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Abstract. Normative aging trends of the brain can serve as an im-
portant reference in the assessment of neurological structural disorders.
Such models are typically developed from longitudinal brain image data
— follow-up data of the same subject over different time points. In prac-
tice, obtaining such longitudinal data is difficult. We propose a method
to develop an aging model for a given population, in the absence of
longitudinal data, by using images from different subjects at different
time points, the so-called cross sectional data. We define an aging model
as a diffeomorphic deformation on a structural template derived from
the data and propose a method that develops topology preserving aging
model close to natural aging.The proposed model is successfully vali-
dated on two public cross sectional datasets which provide templates
constructed from different sets of subjects at different age points.
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1 Introduction

Human brain morphometry varies with respect to age, gender, and population.
Since the human brain changes structurally with age, understanding the nor-
mative aging process from structural and functional images has been of interest
both in general and within a specific population. Studies aimed at arriving at
such an understanding, either use a longitudinal or a cross sectional design for
collecting images of the study cohort. The former is usually difficult as it is
challenging to access a fixed cohort over an extended number of years and scan
them repeatedly. A more pragmatic approach is based on a cross sectional design
where a set of individuals in different age range forms the cohort. This approach
makes it easier to collect scans but their analysis requires a disentangling of the
inter-subject variations from age-related changes which is not straight forward.
A more elaborate treatment of the differences in such approaches can be found
in [1].

Regardless of the design, templates play a major role in gaining an under-
standing of the aging process and derive a normative standard. Templates are
images defined using an appropriate reference coordinate space. Templates cre-
ated for the young adult Caucasian population [2I3] are the most well known
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and used, though population specific templates are also gaining attention [4l5].
In computational anatomy, aging is typically modelled as a continuous defor-
mation of a template image over time [6]. This modelling helps to derive any
age-specific template from the model, develop subject specific growth trajectory
and derive direct interpretations from the deformation field about the aging pat-
tern. In this paper, we propose a method to develop such an aging model for the
adult human brain from cross sectional data drawn from a specific population.
Studies using longitudinal data have modelled the aging-based deformation in a
variety of ways such as a geodesic [TI8J9] piece-wise geodesic [10], as a spline [11]
as well as with stationary velocity fields parameterized path [12] and acceleration
parameterized path [I3I14]. In a cohort-based longitudinal study, the variabil-
ity in inter-subject aging trends can also be high. This was handled in [I5] by
considering a tubular neighbourhood for the deformation. The spatio-temporal
model suggested in [16] also considers similar variations due to diseased data
points in the dataset and uses partial least squares regression to compute nor-
mal aging deformations; this gives modes of aging and corresponding scores for
each subject.

A cross sectional design allows creation of larger data sets compared to that
with longitudinal data. In aging studies with a cross sectional design, the inter-
subject variability within an age group and across age groups is disentangled to
some extent by developing age-specific templates [I7UI8T9]. Several such age-
specific templates are publicly accessible even though the image-sets used for
template generation are not publicly available [I7/T920121].

We are aware of only two reports that explicitly develop an aging model
from cross-sectional data. In the first [22], an image regression approach based
on weighted averaging is proposed for the aging model. In the second [23], a
global template is derived from all the age-specific templates and the mapping
between each of the age-specific template to the global template constitutes the
aging model. The consequence of the second approach is that any comparison
of a subject image with the global template space needs two transformations of
the subject image; one from the subject image to the corresponding age-specific
template and then to the global template image. Further, this is a departure
from the notion of aging as a deformation process which acts on a template
image [6].

We argue that an aging model represented by a set of image points developed
by smoothly deforming a template image is more natural than a weighted average
of image points in neighbourhoods. Hence given cross-sectional data, we explore
the use of a diffeomorphic deformation of a template image as an aging model. In
this paper, we focus on developing the aging model from age-specific templates.
The contributions of this paper are: i) a method to derive an aging model from
cross sectional data, and ii) an aging model based on a diffeomorphic deformation
process applied to the global template for all age points, which is closer to
the definition in [0]. The key features of the proposed aging model are: it aids
mapping of a subject image to the template space with a minimum number
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of deformations and its ability to handle temporally non-uniform diffeomorphic
deformations.

2 Method

The proposed method derives an aging model from a given set of cross-sectional
data for different age groups. The aging is modelled as a diffeomorphic deforma-
tion of a global structural template defined from all the images in the given data.
The method permits the flexibility to use only age-specific templates instead of
the entire dataset as full datasets are usually not publicly available.

