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Abstract
Circular arc Radon (CAR) transforms associate to a

function, its integrals along arcs of circles. The inversion
of such transforms is of natural interest in several imaging
modalities such as thermoacoustic and photoacoustic
tomography, ultrasound and intravascular imaging. Unlike
the full circle counterpart – the circular Radon transform
– which has attracted significant attention in recent years,
the CAR transforms are scarcely studied objects. In this
work, we present an efficient algorithm for the numerical
inversion of the CAR transform with fixed angular span,
for the cases in which the support of the function lies
entirely inside or outside the acquisition circle. The
numerical algorithm is non-iterative and is very efficient
as the entire scheme, once processed, can be stored and
used repeatedly for reconstruction of images. A modified
numerical inversion algorithm is also presented to reduce
the artifacts in the reconstructed image which are induced
due to the limited angular span.

Index Terms—Circular arc Radon transform, circular Radon
transform, Volterra integral equations, streak artifacts, trape-
zoidal product integration method, truncated singular value
decomposition

I. INTRODUCTION

Circular arc Radon (CAR) transforms involve the integrals
of a function on a plane along a family of circular arcs.
Our study of these transforms is motivated by its potential
applications in imaging modalities such as thermoacoustic and
photoacoustic tomography (TAT/PAT), ultrasound, radar and
intravascular imaging.

In TAT/PAT the object of interest is irradiated by a short
electromagnetic (EM) pulse. The irradiated tissue absorbs
some of the EM energy, with the amount depending on tissue
characteristics. Cancerous cells, for example, absorb more
energy than the healthy cells due to high metabolic activity. It
is diagnostically useful to know the EM absorption properties
of tissues [1] [2] [3] [4] [5]. The absorption of EM energy
causes an increase in the local temperature and makes the
tissues expand and leads to a pressure distribution in the tissue,
which is roughly proportional to the absorption function. The
resultant pressure wave p(t, x) propagates through the object
and is measured by ultrasonic receivers/transducers located on
an observation surface P surrounding the object. The goal
of imaging is to use the measured data to reconstruct the
initial pressure p(0, x). Assuming that the background acoustic
wave speed is a constant and that the transducers are omni-
directional, the measured data can be modeled as a spherical
Radon transform of the initial pressure distribution p(0, x)
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with centers on the acquisition surface P [6]. Furthermore,
assuming linear integrating detectors [7] or detectors focused
to a plane [9], the 3- dimensional TAT/PAT problem can
be recast as a slice-by-slice inversion problem for the 2-
dimensional circular Radon transform.

However, in practical imaging systems, the aperture of
detectors may be limited. Therefore, we consider a scenario
where limited angular aperture detectors are used to collect
data similar to [8][10]. Assuming that tomographic data
collection is restricted to a plane, the data measured by the
limited angular aperture detectors can be modeled as a CAR
transform with centers on the intersection of the plane with
the acquisition surface P .

The transform involved in this setup associates for a given
function, its integrals along circular arcs with fixed angular
span instead of integrals along full circles. Additionally, in
some imaging problems, full data in the radial direction may
not be available, for instance, in the case of imaging the
surrounding region of a bone. We consider these two imaging
scenarios together and they serve as the main motivation for
our study of CAR transforms in this paper. We recall that
the case of partial data in the radial direction for circular
and elliptical Radon transforms was considered in [11, 12].
Two related works where circular arc means transform have
appeared are in SAR imaging [14] and Compton scattering
tomography [15]. These use different setups: In [14], data is
acquired along semicircular arcs of different radii with each
semicircular arc being centred on a line segment, while, in
[15] data is acquired along circular arcs with a chord of fixed
length. These differ from the circular acquisition geometry we
consider where data is acquired along arcs of different radii
but with fixed angular span (see Figure 1).

