\ E \end{bmatrix}, \qquad \boldsymbol{f}(\boldsymbol{u}) = \begin{bmatrix} \rho v\\ p + \rho v^2\\ \rho H v \end{bmatrix}\\ E &= \frac{p}{\gamma - 1} + \frac{1}{2}\rho v^2, \qquad H = (E + p)/\rho \end{aligned}$$

KH instability using fixed mesh finite volume

Figure 33. Kelvin Helmholtz instability test at time t = 2.0, computed with AREPO with a fixed mesh. In the three cases, different boost velocities along both the x- and y- directions have been applied. The fact that the results do not agree (and in particular not with the V = 0 result shown in the bottom of Figure 32) is direct evidence for a violation of Galilean invariance of the Eulerian approach. We note that we have obtained nearly identical results for this test when it is carried out with ATHENA instead of our code AREPO.

From Volker Springel, https://arxiv.org/abs/0901.4107

Dissipation in upwind schemes

Upwind scheme for $u_t + au_x = 0$, modified PDE

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \frac{1}{2} |a| h(1-\nu) \frac{\partial^2 u}{\partial x^2} + O(h^2), \qquad \nu = \frac{|a| \Delta t}{h}$$

For Euler equations: |v - c|, |v|, |v| + c

$$(\rho, v, p) = \begin{cases} (1.000, \mathbf{V}, 1.0) & x < 0.5\\ (0.125, \mathbf{V}, 0.1) & x > 0.5 \end{cases}$$

Roe flux, 100 cells, TVD limiter 1.4 DG(1), V=0 1.2DG(1), V=10 DG(1), V=100 1.0Density 0.6 0.40.20.0 0.2 0.40.6 0.8 1.01.2х

Mesh

Moving cell $C_j(t)=(x_{j-\frac{1}{2}}(t),x_{j+\frac{1}{2}}(t))$

$$\begin{aligned} \text{Mesh velocity}: \quad & \frac{\mathrm{d}}{\mathrm{d}t} x_{j+\frac{1}{2}}(t) = w_{j+\frac{1}{2}}(t) = w_{j+\frac{1}{2}}^n, \qquad t_n < t < t_{n+1} \\ & & \int_{x_{j+\frac{1}{2}}}^{t} \frac{x_{j+\frac{1}{2}}^{n+1} & x_{j+\frac{1}{2}}^{n+1}}{\sqrt{\frac{\mathrm{d}x}{\mathrm{d}t} = w_{j+1/2}^n}} & \\ & & \int_{x_{j-\frac{1}{2}}}^{t} \frac{x_{j+\frac{1}{2}}^{n+1} & x_{j+\frac{1}{2}}^{n+1}}{\sqrt{\frac{\mathrm{d}x}{\mathrm{d}t} = w_{j+1/2}^n}} \\ & & \\ & & x_j(t) = \frac{1}{2} (x_{j-\frac{1}{2}}(t) + x_{j+\frac{1}{2}}(t)), \qquad h_j(t) = x_{j+\frac{1}{2}}(t) - x_{j-\frac{1}{2}}(t) \\ & w(x,t) = \frac{x_{j+\frac{1}{2}}(t) - x}{h_j(t)} w_{j-\frac{1}{2}}^n + \frac{x - x_{j-\frac{1}{2}}(t)}{h_j(t)} w_{j+\frac{1}{2}}^n, \quad (x,t) \in C_j(t) \times (t_n, t_{n+1}) \end{aligned}$$

$$\boldsymbol{u}_h(x,t) = \sum_{m=0}^k \boldsymbol{u}_{j,m}(t) \varphi_m(x,t), \quad x \in C_j(t)$$

Legendre basis functions:
$$\xi = rac{x-x_j(t)}{rac{1}{2}h_j(t)}$$

$$\varphi_m(x,t) = \hat{\varphi}_m(\xi) = \sqrt{2m+1}P_m(\xi)$$

ALE-DG scheme

ALE flux

$$\boldsymbol{g}(\boldsymbol{u},w) = \boldsymbol{f}(\boldsymbol{u}) - w\boldsymbol{u}$$