The proposed aging model has two elements derived from the supplied tem-
plates: (i) a structural template for the brain and (ii) an aging deformation as
a function of time defined on the structural template. The diffeomorphic aging,
defined as a suitable deformation of the structural template, is explained in Sect.
23] Computing the aging deformation, explained in Sect. [2.2] and mapping it to
the structural template explained in Sect. are the main steps of this method.
The model derives temporally and spatially smooth deformations to minimize
the effect of cross-sectional variations in the aging deformation computed from
the cross-sectional data. These are discussed in detail below.

2.1 Computing the structural template

Age-specific templates are used as inputs to derive the aging model. Closely and
equally spaced age-specific templates, each of them generated from equal number
of images is preferred. Let an age-specific template T; at an interval about age
1 be a representation of the brain for the given population and assume that we
have N such templates. As each of the templates is derived from different sets
of images, the template space defined for each set need not be the same and
thus the aging path will be different for each T;. Finding the common aging
path from the unaligned T7,T5,--- ,Tn is the challenge here. The final aging
model is defined using a template G constructed from the set of all T;s in the
diffeomorphic space §. The template G is the best structural representation of
all the T;s, which is computed using a non-rigid group-wise registration method
called SyNG proposed in [24]. SyNG iteratively computes the templates that
minimizes the average distance from the template to each of the T;s on the
diffeomorphic space G, and the optimal template is G. The distance from this
template to each of the T; incorporates two aspects; the cross-sectional and aging
deformations.

The cross-sectional variations and aging deformations in the data affect G
less as it is the template developed from the whole data covering the entire age
range of interest. The template G can be considered as the global template for all
T;s and considering it as the structural template element in the proposed model
avoids biases toward any T;. All the T;s are aligned to G using an affine transfor-
mation before developing the model to make it affine invariant. This simplifies
the model as an affine alignment can be done accurately from one template to
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another or to an image.

2.2 Computing the Aging Deformation

2.2.1 Assumptions made while computing the aging deformation In
order to compute the aging deformation from cross-sectional data, it is useful
to understand the natural aging process from a physiological/structural per-
spective. It is observed that in a mature human brain (from approximately 20
years), brain tissue regions shrink and the ventricular space increases with aging
[25126127]. A key implication of this observation is that the deformation that
the brain undergoes with normal aging is spatially and temporally smooth and
topology is preserved as no new structure appears with aging. We can there-
fore assume that growth-induced deformation will be the smoothest and the
most predictable among other types of spatial (cross-sectional variation) and
temporal (atrophy) deformations. The log-Euclidean framework [28] covers such
less-complex diffeomorphic deformations, and can be used to extract aging defor-
mations from cross-sectional data. The space of diffeomorphisms is an infinite-
dimensional manifold, and subject-images can be generated by applying a set of
diffeomorphisms G on a template image. The log-Euclidean framework uses the
locally Euclidean nature of the manifold to work with diffeomorphisms in a com-
putationally efficient manner. This is defined by representing the diffeomorphism
by Stationary Velocity Fields (SVF). Group exponential maps are generally used
to compute the deformation ¢ represented by the SVF v, that is, ¢ = exp(v).

2.2.2 Aging deformation modelled by two SVFs Recall that we already
have age specific templates {7T;} and their global representation G. The aging
deformation is the second element in the aging model. As mentioned in Sect. [2.1]
G does not carry any information about the aging deformation. Mapping between
G and T;s constitutes both aging and cross-sectional deformations. Therefore G
cannot be used directly to extract the aging deformation from the T;s.

An age-specific template T); among the T;s that needs the smallest defor-
mation to map G to that template is used as reference template to compute the
aging deformation. The aging deformation computed with respect to T, can
be mapped to G fairly accurately as they are close. The SVFs {v;} that maps
each T; to G are computed first to find the reference template Ths. Let ||v;|| be a
measure of the distance between G and T;. Then the desired T}, is the template
corresponding to the smallest norm ||v;||. In other words,

Ty = T; where ¢ is such that ||v;|| = min{|lvg]l,1 < k <n}. (1)

The deformation exp(vys) which maps Ty to G is used to map the deformation
computed with respect to Th; to the common space.