Our setup leads to a non-standard integral transform,
described in Section II, which has not been considered
previously. Specifically, in our situation, we have a Volterra
integral equation of the first kind with a weakly singular
kernel, in which both the upper and lower limits of the integral
are functions. Integral equations of this kind, that is, ones
with variable upper and lower limits, have been investigated
in previous studies [16–20]. However, to the best of our
knowledge, the integral equation that we encounter in this
work does not seem to fit into these previously established
results. In the current article, we present an efficient numerical
inversion of the Volterra integral equation of the first kind
appearing in the inversion of the CAR transform. Our work
is based on the numerical algorithm for the inversion of
a Volterra integral equation recently published in [21] that
used the trapezoidal product integration method [22, 23].
The inversion techniques of [21] have also been employed
in the numerical inversion of a broken ray transform [24].
Unlike the situation in [21], the difficulty in our setup include
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Fig. 1: Measurement Setup

the presence of edges of the circular arcs (see Figure 1)
and restricted visibility (in the sense of microlocal analysis
[25, 26]) due to fixed angular span of the arcs. Due to these
reasons the reconstruction algorithm introduces severe artifacts
in the reconstructed image. Hence we propose an artifact
reduction strategy in this paper. This paper is organized as
follows. Section II gives the relevant nonstandard Volterra
integral equations of the first kind involved in the study of
CAR transform. Section III gives the numerical algorithm for
inverting these Volterra integral equations of first kind. Section
IV presents details of some experiments done in numerical
reconstruction along with the results. V offers a solution to
suppress artifacts arising in numerical inversion of the CAR
transform. Finally, Section VI summarizes the paper.

II. CIRCULAR ARC RADON TRANSFORM

A. Function Supported Inside Acquisition Circle

Let (r, θ) denote the standard polar coordinates on the plane
and let f(r, θ) be a continuous compactly supported function
on [0,∞)× [0, 2π) such that f(r, 0) = f(r, 2π) for all r ≥ 0.
Let P (0, R) denote a circle (acquisition circle) of radius R
centered at the origin O = (0, 0) and parametrized as follows:

P (0, R) = {(R cosφ,R sinφ) : φ ∈ [0, 2π)}.

We consider the CAR transform (Rαf) (ρ, φ) of function
f(r, θ) along circular arcs of fixed angular span α. The details
of the setup are illustrated in Figure 2.

Let C(ρ, φ) be the circle of radius ρ centered at Pφ =
(R cosφ,R sinφ). That is,

C(ρ, φ) = {(r, θ) ∈ [0,∞)× [0, 2π) : |x− Pφ| = ρ},

where x = (r cos θ, r sin θ). Let Aα(ρ, φ) be the arc of the
circle C(ρ, φ) with an angular span of α. This is given by

Aα(ρ, φ) = {(r, θ) ∈ [0,∞)× [0, 2π) : |x− Pφ| = ρ,

θ ∈ [φ− α, φ+ α]}.

We define the CAR transform of f over the arc Aα(ρ, φ) as
follows:

gα(ρ, φ) = Rαf(ρ, φ) =
∫

Aα(ρ,φ)

f(r, θ) ds, (1)

where ds is the arc length measure on the circle C(ρ, φ) and
Aα(ρ, φ) is the arc over which the integral is computed (see
Figure 2) with ρ ∈ (0, R− ε), ε > 0.

Since both f(r, θ) and gα(ρ, φ) are 2π periodic in the
angular variable, we may expand them into their respective
Fourier series as follows.:

f(r, θ) =

∞∑
n=−∞

fn(r) e
inθ (2)

gα(ρ, φ) =

∞∑
n=−∞

gαn(ρ) e
inφ, (3)

where the coefficients fn(r), gαn(ρ) are given as follows:

fn(r) =
1

2π

2π∫
0

f(r, θ) e−inθdθ

gαn(ρ) =
1

2π

2π∫
0

gα(ρ, φ) e−inφdφ.

Based on our assumption on the f , the Fourier series of f
and gα will converge almost everywhere [13]. We now use an
approach similar to one followed by [11] for circular Radon
transform, which is based on the classical work by Cormack
[27] for the linear Radon case.

Using the Fourier series expansion of function f(r, θ) in
Equation (1) we have

gα(ρ, φ) =

∞∑
n=−∞

∫
Aα(ρ,φ)

fn(r)e
inθdθ.

