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Abstract. We compare and contrast the qualitative nature of backprojected

images obtained in seismic imaging when common offset data are used versus
when common midpoint data are used. Our results show that the image ob-
tained using common midpoint data contains artifacts which are not present
with common offset data. Although there are situations where one would still
want to use common midpoint data, this result points out a shortcoming that
should be kept in mind when interpreting the images.

1. Introduction. In seismic imaging, pressure waves generated on the surface of
the earth travel into the subsurface, where they are scattered by heterogeneities.
The scattered pressure waves returning to the surface are picked up by receivers and
the inverse problem involves imaging the subsurface from these scattered waves.
This problem is non-linear and as such is very difficult to solve. In this article,
we model the heterogeneities in the subsurface as singular perturbations about a
constant velocity field. We consider the corresponding linearized map F which maps
the perturbation in velocity to the corresponding perturbation in the pressure waves.
The goal is to recover, to the extent possible, the perturbation in the background
wave speed from the perturbations in the pressure waves measured on the surface.
In other words, we would like to study the invertibility of the linear operator F .

We compare two standard (see [33]) ways of collecting data in seismic experi-
ments; the common midpoint acquisition geometry and the common offset acquisi-

tion geometry to determine which geometry shows more features of the subsurface
and adds fewer artifacts. To do this, we will use microlocal analysis, which pro-
vides a precise characterization of how operators like F and its adjoint, F ∗, map
singularities.

Microlocal analysis has been used to analyze important problems in seismics
(e.g., [2, 6, 3, 32, 38, 26, 39, 35, 27, 37, 36, 5, 4, 24, 10]), in the related field
of synthetic aperture radar imaging (e.g., [28, 8, 9, 34, 1]), marine imaging (e.g.,
[7, 11, 31]), and in X-ray Tomography (e.g., [17, 19, 18, 14, 15, 13, 16, 30, 22, 12]).
Our microlocal approach to the seismic imaging problem is influenced by the seminal
work of Guillemin, who first specified the microlocal properties of Radon transforms
[17, 20] and our characterization of the distribution class of the composition of F
with F ∗ is motivated by the works of Greenleaf, Guillemin, Melrose and Uhlmann
[25, 21, 14].

The nature of F and F ∗F depends on the set of sources and receivers. In the case
of a single source and receivers occupying a relatively open subset of the surface,
Beylkin [2] proved that if caustics do not occur then F ∗F is a pseudodifferential
operator (ΨDO). Rakesh then showed that F is a Fourier integral operator (FIO)
[32] under the assumption of no caustics in the source ray field, but caustics can
occur on the receiver side. Later, Nolan and Symes [26] studied a variety of acqui-
sition geometries and gave sufficient conditions for F ∗F to be a ΨDO. Ten Kroode,
Smit, and Verdel [39] considered relatively open sets of sources and receivers and
investigated the microlocal properties of F in relation to the so-called travel time
injectivity condition; see [26, Assumption 3, pp. 929] and [39]. Stolk [35] studied the
microlocal analysis of F and F ∗F even when the travel time injectivity condition
fails.

To describe the data acquisition geometries, we introduce some notation. We
denote the subsurface to be imaged by the half space,

X =
{
(x1, x2, x3) ∈ R3 : x3 > 0

}
. (1)
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Seismic sources and receivers will be parametrized by points in a bounded open set
Ω ⊂ R2 (where we identify R2 with the plane x3 = 0). For each point s = (s1, s2) ∈
Ω we specify a source S(s) and a receiver R(s) on the surface of the earth, x3 = 0.
Data are taken for different times, t > 0, so the data space is

Y = Ω× (0,∞).

In the common midpoint data acquisition geometry, the source and receiver move
away from a common midpoint. For this case, Ω ⊂

{
(s1, s2) ∈ R2 : s2 > 0

}
and for

each s = (s1, s2) ∈ Ω,

Scm(s) = (s1, s2, 0) Rcm(s) = (s1,−s2, 0). (2)

Hence the sources and the detectors move over the plane and are symmetric with
respect to the x1 axis.