In the proposed model, the aging deformation is considered as a temporal
relationship with a consistent trend between subsequent T;s, with Tj; being
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considered as the reference template. An example of consistent trend is the
fluid-filled regions in a mature brain increasing in size with aging. This tem-
porally consistent aging deformation is derived from the deformations between
template pairs in the forward (f) and backward (b) directions. For instance,
the deformations v;, between (Tari(j—1),,Ta+j,) for j = 1,2,--- (N — M)
are the SVF parameterizations for pairs in the forward direction. Similarly, the
deformations v;, obtained by registering template pairs (Tn—(j—1),, Tar—j,) for
j=1,2,--- (M — 1) are the corresponding SVF parameterizations for pairs in
the backward direction. The spatial aging trends will be locally consistent and
therefore, composing the forward/backward pairwise deformations can be used
to extract the consistent trends in the deformation with respect to T, in both
directions. We propose to do this by composing the deformations sequentially
using the Baker-Campbell-Hausdorff (BCH) formulation given in Eqn. 4 below.
This allows compositions of group exponentials to be expressed as a single SVF.
Let the velocity vector field obtained as a result of repeated application of BCH
formula on the forward (backward) deformations be denoted as vy, (vj,). The
vector field vj, defines the single SVF parameterization of the forward deforma-
tion from Ty to T(ar4 ), and vj, defines the same for the backward deformation
from Ty to Tipr—j),. These velocity fields are computed from Eqn. 2] and Eqn.
with an initialization of v1, = v, and vy, = v1,.

Vi, = BCH(BCH(- - - (BCH(v1,, s, ), v3, ), ), v, ), = 2...(N — M), (2)

v;, = BCH(BCH(: - - (BCH(v1,,v2,),03,),--.), V5, ), 4 = 2...(M —1).  (3)

The BCH formula for a pair of forward deformations is given in Eqn. [l Backward
deformations can be computed in a similar manner.

BCH(v(j_1);vj,) = log(exp(v(j_1),) exp(v;,))

1
=vi-ue + U6 + 5 (V-0 vap))+

1
E([V(jfl)f’ [v(j*]-)i” U(jf)]] + [Ujf7 [v(jf)7 V(jfl)f”) + = Vie- (4)
Here, [+, -] denotes the Lie bracket of two vector fields.

It should be noted that since the BCH approximation is valid only for small
deformations, in practice, v; ;) Is divided into n smaller deformations such that
U(;—'lf) < 0.5x voxel dimension, and these smaller deformations are composed iter-
atively with v(;_1), to compute vj,. In the proposed method, the extracted defor-
mation is constrained to be spatially smooth due to the log-Euclidean framework
and temporally smooth since the composing step captures only the temporally
consistent trends from the sequential data. For simplicity, the forward aging de-
formation from Tys to Ty, ¢y = exp(v(n—m),t) is denoted as exp(vst) and the
backward aging deformation from Tys to T1, ¢» = exp(v(m—1),t) is denoted as
exp(vpt).

The computed aging deformations ¢; and ¢, vary uniformly with time which
is not consistent with the natural aging trends whereas the aging deformation
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cannot be expected to vary uniformly, for example tissue degradation will be
rapid for elderly age range [27]. Hence, a temporal dependency is introduced in
¢ and ¢p to accommodate any non-uniform changes in natural aging. This step
is explained in the next section.

2.2.3 Imposing non-uniform temporal variations on aging deforma-
tion The aging deformation need not increase linearly in time with respect to
Ty- Hence we propose a quantification for the aging deformation (denoted as
R) at each time point in Eqn. [5| This is defined in terms of the distance between
T; and Tys as in Eqn. Here v* = v¢ in the forward direction and v, = vy
in the backward direction. Further, v; = vj, for i = (M + j); and v; = v;, for
i = (M — j)p. With this, let us define

d(Ty,Ti) _ |lvill

R = (T, T;) v ®

Since R(7) is a discrete sequence, whereas a continuous aging trend is of interest,
a smooth curve 7(t) is found by fitting a curve to R(4). In our implementation
a smooth spline fitting was done in the forward and backward directions. The
function «(t) for t = [tg,tn], quantifies the aging deformation at a particular
time point with respect to Th;. As this deformation increases in both directions
with time, the curve will, in general, have a bilateral increasing trend about
the age point corresponding to Ths. An illustration of the proposed method to
extract the aging trends is shown in Fig.