Since the arc Aα(φ, ρ) is symmetrical about φ we may rewrite
the integral as follows.

gα(ρ, φ) =

+∞∑
n=−∞

∫
A+
α (ρ,φ)

fn(r)
(
einθ + ein(2φ−θ)

)
ds

where A+
α (ρ, φ) is the part of arc corresponding to θ ≥ φ.

Further we observe that

einθ + ein(2φ−θ) = 2einφ cosn(θ − φ).

We therefore have

gα(ρ, φ) =

∞∑
n=−∞

∫
A+
α (ρ,φ)

fn(r) cos[n(θ − φ)]einφds.

Comparing with Equation (3) we have

gαn(ρ) =

∫
A+
α (ρ,φ)

fn(r) cos[n(θ − φ)]ds. (4)
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From Figure 2, a straightforward calculation gives

θ − φ = arccos

(
r2 +R2 − ρ2

2rR

)
(5)

and

ds =
rdr

R

√
1−

(
ρ2+R2−r2

2ρR

)2 . (6)

Using Equations (5) and (6) in (4) we get

gαn(ρ) =

√
R2+ρ2−2Rρ cosα∫

R−ρ

r cos
(
n cos−1

(
r2+R2−ρ2

2rR

))
fn(r)

R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr (7)

Letting cos(n arccosx) = Tn(x) and u = R− r, we have

gαn(ρ) =

ρ∫
R−
√
R2+ρ2−2ρR cosα

Kn(ρ, u)√
ρ− u

Fn(u)du (8)

where
Fn(u) = fn(R− u)

and

Kn(ρ, u) =
2ρ(R− u)Tn

[
(R−u)2+R2−ρ2

2R(R−u)

]
√

(u+ ρ)(2R+ ρ− u)(2R− ρ− u)
. (9)

B. Function Supported Outside Acquisition Circle

Next we consider the reconstruction of functions supported
outside the acquisition circle. More precisely, we consider
functions supported inside the annular region A(R1, R2)
where R1 = R is the inner radius and R2 = 3R is the outer
radius of the annulus. R is the radius of the acquisition circle
P . The acquisition setup for this case is illustrated in Figure
3.

A similar derivation as above leads to the following Volterra
integral equation of the first kind:

gαn(ρ) =

R+ρ∫
√
R2+ρ2+2ρR cosα

rTn(
R2+r2−ρ2

2rR )√
1−

(
R2+ρ2−r2

2ρR

)2 fn(r) dr.
(10)

Substituting u = r −R we have

gαn(ρ) =

ρ∫
√
R2+ρ2+2ρR cosα −R

Fn(u) ·Kn(ρ, u)√
ρ− u

du (11)

where Fn(u) = f(R+ u) and

Kn(ρ, u) =
2ρ(R− u) · Tn( (R−u)

2+R2−ρ2
2R(R−u) )√

(u+ ρ)(2R+ ρ− u)(2R− ρ− u)
.

Note that in this case, the kernel of the integral transform is
the same as in Equation (8), but, as is to be expected, the
limits of the integral are different.
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Fig. 2: Setup for functions supported inside the acquisition
circle.

The analogue of Equations (8) and (11) arising in full
circular Radon transform are Volterra integral equations of
first kind, where one of the limits is fixed. These were
studied in [11, 12]. An exact solution of such equations
arising in full circular Radon transform is known. However, the
exact solution is numerically unstable. An efficient numerical
algorithm for the inversion of Volterra integral equations of
the first kind appearing in [11, 12] recently appeared in [21].
In the case under consideration, however, both the limits of
integration are variable, and we are unable to address the
question of existence and uniqueness of solutions to such
integral equations in this work. Instead, we discretize the
integral equation following the algorithm given in [21]. For
this discrete problem, a unique solution exists, and we present
an efficient numerical inversion method to deal with the
inversion of such nonstandard Volterra integral equations of
the first kind. The presence of edges of the circular arcs in
the domain introduces artifacts in the reconstructed images.
Furthermore, the fixed angular span α places restrictions on
the edges that are visible, leading to a streak-like artifacts. We
propose an artifact suppression strategy that reduces some of
these artifacts in this paper. To invert the transform, we directly
discretize Equation (8) and invert using a Truncated Singular
value Decomposition (TSVD); a method originally proposed
in [28]. In the next section, we explain the numerical inversion
algorithm as well as a method for the suppression of artifacts.