In the common offset data acquisition geometry, the source and receiver collecting
data on the surface of the earth are offset by a constant vector. Choose α > 0 and
for each s = (s1, s2) ∈ Ω let

Sco(s) = (s1, s2 + α, 0), Rco(s) = (s1, s2 − α, 0). (3)

So the sources and the detectors move so they are always (0, 2α, 0) apart.
These data acquisition geometries are realistic because seismic data can be syn-

thesized to provide both common midpoint and common offset data [33]. Although
we have made simplifying assumptions of constant background velocity, if one data
acquisition method is shown to be better in this case, it is likely to be better at
least for small perturbations away from it. This is because bicharacteristics depend
smoothly on the background velocity as they involve solving an ODE and one can
invoke smooth dependence of ODE solutions on parameters. This means that the
wavefront relation also depends smoothly on the parameters. Therefore if artifacts
appear for a constant background velocity, they would still be present when we
make small perturbations away from the constant background velocity.

Under our assumptions (and with our data acquisition geometries), the forward
operator can be described (see [26] for example) as an FIO of order m, where
f models the singular velocity perturbations in the subsurface from the known
constant background velocity:

Ff(s, t) =

∫

ω∈R

∫

x∈X

eiφ(s,t,x,ω)A(s, t, x, ω)ϕ(s)f(x)dx dω (4)

with phase function

φ(s, t, x, ω) = ω (t− ‖x− S(s)‖ − ‖x−R(s)‖) (5)

and a smooth cutoff function ϕ(s) that is supported in Ω and identically 1 in an
arbitrary large compact proper subset of the support of ϕ. The canonical relation
of F is given by

C = {(s, t, ∂sφ, ∂tφ;x,−∂xφ) : ∂ωφ = 0}
where ∂s is the differential in the s variables, etc. [40]. The formal L2 adjoint
operator, F ∗, is an FIO associated with Ct (which is C with T ∗(X) and T ∗(Y )
coordinates flipped, if C = {x, ξ; y, η} then Ct = {y, η;x, ξ}).

One standard reconstruction method in imaging is to apply F ∗ to the data. The
result is the normal operator F ∗F applied to f . Analyzing what this normal opera-
tor does to singularities of f will help determine whether it is a good reconstruction
method and, if so, whether one data acquisition method is better than another.
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Remark 1.1. In order to have a heuristic understanding of whether one acquisition
geometry can be better than the other, consider the following special case. Assume
the smooth component of the velocity in the subsurface is layered, i.e., only depends
on x3. Reflectors in the subsurface can be detected in the data when there is an
ellipsoidal surface (with foci at the source and receiver) which is tangent to the
reflector. That is, the “dip” or normal to the reflector is also normal to the ellipsoid
at the point of tangency. With this in mind, we see that the common midpoint data
can only detect reflectors which are located on the plane x2 = 0 and which also have
a vertical dip. In contrast, the common offset geometry can detect reflectors which
have a range of locations (including away from x2 = 0) and also a range of dips.

Heuristically, this remark shows why imaging using a common offset geometry
could be expected to be better than imaging using a common midpoint geometry.
The authors thank one of the referees for pointing out this special case. However,
it is also worth pointing out that the results of this paper (regarding the nature of
the normal operator F ∗F ) do not directly follow from such heuristic arguments.

This pattern, that common offset can be better in some ways than common mid-
point, also occurs in synthetic aperture radar (SAR), in which the two-dimensional
topography of the earth is imaged. In the common offset SAR geometry it was shown
that the normal operator introduces one artifact singularity into the reconstructed
image in addition to each true singularity, whereas in the common midpoint case,
three artifact singularities are introduced into the reconstructed image in addition
to each true one. A more precise description of the normal operators in these cases
are given in [23, 1].

We now present the main results of this article and then interpret them.

Theorem 1.2 (Microlocal Properties for Common Midpoint). Let Fcm be the

common midpoint forward operator defined in (2), (4), and (5), of order m then

F ∗
cmFcm is a singular FIO in the class I2m,0(∆, C̃) where ∆ is the diagonal in

(T ∗(X) \ 0)× (T ∗(X) \ 0) and C̃ is the graph of the reflection

T ∗(X) ∋ (x, ξ) 7→ ((x1,−x2, x3), (ξ1,−ξ2, ξ3)).