2.3 Transferring the deformations to the global template space

The deformations captured using Eqn. [4] are mapped to the global template
space using the mapping from Ty to G, i.e., exp(vyr). The captured deforma-
tions on the manifold § are parameterized by SVF. In order to transfer the aging
deformations to the global template space we use an existing algorithm [29] for
parallel transport. This is explained next.

Let the global template space images corresponding to T;s be G;s. The deforma-
tions to be transported are parameterized by SVFs v¢ and vy,. A schematic of the
deformation mapping scheme is shown in Fig. 2| Here p, = exp (UTM) oexp(—vp)
and exp(II(vp)) = exp (%) o p; . Therefore,

exp(II(vp)) = exp (I}Qﬂ) o exp(vp) exp <;}M> ) (6)

and similarly,
exp((ve) = exp (20 o exp(ve) exp (‘2) | (7)
In Fig. G = Goexp(—II(vy)) and G’y | = Goexp(—I1(v¢)). Thus, the in-
verse of the mappings from G to G’ and G’y i.e., exp(II(vy)) and (exp(II(v¢))

gives ¢y, and ¢ respectively.
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1)e

Fig. 1. Illustration of the proposed aging model computation framework

Fig. 2. Ty is mapped to G using exp(var) and the path is used to transport exp(v)
and exp(vp) to the global template space.



8 Thottupattu, Sivaswamy and Krishnan

Algorithm 1 Proposed Algorithm
Input: 71,75, - , Tn+1,
Result: Aging Model (G, II(ve), II(vp), v(t))
Step 1: Compute the global template as group mean of 171,75, ,Tn+1 — G
Step 2: Register G to T; Vi € [1..N] — v;
Step 3: Compute the distance d; = ||(v;)|| between G and each T;
Step 4: Find T; which is closest to G by comparing d; values— T
Repeat Step 5 and Step 6 for (T(ar+(j—1));: T(am+j),) where j =1,2...(N — M)
Step 5: Register each pair (T(M+(j,1>>f,T(A1+j)f) using log-demons registration
— Vjy
Step 6: Single SVF parameterization of the composed aging deformation from T
to Tiar+j),) using Eqn. 2 — v,
Repeat Step 7 and Step 8 for (T(a—(j—1)),, T(v—j),) for j =1,2,--- (M — 1)
Step T: Register each pair (T(ar—(j—1)),, T(a—j),) using log-demons registration —

Vs,

Step 8: Single SVF parameterization of the composed aging deformation from T
to T(nm—j), using Eqn. [f]— vj,

Step 9: vi +— v(n_m); and Vb <— V(Mm-_1),

Step 10: Parallel Transport v, v along vy using Eqn. [f] and [7] respectively —
H(Vf), H(Vb).

Step 11: Compute a curve fitting for the discrete function R defined by Eqn. [f using
Vig, Vi, Ve and vp — (1)

2.4 The aging model

The aging model has three components, G, v(t) and the SVF parameterization of
the transported forward and backward deformations I7(ve), IT(vy,) respectively.
An age-specific template at any time point ¢ can be computed using the following
formula:

T(t) =

(®)

G oexp(II(ve)y(t)) for t > M,
G oexp(II(vp)y(t)) for t < M.

3 Experiments

In this section, We report on valiadtion of the proposed model and experiements
with the model. All experiments, barring the one with simulated data, were done
on 3D data though only 2D central slices from the results are shown for visual
comparison. The proposed aging model is affine invariant, and therefore results
were also aligned using affine transformation prior to comparison. We have used
two databases to do experiments which are discussed in Sect. and the models
derived from these datasets are discussed in Sect. Experiments done to i)
assess the quality of representation of the proposed model are presented in Sect.
and ii) validate the model are presented in Sect.
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3.1 Data

The proposed method to create an aging model was implemented using two cross-
sectional template datasets: (i)Brain Imaging of Normal Subjects (BRAINS)
[20] and (ii)Neurodevelopmental MRI Database [2I] (NEURODEV). Only age-
specific templates are accessible in these datasets along with information on the
age interval and number of scans of subjects used to create each age-specific tem-
plate. From Table [1} it can be observed that in BRAINS, the inter-age interval
is not uniform, particularly at the upper age level, and the number of scans used
for template creation is less relative to NEURODEV. The inter-age interval is
shorter (5 years) and uniform in NEURODEV.