III. NUMERICAL INVERSION

A. Forward Transform

The forward transform is computed by discretizing Equation
(1). It may be noted that we consider data till half of the
dimater only. The discrete transform is computed for ρ ∈
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Fig. 4: Sample image and corresponding Circular arc Radon
transform for α = 25◦. The dotted circle surrounding the
image represents the acquisition circle.

[0, R− ερ], ερ > 0. We have

gα(ρk, φp) =
∑

(xn,ym)∈Ak,p

f(xn, ym), (12)

where

Ak,p =
{
(xn, ym) :

√
(xn − R cosφp)2 + (ym − R sinφp)2 = ρ

2
k

, φp − α ≤ arctan(
ym

xn
) ≤ φp + α

}
,

ρk = kh, k = 0, 1, ...,M − 1, h =
R− ερ
M

,

and

φp = pl, j = 0, 1, ..., N − 1, l =
2π

N
.

Note that gα(ρk, φp) is an M ×N matrix.
Figure 4 shows an image f(x, y) and the corresponding CAR
transform gα for α = 25◦ and M = N = 300.

B. Computation of Fourier Series

Given the data matrix gα(ρk, φp), we compute the discrete
Fourier series coefficients gαn using the FFT algorithm. We

assume the matrix gα(ρk, φp) to be real. Note that gαn is a
vector of length M given by

gαn(ρk) =

N−1∑
p=0

gα(ρk, φp) · e−i2πn
p
N .

C. Computation of forward transformation matrix
Equation (8) can be discretized and written in the matrix

form as follows

gαn = BnFn (13)

where

gαn =


gαn(ρ0)
.
.
.

gαn(ρM−1)

 Fn =


Fn(ρ0)

.

.

.
Fn(ρM−1)


Matrix Bn is a piecewise linear, discrete approximation

of the integral kernel in Equation (8), gαn is the Fourier
series coefficients of the circular arc Radon data and Fn the
Fourier series coefficients of the original unknown function.
The matrix Bn is computed using the trapezoidal rule [22, 23].
The method essentially breaks the full integral into a sum of
M integrals. The function is approximated to be linear in each
interval so that

√
h


k∑
q=l

bkqKn(ρk, ρq)Fn(ρq)

 = gn(ρk) (14)

where

bkq =


4
3{(k − q + 1)

3
2 + 4

3 (k − q)
3
2 + 2(k − q)

1
2 q = l

4
3

(
(k − q + 1)

3
2 − 2(k − q)

3
2 + (k − q − 1)

3
2

)
q = l + 1, ...k − 1.

4
3 q = k.

and l = max
(
0,
⌊
R−

√
R2 + ρ2k − 2ρkR cosα

⌋)
where bxc

is the greatest integer less than equal to x.
The detailed derivation of Equation (14) is given in

Appendix A. From Equation (14) it is clear that the entries
of matrix Bn are independent of both the data gα(ρk, φp) as
well as the function f to be recovered. Hence, the matrix Bn
may be pre-computed and stored.

From Equation (14) we have

[Bn]kk =
4

3

√
h 6= 0

also, [Bn]kq = 0 ∀ q > k

⇒ det(Bn) =

(
4

3

√
h

)M
6= 0.

Therefore solution Fn of Equation (13) exists and is unique.
However, the existence and uniqueness of solution in the
continuous case (Equation 8) does not follow from the discrete
case and a proof for the continuous case is an open question.