Numerical ALE flux

$$\hat{\boldsymbol{g}}_{j+\frac{1}{2}}(t) := \hat{\boldsymbol{g}}_{j+\frac{1}{2}}(\boldsymbol{u}_h(t)) := \hat{\boldsymbol{g}}(\boldsymbol{u}_{j+\frac{1}{2}}^-(t), \boldsymbol{u}_{j+\frac{1}{2}}^+(t), \boldsymbol{w}_{j+\frac{1}{2}}(t))$$

l'th moment

$$h_{j}^{n+1}\boldsymbol{u}_{j,l}^{n+1} = h_{j}^{n}\boldsymbol{u}_{j,l}^{n} + \int_{t_{n}}^{t_{n+1}} \int_{x_{j-\frac{1}{2}}(t)}^{x_{j+\frac{1}{2}}(t)} \boldsymbol{g}(\boldsymbol{u}_{h}, w) \frac{\partial}{\partial x} \varphi_{l}(x, t) dx dt \\ + \int_{t_{n}}^{t_{n+1}} [\hat{\boldsymbol{g}}_{j-\frac{1}{2}}(t)\varphi_{l}(x_{j-\frac{1}{2}}^{+}, t) - \hat{\boldsymbol{g}}_{j+\frac{1}{2}}(t)\varphi_{l}(x_{j+\frac{1}{2}}^{-}, t)] dt$$

Fully discrete scheme

- Replace u_h with a locally predicted solution U_h
- Quadrature in space and time

$$\tilde{w}_{j+\frac{1}{2}}^{n} = \frac{1}{2} [v(x_{j+\frac{1}{2}}^{-}, t_{n}) + v(x_{j+\frac{1}{2}}^{+}, t_{n})]$$

A bit of smoothing

$$w_{j+\frac{1}{2}}^n = \frac{1}{3}(\tilde{w}_{j-\frac{1}{2}}^n + \tilde{w}_{j+\frac{1}{2}}^n + \tilde{w}_{j+\frac{3}{2}}^n)$$

Predictor for k = 1: Taylor expansion in space-time

$$\boldsymbol{U}(x_q,\tau_1) = \boldsymbol{u}_h(x_j^n,t_n) + (\tau_1 - t_n)\frac{\partial \boldsymbol{u}_h}{\partial t}(x_j^n,t_n) + (x_q - x_j^n)\frac{\partial \boldsymbol{u}_h}{\partial x}(x_j^n,t_n)$$

Using conservation law, $\frac{\partial u}{\partial t} = -\frac{\partial f}{\partial x} = -A \frac{\partial u}{\partial x}$

$$\boldsymbol{U}_h(x_q,\tau_1) = \boldsymbol{u}_h^n(x_j^n) - (\tau_1 - t_n) \left[A(\boldsymbol{u}_h^n(x_j^n)) - w_q I \right] \frac{\partial \boldsymbol{u}_h^n}{\partial x}(x_j^n)$$

Predictor for k = 2: Continuous expansion RK

Using continuous expansion RK: for $m = 0, 1, \ldots, k$

$$\boldsymbol{U}_m(t) = \boldsymbol{u}_h(x_m, t_n) + \sum_{s=1}^{n_s} b_s((t-t_n)/\Delta t_n) \boldsymbol{K}_{m,s}, \quad t \in [t_n, t_{n+1})$$

where $K_{m,s} = K_m(t_n + \theta_s \Delta t_n)$, $\theta_s \Delta t_n$ is the stage time

Numerical flux for g(u, w) = f(u) - wu

Rusanov flux

$$\hat{g}(u_l, u_r, w) = \frac{1}{2} [g(u_l, w) + g(u_r, w)] - \frac{1}{2} \lambda_{lr} (u_r - u_l)$$
$$\lambda_{lr} = \max\{|v_l - w| + c_l, |v_r - w| + c_r\}$$

Roe flux

 A_w

$$\begin{split} \hat{\boldsymbol{g}}(\boldsymbol{u}_l, \boldsymbol{u}_r, w) &= \frac{1}{2} [\boldsymbol{g}(\boldsymbol{u}_l, w) + \boldsymbol{g}(\boldsymbol{u}_r, w)] - \frac{1}{2} |A_w| (\boldsymbol{u}_r - \boldsymbol{u}_l) \\ &= A_w(\boldsymbol{u}_l, \boldsymbol{u}_r) \text{ satisfies } \boldsymbol{g}(\boldsymbol{u}_r, w) - \boldsymbol{g}(\boldsymbol{u}_l, w) = A_w(\boldsymbol{u}_r - \boldsymbol{u}_l) \\ &|A_w| = R |\Lambda - wI| R^{-1} \end{split}$$

R, Λ evaluated at average state $\boldsymbol{u}(\bar{\boldsymbol{q}})$, $\bar{\boldsymbol{q}} = \frac{1}{2}(\boldsymbol{q}_l + \boldsymbol{q}_r)$, where $\boldsymbol{q} = \sqrt{\rho}[1, \ v, \ H]^{\top}$ is the parameter vector introduced by Roe.