BRAINS[]20] NEURODEV 2]
Age interval Number of scans Age interval Number of scans
(Template age) used for . |(Template age) used for .
template creation template creation
25-34 (29.5) 20 20-24 (22) 559
35-44 (39.5) 24 25-29 (27) 525
45-54 (49.5) 23 30-34 (32) 422
55-64 (59.5) 13 35-39 (37) 73
71-74 (72.5) 47 40-44 (42) 96
75-78 (76.5) 50 45-49 (47) 82
91-93 (92) 48 50-54 (52) 72
55-59 (57) 81
60-64 (62) 57
65-69 (67) 71
70-74 (72) 65
75-79 (77) 44
80-84 (82) 44
85-89 (87) 20

Table 1. Composition of the two age-specific template datasets [20/21] used in our
study.

3.2 Aging Model

Recall that the proposed aging model has two elements, namely, the structural
template G and the aging deformation. The aging deformation has three compo-
nents: the forward aging deformation ¢ parameterized by v¢, ¢, parameterized
by vy and the ~ function. The proposed model developed with NEURODEV
and BRAINS datasets are shown in Fig. [3l A direct interpretation of y(t) plot
does not give much information about the aging trend as it represents the degree
of deformation with respect to G, rather than any of the end point templates.
It however does indicate the age point that corresponds to the reference tem-
plate Th. In the case of NEURODEV this is 67 years and for BRAINS it is 77
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years where the template age ranges for these datasets are 22-87 and 30-92 years
respectively.

8 h e
\ |- — -Extrapolated v
X

NEURODEV

BRAINS

™ 80 8 100

0 20 0 40

50
Age(Years)

G+ (,51’ G+ ol

Fig. 3. The aging model computed with NEURODEV and BRAINS datasets

3.3 Representation Quality Analysis

Age-specific templates were generated with the proposed aging model using Eqn.
and were used for visual comparison to assess the quality of representation.
Comparisons are done with natural aging trends in Sect. existing spatio-
temporal atlas [I6] in Sect. and the supplied templates used for model
creation in Sect.

3.3.1 Compatibility with Natural Aging Templates at increasing age
points were generated with the proposed aging model to study the structural
change with aging. The BRAINS dataset [20] was chosen to do this experiment
as it covers a longer span at the elderly age end where more changes are expected.
Human brain aging literature [30/3127] indicates that a mature brain undergoes
minimal cognitive and structural changes up to the age of ~ 50 and more for the
elderly, i.e. &= 60+. This trend was verified by computing the intensity difference
between the current template and the first (at age 30) template. This difference
essentially is due to age-induced structural change.
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3.3.2 Growth Trend across Aging Models Huizinga et al. in [I6] proposed
a cross-sectional spatio-temporal reference model for representing aging. This
model does not ensure a diffeomorphic aging deformation and the template space
representation of a subject image needs a computationally intensive group-wise
registration with a training set used to generate the model. In contrast, our model
requires only one pairwise registration from a subject to the corresponding age-
specific template, derived from the model. The aging trends observable in the
templates derived from our model was was compared with those derived using
[16]; the latter templates are available in http://www.agingbrain.nl/| for the
age range of 45-92 years. Templates at the same age points were generated with
the proposed method using the NEURODEV dataset.

3.3.3 Age-specific Template Assessment The generated templates with
our model were visually compared with the templates given in the 2 datasets to
understand how well the model have represented these templates. The templates
for the first and last time points in our aging model have undergone maximum
deformation compared to those at other age points. Hence, such a visual com-
parison is of interest.

3.4 Aging Model Validation

Model validation was done by analysing the ability of the model to capture
natural deformations in Sect. [3:4.1} and the similarity of model-generated age-
specific templates to a set of subject images of same age in Sect. Since our
model was derived for a cross-sectional setting, we also studied its performance
in a longitudinal data setting as it is of interest. This is presented in Sect.