While the Bn matrix is invertible, in practice, it is ill-
conditioned. In order to obtain a numerically stable inverse, we
use Truncated Singular Value Decomposition (TSVD) based
pseudo-inverse of the matrix. The TSVD based method is
explained briefly in the next section.
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D. Inversion using Truncated Singular Value Decomposition

TSVD is a commonly used technique to compute the
pseudo-inverse of matrices. This method was introduced in
[28] as a numerically stable method for solving least squares
problem. The method involves the following steps.

1) Consider the singular value decomposition of matrix Bn
such that Bn = UDnV

T . Dn is an n × n diagonal
matrix of singular values of Bn and U , V are orthogonal
matrices consisting of left and right singular vectors of
Bn respectively.

2) A rank r approximation Bn,r of the matrix Bn, is given
by Bn,r = UDrV

T , where Dr is a diagonal matrix with

Dr(i, i) =

{
Dn(i, i) = σi, i ≤ r
0 i > r.

3) Then the rank r inverse of the matrix is given by
B−1n,r = V D−1r UT where,

D−1i,i =

{
1
σi

i < r

0 otherwise

4) Using B−1n,r in Equation 13 we have

Fn ≈ B−1n,rgn

5) The approximation of original function f(r, θ) may be
obtained by computing inverse Fourier transform of Fn.

f(rk, θn) =

N−1∑
p=0

Fn(R− ρk, φp) · ei2πn
p
N . (15)

The final image f(x, y) in the Cartesian coordinates is
obtained by interpolating the the polar image f(rk, θn) onto
the Cartesian grid using bilinear interpolation. Algorithm 1
summarizes the steps involved in the numerical inversion.

Algorithm 1: Numerical Inversion Algorithm
Data: Radon Transform, gα(ρ, φ)
Result: f(r, θ)

1 Compute the Discrete Fourier series gαn(ρ), of input
gα(ρ, φ) in the φ variable s.t.

gαn(ρk) =
N−1∑
p=0

gα(ρk, φp) · e−i2πn
p
N

2 for each n do
3 Compute Bn = [aijK

n
ij ] where, aij is given by

equation 14, and Kn
ij = Kn(ρi, ρj) by equation 9

4 Let Bn,r = UDrV
T , with Dr = diag(σ1, ...σr), s.t

SVD of Bn = UDnV
T ,

5 Compute low rank inverse, B−1n,r = V D−1r UT

6 Fn = B−1n,r gαn
7 end
8 Compute inverse Fourier transform f using Equation

(15).

(a) Phantom with support inside (b) Phantom with support outside

Fig. 5: Phantoms used in the experiments. The dotted circle
represents the acquisition circle.

IV. EXPERIMENTS AND RESULTS

We use the strategy discussed in Section III to reconstruct
analytical phantoms shown in Figure 5. During reconstruction,
the view angle α will be determined by the transducer, while
the discretisation of angular and radial variables are chosen
as part of an imaging protocol depending on constraints on
acquisition time, sensor bandwidth and sensitivity.

At the algorithm level, a key parameter affecting the quality
of reconstruction is the rank r of the matrix Bn,r. The matrix
Bn is non-singular, however due to the high condition number(
O(1015)

)
, a full rank (r = n) inversion will be unstable and

will not result in a meaningful reconstruction. Therefore, an
r-rank (with r < n,) approximation of the matrix Bn is one
approach to stable inversion. Such a low-rank approximation
is achieved in the proposed numerical scheme via TSVD.

The SVD decomposes a signal f into a sum of harmonics

f =
n∑
i=1

σiuiv
T
i . Consequently, setting σi = 0 for i > r in

the TSVD of Bn,r will lower the number of harmonics in
the reconstructed image leading to ringing artifacts. Figure 6
shows reconstruction for a fixed view angle α = 31◦ with
different r. The results are as expected, with good quality
reconstruction seen for r = 0.9n and visible degradation
in the quality with a reduction in r. Specifically, severe
ringing artifacts can be seen in the result when r = 0.5n
or lower. Thus, there is a tradeoff between rank and quality of
reconstruction. Figure 7 shows a similar relation for the case
of object supported outside the acquisition circle.