We will define Ip,l classes in section 2 but this theorem has the following practical
implication. Microlocalized away from C̃, F ∗

cmFcm is a standard ΨDO of order 2m.
So singularities of f can be visible in the image F ∗

cmFcm(f). Microlocalized away

from ∆, F ∗
cmFcm is a FIO associated to C̃ of order 2m. So a singularity of f

at (x, ξ) can produce an artifact in the image which is of the same strength at
((x1,−x2, x3), (ξ1,−ξ2, ξ3)).

On the other hand, the common offset normal operator has the following prop-
erties.

Theorem 1.3 (Microlocal Properties for Common Offset). Let Fco be the common

offset forward operator defined in (3), (4), and (5), of order m then F ∗
co
Fco is a

standard ΨDO of order 2m.

This theorem means that singularities of f can be visible in F ∗
coFco and artifacts

are not added to the reconstruction. Our theorems show that common offset can
be better than common midpoint data acquisition since singularities are not added
to the reconstruction using the normal operator. We remark that despite this
advantage of common offset data acquisition compared to common midpoint data,
different (and perhaps more desirable) singularities might be visible with common
midpoint acquisition.
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Our proof rests on a fundamental assumption of Guillemin and Sternberg [20, 17]:
the Bolker Assumption,i.e., πL is an injective immersion (see section 3.2). We show
that Fco satisfies this Assumption and this implies that F ∗

coFco is a ΨDO, thus the
singularities of f can be reconstructed from the singularities of Fco. We would like
to point out that [3] provides another way to obtain the reconstruction of the singu-
larities. It uses the Beylkin Determinant for common offset, which is nonzero (see
pp. 247-249,(5.2.30))and an explicit inversion formula for the ground reflectivity
function (5.1.56). Using microlocal techniques we obtain the same nonzero deter-
minant of dπL (see (22) and subsequent calculations in section 3.2) which implies
that this projection is an immersion. This is a part of the Bolker Assumption.

The proofs in Section 3 use similar techniques as the ones done in [8, 1] and the
pertinent details will be given.

2. Microlocal analysis and Ip,l classes. We present some basic definitions in
microlocal analysis.

Definition 2.1 (Wavefront Set). Let x0 ∈ Rn and ξ0 ∈ Rn, ξ0 6= 0. The function
f is in C∞ at x0 in direction ξ0 if ∃ a cut-off function ϕ at x0 such that the Fourier
transform

F(ϕf)(ξ) =
1

(2π)n/2

∫

x∈Rn

e−ix·ξϕ(x) f(x) dx

is rapidly decreasing at ∞ in some open cone from the origin, V , containing ξ0.
On the other hand, (x0, ξ0) ∈ WF(f), that is, f has a singularity at x0 in the

direction ξ0 if f is not rapidly decreasing at x0 in direction ξ0.

Now we define the types of geometric singularities exhibited by the canonical
relation of our operators.

Definition 2.2 ([18, p.109-111]). Let M and N be manifolds of dimension n and
let f : M → N be C∞. Let Ω be a non-vanishing volume form on N and define
Σ = {σ ∈ M : f∗Ω(σ) = 0}, that is, Σ is the set of critical points of f . Note that,
equivalently, Σ is defined by the vanishing of the determinant of the Jacobian of f .

(a) If for all σ ∈ Σ, we have (i) the corank of f at σ is 1, (ii) ker(dfσ)∩TσΣ = {0},
(iii) f∗Ω vanishes exactly to first order on Σ, then we say that f has a fold

singularity along Σ.
(b) If for all σ ∈ Σ, we have (i) the rank of f is constant; let us call this constant

k, (ii) ker(dfσ) ⊂ TσΣ, (iii) f
∗Ω vanishes exactly to order n− k on Σ, then we

say that f has a blowdown singularity along Σ.

The fundamental mathematics for Ip,l classes is in [21, 25] and the techniques
we use appeared initially in [15] and we follow [9]. They were used in the context
of radar imaging in [29, 8, 9]. First, consider the following example.