3.4.1 Topology Preservation Since diffeomorphic deformations best fit nat-
ural deformations, we considered aging related deformation also as a diffeomor-
phism. Accordingly, our model is defined on a manifold § of diffeomorphisms.
It is of interest to verify if an extrapolation of the model generates deforma-
tions in G itself. This was done by extrapolating the aging trend and deriving
templates in both younger and older ages. NEURODEV data which covers that
age range of 22-87 (reference template age point, M=77 years) is used for this
experiment. The templates from extrapolation in both directions were generated
for this experiment with Eqn. [§]

3.4.2 Validation with Segmentation A localised assessment, i.e., of few
structures, is of interest in many situations. This requires labeling by aligning
the subject image to a labeled template and doing a label transfer. An alignment
process that requires smaller deformations indicates that the template is struc-
turally very close to the subject image. This will lead to better segmentation.
With our age model, this involves only a single registration step and hence po-
tentially least deformation. This is in contrast to the steps required when using
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the model in [23] which requires two registration steps: one to transfer the labels
from the global template to the age-specific template that is closest to the given
subject age, and a second to transfer the age-specific template labels to the sub-
ject image. Each of these registration steps can contribute to error in labeling in
addition to the structural dissimilarity of template and subject image.

An experiment was done to quantitatively compare the accuracy of labeling
using the proposed method and with [23]. Ten subject images from MICCAI
2012 dataset [32] of ages 18,30,38,45,54,61,68,75,83 and 90 along with the ground
truth labels were used to perform the comparison. The templates corresponding
to the subject ages 18 and 90, were constructed by extrapolating the proposed
aging model. The accuracy of label transfer from a template is highly influenced
by the registration method and the global template labels being used. Hence,
efforts were taken to do a fair comparison as follows.

The Neurodev [2I] templates were used to study both the aging models.
A global template G was constructed with ANTs template creation algorithm
[33]. Starting with a common labeled template [5], the labels were transferred
to the global template using DRAMMS non-rigid registration method [34]. The
registration algorithms and the parameter setting were fixed to be the same
for both aging models. The Dice score was used for assessing the segmentation
accuracy.

3.4.3 Validation with Simulated Longitudinal Data The proposed method
was aimed at handling cross-sectional data. In order to understand how the
model would handle longitudinal data, an experiment was done using simulations
as longitudinal data is unavailable. Simulated data was generated as follows. A
set (S) of fifty randomly deformed Shepp-Logan phantoms were taken (to sim-
ulate a cohort) and five copies were made. Deformations with increasing degree
was applied on these five copies to simulate aging of different subjects. The five
sets thus form our longitudinal data. For each of the five sets a template was
computed separately using the method suggested in [33]. The templates were
then used as inputs for the proposed model to generate templates at differ-
ent age points. These were then compared against the deformed versions of the
Shepp-Logan phantom (proxy ground truth).

4 Results

4.1 Estimation of the Aging Model

4.1.1 Compatibility with Natural Aging Fig. [4] shows the generated se-
quential templates (first row) and difference between the sequential templates
and the first template (second row). The difference images facilitate understand-
ing the structural changes with aging. The mean squared error or MSE (differ-
ence) is plotted in the third row. The difference appears to be very low for the
first few decades relative to the last few decades where changes like ventricular
expansion occurs. This trend is consistent with the existing information about
natural healthy aging.
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Fig.4. The proposed aging model at different time points(first row) along with the
difference image with respect to the initial time point(second row)

4.1.2 Growth Trend across Aging Models Fig. [5| shows sample 2D slices
of templates from [16] in odd numbered rows, along with the ones derived with
the proposed model (from the NEURODEV dataset) in even numbered rows,
for comparison. The comparison at image-level comparison is not meaningful as
the templates are generated from different data-sets. However, one can observe
growth trends. The structural similarity across rows in a column appear to have
similar trends across age indicating growth trend to be consistent.

4.2 Age-specific Template Assessment

The given templates along with our generated templates are shown in Fig. [6]
for comparison. The first and last time points for the both BRAINS and NEU-
RODEYV are shown in the top row, while the corresponding templates generated
by the proposed model are shown in the second row. As per the proposed aging
model, the template for the first and last time points are maximally deformed
with respect to the template closest to G, i.e., Ths. Yet, the derived templates
are visually quite similar to the templates from the two datasets. Thus, the pro-
posed model appears to preserve the structural details of the given template at
each time point.