Despite the fact that the view angle is a parameter that is
generally fixed for a particular imaging setup, it is of interest
to gain insight into the relationship between this parameter and
the quality of reconstruction. In general, limiting the view by
restricting the angular span α should introduce artifacts, as all
edges in the object may not be visible. This notion of visibility
can be explained as follows. If the data set C representing
the curves of integration, are smooth objects such as lines,
full circles, spheres etc., then roughly speaking, for an edge
in the image to be stably reconstructed, there should be an
element of C tangential to the edge. A formal justification of
this statement is possible with the tools of Fourier integral
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(a) Rank = n/6 (b) Rank = n/2

(c) Rank = 9n/10 (d) Rank = n

Fig. 6: Effect of rank r of matrix Bn,r on the reconstruction
quality. n = 300 in all the above examples

(a) Rank = n/6 (b) Rank = n/2

(c) Rank = 9n/10 (d) Rank = n

Fig. 7: Effect of rank r of matrix Bn,r for support outside
case. n = 300 in all examples

Object

x axis

y axis

Fig. 8: Location of sharp artifact(red circle) with respect to
the arcs(orange)

operator theory and microlocal analysis [25, 29, 30]. We refer
to all edges which are tangential to the interiors of the arcs in
the data set C, as visible edges. Edges which fail to satisfy this
condition are not reconstructed stably. Such a principle, for our
set up, can be applied for edges at points where the interiors
of the arcs satisfy the aforementioned tangential condition.
However, due to the corners of the arcs inside the domain, we
expect artifacts to be present in the reconstructed image. A
rigorous study of the microlocal analysis of CAR transform,
in particular, the characterization of the added artifacts into the
reconstructed image is an important and challenging problem
and we hope to address this in a future work. Figure 10
shows reconstruction at r = 0.9n for various α. We observe
from these results that, as expected, the reconstruction of the
visible edges is sharp, whereas the other edges are blurred
out. As the angle α increases, the visible region of edges
increases, and hence most of the edges in the images with
large α are reconstructed. Larger α corresponds to a wider
arc, and therefore more edges are tangential to the curve of
integration. This dependence on α is clearly observed in the
lower ellipse in Figure 10. As the span of arc increases, some
arcs become tangential to the lower boundary of the ellipse.
Hence we observe that the lower portion of the ellipse becomes
sharper as α increases. A similar behavior is also observed in
Figure 11 where the support of the function is outside the
acquisition circle. In this Figure, there are circular arcs in
the data set tangential to the edges in a neighborhood of the
radial direction whereas none is tangential in the complement
of such directions. Therefore, these edges are blurred out and
the reconstruction of the edges does not appear to improve
with increasing α.
We also observe various streaks and a strong circular
artifact whose location changes with α. These artifacts are
to be expected as we are dealing with a limited view
problem. Handling of these artifacts to improve the quality
of reconstructed image is considered in the next section.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

V. SUPPRESSION OF ARTIFACTS

To understand the source of artifacts, and subsequent
suppression in the reconstructed images we re-write the CAR
transform (equation 1) as follows.

gα(ρ, φ) = Rαf(ρ, φ) =
∫

C(ρ,φ)

χAf(r, θ) ds, (16)

where, χA is the characteristic function of the arc Aα(ρ, φ)
such that

χA =

{
1, (r, θ) ∈ Aα(ρ, φ)
0, else

The function χA truncates the full data f(r, θ) before
computation of the integral. χA is a Heaviside type function
with sharp cut-off at the edges of the arc. Since the data is
measured only for ρ ∈ (0, R − ερ), there is also a similar
Heaviside type truncation function in the radial direction, with
hard truncation at ρ = R− ερ.

It should be noted that χA ≡ 1 for the whole circle C(ρ, φ)
in the circular Radon transform while, χA = 0 beyond the arc
Aα(ρ, φ) in the CAR transform. The sharp truncation in data
should lead to strong streaking artifacts in the reconstructed
result. Moreover, a strong circular artifact is also observed
along the edges of arcs corresponding to largest value of ρ as
depicted in figure 8. The double penalization in the form of
hard truncation of data i) at the edges of the arc in the angular
direction and ii) in the radial direction for ρ = R − ερ, we
believe, is the reason for the sharp circular artifact at a specific
radial location.