TVD and TVB limiters applied to characteristic variables

Positivity property

First order scheme

$$h_{j}^{n+1}\bar{\boldsymbol{u}}_{j}^{n+1} = h_{j}^{n}\bar{\boldsymbol{u}}_{j}^{n} - \Delta t_{n}[\hat{\boldsymbol{g}}_{j+\frac{1}{2}}^{n} - \hat{\boldsymbol{g}}_{j-\frac{1}{2}}^{n}]$$

Restriction of time step to control change in cell size

$$|w_{j+\frac{1}{2}}^n - w_{j-\frac{1}{2}}^n|\Delta t_n \le \beta h_j^n, \quad \text{e.g. } \beta = 0.1$$

Positivity of first order scheme

The first order scheme with Rusanov flux is positivity preserving if the time step condition

$$\Delta t_n \le \Delta t_n^{(1)} := \min_j \left\{ \frac{(1 - \frac{1}{2}\beta)h_j^n}{\frac{1}{2}(\lambda_{j-\frac{1}{2}}^n + \lambda_{j+\frac{1}{2}}^n)}, \frac{\beta h_j^n}{|w_{j+\frac{1}{2}}^n - w_{j-\frac{1}{2}}^n|} \right\}$$

is satisfied.

Initial condition

$$\rho(x,0) = 1 + \exp(-10x^2), \quad u(x,0) = 1, \quad p(x,0) = 1$$

Exact solution

$$\rho(x,t) = \rho(x-t,0), \quad u(x,t) = 1, \quad p(x,t) = 1$$

The initial domain is [-5,+5] and the final time is t=1 units.

Order of accuracy: Rusanov flux

N	k = 1		k = 2		k = 3	
	Error	Rate	Error	Rate	Error	Rate
100	4.370E-02	-	3.498E-03	-	3.883E-04	-
200	6.611E-03	2.725	4.766E-04	2.876	1.620E-05	4.583
400	1.332E-03	2.518	6.415E-05	2.885	9.376E-07	4.347
800	3.151E-04	2.372	8.246E-06	2.910	5.763E-08	4.239
1600	7.846E-05	2.280	1.031E-06	2.932	3.595E-09	4.180
Static mach						

Static mesh

Ν	k = 1		k = 2		k = 3	
	Error	Rate	Error	Rate	Error	Rate
100	2.331E-02	-	3.979E-03	-	8.633E-04	-
200	6.139E-03	1.925	4.058E-04	3.294	1.185E-05	6.186
400	1.406E-03	2.0258	5.250E-05	3.122	7.079E-07	5.126
800	3.375E-04	2.0366	6.626E-06	3.077	4.340E-08	4.760
1600	8.278E-05	2.0344	8.304E-07	3.057	2.689E-09	4.573

Moving mesh

Randomized mesh velocity: HLLC flux

Example of randomized velocity distribution for smooth test case

Ν	k = 1		k = 2		k = 3	
	Error	Rate	Error	Rate	Error	Rate
100	1.735E-02	-	1.798E-03	-	2.351E-04	-
200	4.179E-03	2.051	2.848E-04	2.676	1.416E-05	4.069
400	1.054E-03	2.035	4.301E-05	2.703	8.578E-07	4.041
800	2.615E-04	1.943	6.012E-06	2.838	5.476E-08	3.958
1600	7.279E-05	1.852	8.000E-07	2.909	3.505E-09	3.966

Single contact wave

Sod test: $x \in [0, 1]$, T = 0.2

Sod test: $x \in [0, 1]$, T = 0.2

$$(\rho, v, p) = \begin{cases} (1.000, \mathbf{V}, 1.0) & \text{if } x < 0.5\\ (0.125, \mathbf{V}, 0.1) & \text{if } x > 0.5 \end{cases}$$

.

$$(\rho, v, p) = \begin{cases} (3.857143, 2.629369, 10.333333) & \text{if } x < -4\\ (1 + 0.2\sin(5x), 0.0, 1.0) & \text{if } x > -4 \end{cases}$$

123 problem: $x \in [0, 1]$, T = 0.15

123 problem: $x \in [0, 1]$, T = 0.15, $h_{\text{max}} = 0.05$

Blast test: $x \in [0, 1]$, T = 0.038, $h_{\min} = 10^{-3}$

Summary

- ALE-DG scheme with almost Lagrangian nature
- Simple, local specification of mesh velocity
- Galilean invariant solutions
- Very low dissipation in contact waves
- Single step time integration
- Satisfies geometric conservation law
- Ongoing work
 - Extension to 2-D on triangular grids

Summary

- ALE-DG scheme with almost Lagrangian nature
- Simple, local specification of mesh velocity
- Galilean invariant solutions
- Very low dissipation in contact waves
- Single step time integration
- Satisfies geometric conservation law
- Ongoing work
 - Extension to 2-D on triangular grids

Thank You