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TA2 test case

Aerodynamic reconstruction problem

Recovery of the original position of two ellipses using Navier-Stokes
flows for Re = 100 and Re = 500
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TA2 test case: Design variables, bounds, target
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Modeling: physical properties: 

Aerodynamic reconstruction problem

Incompressible fluid (Navier-Stokes laminar flow).

Kinematic viscosity  or . Reynolds number Re  -> Re 00 or Re 00.

Radar wave/acoustics problem

density  = 1

Radar wave: f  = 0.6 GHz =>  = 0.5 m

Acoustic wave:  = 0.5 m

Boundary and/or initial conditions for computations: 

Aerodynamic reconstruction problem

Upstream entrance: v os( ), v in( ), angle of attack 0
Downstream exit: free boundary conditions

Ellipse/ellipsoid surface: no-slip condition

Radar wave/acoustics problem

Monostatic radar

Angle of radar illumination 0
Outer boundary: absorbing boundary condition at infinity (Enquist)

Ellipse surface: perfectly conducting material

Material Parameters: 

Fluid

Optimization: 

Aerodynamic reconstruction problem: Reconstruction of the target pressure on the surfaces of the ellipses.

Radar wave/acoustics problem: Recovery of the target radar cross section/scattering cross section.

The target vector is x x !7 0 0 5 3 0 5 0 5 0 .

Design parameters: 

!10 0 x !6 5
position of the ellipse 1

!1 5 y 0 0

!10 0 0 0 clockwise angle of the ellipse 1

7 25 x 10 0
position of the ellipse 3

!1 5 y 0 0

0 0 10 0 clockwise angle of the ellipse 3

In addition, the ellipses/ellipsoids must not be overlapping.
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Target:

{x1, y1, α1, x3, y3, α3} = {−7.0,−0.5,−3.0o, 7.5,−0.5, 3.0o}
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TA2 test case: Flow conditions

• Incompressible fluid (Navier-Stokes laminar flow)
Our results are for M∞ = 0.2

• Reynolds number Re = 100 or 500
Our results are for Re = 500 and 1000

• Angle of attack α = 5 deg.

Recovery of position by minimizing the pressure difference

min f =
∫

Γ1

(p1 − p∗1)2 +
∫

Γ2

(p2 − p∗2)2 +
∫

Γ3

(p3 − p∗3)2
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Flow solver: flo2d

• Finite volume scheme
• Unstructured, triangular grids
• Roe flux
• MUSCL reconstruction
• Implicit scheme

Source code of flo2d available online
http://flo2d.googlecode.com
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Grid for CFD

• x0 = Design variables corresponding to middle of design space
• G0 = Grid corresponding to x0 (Reference grid)
• To obtain grid for any other configuration, we deform the reference

grid using Radial Basis Function interpolation.
• Grid points on middle ellipse and outer boundary are fixed
• Grid used in this work

I 33438 vertices
I 65994 triangles

• Grid generated using delaundo
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Grid deformation

• Interpolate displacement of
surface points to interior
points using RBF

f̃(x, y) = a0 + a1x+ a2y +
N∑

j=1

bj |~r − ~rj |2 log |~r − ~rj |

where ~r = (x, y)

• Results in smooth grids

Initial grid

Deformed grid
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Reference grid
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Reference grid
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Reference grid: Around first ellipse
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Reference and target grid
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Reference and target grid: B/w first and second ellipse
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Reference and target grid: B/W first and second ellipse
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Global metamodel-based optimization

• Global models: provide global trends in objective
function

I Faster convergence towards global optimum

• Metamodels are approximate, inaccurate

• Not possible to construct accurate metamodel in
one-shot

• Difficult to construct uniformly accurate model in
high dimensions

I Curse of dimensionality

• Model must be accurate in regions of optima

• But need to sufficiently explore the design space

• Balance between exploration and exploitation
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Gaussian process models

• Treat results of a computer code as a stochastic process !!!
• Provides an estimate of the variance in predicted value
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Figure 8. The solid line represents an objective function that has been sampled at the five

points shown as dots. The dotted line is a DACE predictor fit to these points.
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Figure 9. The DACE predictor and its standard error for a simple five-point data set.

surface, update the surface, and iterate, we are clearly only going to get a highly

accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that

this procedure does not acknowledge our uncertainty about that surface. It puts too

much emphasis on exploiting the predictor and no emphasis on exploring points

where we are uncertain. To eliminate this problem, we must put some emphasis

on sampling where we are uncertain, as measured by the standard error of the

predictor.