In order to suppress the artifacts, we modify the charac-
teristic function to χ̂A, so that it decays smoothly instead of
going to 0 abruptly at the edge. This smooth decay serves to
remove the singularity due to the Heaviside-type truncation.
We choose a smooth, squared exponential decay of the form
e

−x2

σ2 . Specifically, the values of the matrix Bn are weighted by

an exponential decay factor of the form e
−(j−m)2

σ2 as explained
in algorithm 2.

Here, σ controls the degree of smoothing. A large σ results
in excessive smoothing and hence lead to blurring of the true
edges of the reconstructed image. A low σ results in mimimal
smoothing, preserves edge definition but also in retention
of artifacts. In our experiments, we chose σ = 40 which
suppresses the strong streak artifacts, (see figure 10), whilst
retaining the definition of true edges in the image. Algorithm
2 is a modified version of the numerical inversion Algorithm
1 and includes artifact suppression with χ̂A.

As noted in Section III, matrix Bn is a lower triangular
matrix. Figure 9 is a visualization (as an image) of the
structure of matrix Bn in the original and the modified form.
Here, the white/black pixels indicate non-zero/zero entries.
The modification of the transformation matrix leads to a slow
decay of numerical values as shown in Figure 9 with grey
coloured pixels. This helps smooth the sharp circular artifacts
generated in the inversion process. Note that only the matrix
Bn, which is constant for a given setup, is changed in the

Algorithm 2: Numerical Inversion Algorithm
Data: Radon Transform, gα(ρ, φ)
Result: f(r, θ)

1 Compute the Discrete Fourier series gαn(ρ), of input
gα(ρ, φ) in the φ variable s.t.

gαn(ρk) =
N−1∑
p=0

gα(ρk, φp) · e−i2πn
p
N

2 for each n do
3 Compute Bn = [b̂ijK

n
ij ] where b̂ij is given by

4

b̂ij =

{
e

−(j−m)2

σ2 bij , j < m

bij , m ≤ j ≤ i

where bij is given by equation 14 with l = 0 ,
m = max

(
0,
⌊
R−

√
R2 + ρ2k − 2ρkR cosα

⌋)
and

Kn
ij = Kn(ρi, ρj) given by equation 9

5 Let Bn,r = UDrV
T , with Dr = diag(σ1, ...σr), s.t

SVD of Bn = UDnV
T ,

6 Compute low rank inverse, B−1n,r = V D−1r UT

7 Fn = B−1n,r gαn
8 end
9 Compute inverse Fourier transform f using equation (15).

modified algorithm. The data, gα(ρ, φ) is not changed or pre-
processed in any form. Figure 10, 11 show the reconstructed

(a) original matrix
Structure

(b) Modified matrix
Structure

Fig. 9: Structure of matrix Bn. The original matrix (left) has
a sharp cut off in the entries of Bn, while in the modified
matrix (right) they decay smoothly.

images after artifact suppression is performed for the cases
of function supported inside and outside, respectively. We
observe that using the modified algorithm, the sharp circular
artifacts are significantly suppressed while the true edges of
the image are retained.

VI. CONCLUSION

We presented a numerical algorithm to invert CAR
transform arising in some imaging applications. The numerical
algorithm required the solution of ill-conditioned matrix
problems which was accomplished using a TSVD method. The
entries of the matrix are independent of the image function,
and therefore the TSVD need to be done only once and can be
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(a) α = 21 (b) α = 21

(c) α = 31 (d) α = 31

(e) α = 46 (f) α = 46

(g) α = 76 (h) α = 76

Fig. 10: Reconstructed images corresponding to different α
before (column 1), and after artifact suppression (column 2),
for the support inside case.