4.3 Aging Model Validation

4.3.1 Topology Preservation Two templates, namely at age 20 and age
100, generated with the proposed model are shown in Fig. 7| along with the
Global template. These are results of extrapolation from the data given in the
NEURODEYV dataset[21]. The topology appears to be preserved even when the
aging model is extrapolated in both directions implying that the extrapolated
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Fig. 5. Correctness of Aging trends captured in the model: Publicly available spatio-
temporal images [16](row 1,3,5) compared with images generated at same time points
with proposed aging model using NEURODEV data at different time points(row 2,4,6)
Each highlighted row pairs compare same slices as specified in the figure.
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Age=92

BRAINS NEURODEV

Fig.6. Comparison of templates given in the two datasets (BRAINS and NEU-
RODEYV) (top row) with those generated by the proposed aging model (bottom row).
Only the templates for the first and last time-points are shown.

deformations also belong to G. It can also been that while global similarity (in
structure) exists across age, local deformations persist. For instance, the ventricle
is much smaller at age 20 and enlarges with age, consistent with the expected
aging trend.

4.3.2 Validation with Segmentation Table [2] lists the Dice scores for seg-
menting 4 pairs of sub-cortical structures with our model and [23]. It can be
observed that the proposed model outperforms [23] as it has higher average
(over 10 subjects) dice score. The proposed model’s better performance in label
transfer implies that it generates most accurate age-point templates which is
closest to each given subject image age-point.

Right |Left
Hippo- [Hippo-
campus|campus

Right Left Right Left Right Left
Pallidum|Pallidum |Putamen |Putamen|Thalamus| Thalamus

[23] 0.6266 |0.6229 |0.6604 [0.5803 |0.6802 |0.6444 |0.6944 0.6917

Proposed

model 0.6724/0.6900|0.7720 |0.7266 |0.7798 |0.7880 |0.7912 (0.7682

Table 2. Model validation via segmentation. Average Dice scores computed over 10
subject images are listed.



16 Thottupattu, Sivaswamy and Krishnan

Age=77(Global Template) Age=100

Fig. 7. The central coronal slices of extrapolated age-templates are shown along with
the global template image

4.3.3 Validation with Simulated Longitudinal Data Sample images gen-
erated by applying the simulated deformations on the Shepp-Logan phantom are
shown in the first row of Fig. |8} This forms the ground truth. The template im-
ages derived with the proposed model are shown in the second row. The images
in the 2 rows appear to be very similar to each other at the same time points.
The template images generated with the proposed model and corresponding ~y
curve is also shown in the same figure. The degree of deformation in the simu-
lated deformation is uniformly increasing with time and hence it can be expected
that the v curve will be symmetric with respect to mid-time point. We see that,
in Fig. 8] is indeed true. The proposed model captures the applied deformation
without much errors from the simulated longitudinal data.

5 Discussion

Cross-sectional images at different age points are easier to acquire than that
of the same subject. This motivated us to develop a method to generate an
aging model using cross-sectional data. The aging model is based on continuous
deformation applied to a template. Experimental results show that our aging
model can be used to generate templates at different time points in a manner
that is consistent with the natural aging trend observed by other studies; it
preserves structural details of the supplied templates and generates topology-
preserving aging deformations.

5.1 Limitations

The proposed aging model has a few limitations. Firstly, it is applicable only for
matured brain growth where no new brain structures are introduced. The quality
of the proposed model is completely dependent on the data. Consequently, the
number of scans in each age interval needs to be large to generate the age-specific
templates that are representative of the cohort/population under study. What
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Fig.8. Aging model for a simulated longitudinal dataset. A - First row: Deformed
images with known transformation and second row: images generated with the proposed
model, for the same time points (as in the first row) and last row: the absolute difference
of first and second rows; B - The v curve of our aging model and C - Some sample
images used in S

]
fitted curve
data

02

L
-

constitutes ’large’ is an open question. Secondly, while the model reduces the
effect of cross-sectional data induced variations in the aging deformation, there
is no formal proof as yet that it completely removes the cross-sectional variation.
Finally, the proposed aging model defines a single average growth path and does
not attempt to model the cross-sectional aging variations.

5.2 Future Work

Since the proposed model works only to obtain a mean aging path, future work
can be a refinement in terms of defining the aging model as a distribution of
paths about the average path. The basic requirement to develop such a model
however, is the availability of scans at different age points, not the templates
alone. Our current work is directed at developing a public database for this
purpose with subject scans at different age points.

6 Conclusion

We have proposed a novel aging model from cross-sectional data. The spatio-
temporal smoothness and consistency are assured in the model to make it closer
to natural aging. The model has the potential to be used for clinical purposes.
Currently population specific aging trends are of interest and this can be gener-
ated with the proposed model with less efforts. The code to generate proposed
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the aging model has made publicly available in http://dx.doi.org/10.17632/
nw983x225c. 1.
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