Figure 9 shows the standard error of the predictor. Because of the large number

of sampled points around x = 2, our uncertainty, and hence the standard error of

the predictor, is very low in that region. In fact, the standard error in this region is

so low that, in order for the reader to see it, we have had to magnify it in an inset.

Notice that the standard error does indeed go to zero at all the sampled points, as

it should. In rises up in between, but sometimes only by a little. The standard error

is maximized around x = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent

to putting all our emphasis on global search, and this is just as bad (if not worse)

than putting all our emphasis on local search. What we need is a figure of merit

that balances local and global search.
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surface, update the surface, and iterate, we are clearly only going to get a highly

accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that

this procedure does not acknowledge our uncertainty about that surface. It puts too

much emphasis on exploiting the predictor and no emphasis on exploring points

where we are uncertain. To eliminate this problem, we must put some emphasis

on sampling where we are uncertain, as measured by the standard error of the

predictor.

Figure 9 shows the standard error of the predictor. Because of the large number

of sampled points around x = 2, our uncertainty, and hence the standard error of

the predictor, is very low in that region. In fact, the standard error in this region is

so low that, in order for the reader to see it, we have had to magnify it in an inset.

Notice that the standard error does indeed go to zero at all the sampled points, as

it should. In rises up in between, but sometimes only by a little. The standard error

is maximized around x = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent

to putting all our emphasis on global search, and this is just as bad (if not worse)

than putting all our emphasis on local search. What we need is a figure of merit

that balances local and global search.
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Merit functions

• Statistical lower bound

fM (x) = J̃(x)− κs̃(x)

• Probability of improvement

PoI(x) = Φ

(
T − J̃(x)
s̃(x)

)

• Expected improvement

EI(x) = s̃(x)[uΦ(u) + φ(u)], u(x) =
Jmin − J̃(x)

s̃(x)
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Minimization of 2-D Branin function: Initial database
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Minimization of 2-D Branin function: after 20 iter
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Optimization test

• 6 design variables
• Initial database of 48 using LHS
• 4 merit functions based on statistical lower bound with
κ = 0, 1, 2, 3

• Gaussian process models
• Merit functions minimized using PSO
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Convergence of CFD iterations for target configuration
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Convergence of optimization for Re=500
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Best objective function value = 6.00× 10−3 (normalized) or 1.25× 10−4
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Pressure coefficient for Re = 500

-1.4

-1.2
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 0
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 0.4

 0.6

-10 -8 -6 -4 -2  0  2  4  6  8  10

Target
Optimized

x1 y1 α1 x3 y3 α3

Target -7.5 -0.5 -3.5 7.5 -0.5 3.0
Opt -7.271 -0.541 -3.232 7.494 -0.518 3.120
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Convergence of optimization for Re=1000
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Best objective function value = 5.09× 10−3 (normalized) or 1.06× 10−4
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Pressure coefficient for Re = 1000
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Target
Optimized

x1 y1 α1 x3 y3 α3

Target -7.5 -0.5 -3.5 7.5 -0.5 3.0
Opt -6.993 -0.504 -2.675 7.498 -0.497 2.641
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Summary

• Grid is deformed in smooth way by RBF interpolation.
We expect objective function to depend continuously on the design
variables.

• CFD has good convergence and pressure is smooth on the ellipses
• Objective is reduced by 3 orders of magnitude for both Reynolds

numbers
• But for Re=500, position of first ellipse is not well recovered
• Objective function could be insensitive to position of first ellipse.

This behaviour has been seen by other presentations in the first
workshop.

• For Re=1000, position is recovered well but both angles are far off
from the target values.
But pressure looks quite close to target pressure.

• Global optimization methods not able to precisely locate the
optimum. Performance could be improved by a trust region
approach and/or using some gradient information.
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