(a) α = 21 (b) α = 21

(c) α = 31 (d) α = 31

(e) α = 46 (f) α = 46

(g) α = 76 (h) α = 76

Fig. 11: Reconstructed images corresponding to different α
before (column 1), and after artifact suppression (column 2),
for the support outside case.
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used repeatedly for image reconstruction leading to an efficient
image reconstruction algorithm.

Compared to the inversion of full circular Radon transform,
the quality of image reconstruction in the case of CAR
transform is poorer due to the following reasons. (a) The edges
of the arcs of circles introduce strong artifacts. (b) Several
edges of the image are invisible due to the limit in the angular
span of the arcs. These lead to some “streak” and circular
artifacts. We also presented a numerical algorithm for handling
this problem and demonstrated it helps reduce some of these
artifacts.

The theoretical inversion of CAR leads to some very
interesting non-standard Volterra integral equations of the first
kind with weakly singular kernel, that to the best of our
knowledge, have not been dealt with in current literature. We
hope to address them in our future work.
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APPENDIX A
TRAPEZOIDAL INTEGRATION

The Fourier coefficients of the forward transform are given
by equation 8 restated below.

gαn(ρ) =

ρ∫
R−
√
R2+ρ2−2ρR cosα

Fn(u)Kn(ρ, u)√
ρ− u

dr.

The integral is approximated by the sum in Equation (14).
The sum is obtained by the trapezoidal product integration
method proposed in [22, 23] (see also [21]) which we briefly
outline below.
Let M be a positive integer and ρl = lh, l = 0, ...,M and
h = R−ε

M be a discretization of radial variable ρ ∈ [0, R − ε]
The above equation may be rewriten as follows

gαn(ρk) =

k∑
q=1

ρq∫
ρq−1

Fn(u)Kn(ρ, u)√
ρ− u

du.

We approximate Fn(u) ·Kn(ρ, u) by linear function in the
interval [ρq−1, ρq], such that

Fn(u)Kn(ρ, u) ≈ Fn(ρq−1)Kn(ρk, ρq−1)
ρq − u
h

+Fn(ρq)Kn(ρk, ρq)
u− ρq−1

h
.

Here the function takes values Fn(ρq−1)Kn(ρk, ρq−1)
and Fn(ρq)Kn(ρk, ρq) at the end points of the interval
respectively. Hence we have

gαn(ρk) =

k∑
q=1

ρq∫
ρq−1

1√
ρ− u

[
Fn(ρq−1)Kn(ρk, ρq−1)

ρq − u
h

+Fn(ρq)Kn(ρk, ρq)
u− ρq−1

h

]
du.

Simple integration gives

h
−3
2

ρq∫
ρq−1

ρq − u√
ρk − u

du = −4

3
{(k−q+1)

3
2−(k−q) 3

2 }+2(k−q+1)
1
2

and,

h
−3
2

ρq∫
ρq−1

u− ρq−1√
ρk − u

du =
4

3
{(k−q+1)

3
2−(k−q) 3

2 }−2(k−q) 1
2 .

Hence we have

gαn(ρk) =
√
h

k∑
q=l

[
− 4

3{(k−q+1)
3
2−(k−q)

3
2 }+2(k−q+1)

1
2

]
× Fn(ρq−1)Kn(ρk, ρq−1)

+
[

4
3{(k−q+1)

3
2−(k−q)

3
2 }−2(k−q)

1
2

]
× Fn(ρq)Kn(ρk, ρq).

From the support assumption, we have Fn(p) = 0 ∀p ≤
0. Then the above expression simplifies to the following
expression.

√
h


k∑
q=l

bkqKn(ρk, ρq)Fn(ρq)

 = gn(ρk)

where

bkq =


4
3{(k − q + 1)

3
2 + 4

3 (k − q)
3
2 + 2(k − q)

1
2 q = l

4
3

(
(k − q + 1)

3
2 − 2(k − q)

3
2 + (k − q − 1)

3
2

)
q = l + 1, ...k − 1.

4
3 q = k.

and l = max
(
0,
⌊
R−

√
R2 + ρ2k − 2ρkR cosα

⌋)
where bxc

is the greatest integer less than equal to x.
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