Example 2.3. Let Λ̃0 = ∆T∗Rn = {(x, ξ;x, ξ)|x ∈ Rn, ξ ∈ Rn \ 0} be the diagonal

in T ∗Rn × T ∗Rn and let Λ̃1 = {(x′, xn, ξ
′, 0;x′, yn, ξ

′, 0)|x′ ∈ Rn−1, ξ′ ∈ Rn−1 \ 0}.
Then, Λ̃0 intersects Λ̃1 cleanly in codimension 1.

The class of product-type symbols Sp,l(m,n, k) is defined as follows.

Definition 2.4. [21] Sp,l(m,n, k) is the set of all functions a(z, ξ, σ) ∈ C∞(Rm ×
Rn × Rk) such that for every K ⊂ Rm and every α ∈ Zm

+ , β ∈ Zn
+, γ ∈ Zk

+ there is
cK,α,β,γ such that

|∂α
z ∂

β
ξ ∂

γ
σa(z, ξ, σ)| ≤ cK,α,β,γ(1 + ‖ξ‖)p−|β|(1 + |σ|)l−|γ|, ∀(z, ξ, τ) ∈ K × Rn × Rk.
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Since any two sets of cleanly intersecting Lagrangians are equivalent via a canon-
ical transformation [21], we first define Ip,l classes for the case in Example 2.3.

Definition 2.5. [21] Let Ip,l(Λ̃0, Λ̃1) be the set of all distributions u such that
u = u1 + u2 with u1 ∈ C∞

0 and

u2(x, y) =

∫
ei((x

′−y′)·ξ′+(xn−yn−s)·ξn+s·σ)a(x, y, s; ξ, σ)dξdσds

with a ∈ Sp′,l′ where p′ = p− n
2 + 1

2 and l′ = l − 1
2 .

Let (Λ0,Λ1) be a pair of cleanly intersection Lagrangians in codimension 1 and

let χ be a canonical transformation which maps (Λ0,Λ1) into (Λ̃0, Λ̃1) and maps

Λ0∩Λ1 to Λ̃0∩ Λ̃1, where Λ̃j are from Example 2.3. Next we define the Ip,l(Λ0,Λ1).

Definition 2.6 ([21]). Let Ip,l(Λ0,Λ1) be the set of all distributions u such that
u = u1 + u2 +

∑
vi where u1 ∈ Ip+l(Λ0 \ Λ1), u2 ∈ Ip(Λ1 \ Λ0), the sum

∑
vi

is locally finite and vi = Awi where A is a zero order FIO associated to χ−1, the
canonical transformation from above, and wi ∈ Ip,l(Λ̃0, Λ̃1).

If u is the Schwartz kernel of the linear operator F , then we say F ∈ Ip,l(Λ0,Λ1).

This class of distributions is invariant under FIOs associated to canonical trans-
formations which map the pair (Λ0,Λ1) to itself and the intersection Λ0 ∩ Λ1 to
itself. If F ∈ Ip,l(Λ0,Λ1) then F ∈ Ip+l(Λ0 \Λ1) and F ∈ Ip(Λ1 \Λ0) [21]. Here by
F ∈ Ip+l(Λ0 \Λ1), we mean that the Schwartz kernel of F belongs to Ip+l(Λ0 \Λ1)
microlocally away from Λ1.

One way to show that a distribution belongs to an Ip,l class is by using the
iterated regularity property:

Proposition 2.7. [15, Prop. 1.35] If u ∈ D′(X×Y ) then u ∈ Ip,l(Λ0,Λ1) if there is

an s0 ∈ R such that for all first order pseudodifferential operators Pi with principal

symbols vanishing on Λ0 ∪ Λ1, we have P1P2 . . . Pru ∈ Hs0
loc.

3. Proofs. We first calculate the canonical relation C for each operator. Then we
analyze the geometry of the right projection πR : C → T ∗(X) \ {0} and the left
projection πL : C → T ∗(Y ) \ {0}.

For the common midpoint case, we show that πL and πR both drop rank by 1 on
the submanifold Σ of Ccm that is above x2 = 0. We show πL has a fold singularity
on Σ and πR has a blowdown singularity (similar to common midpoint SAR). To
find the microlocal properties of F ∗

cmFcm, we prove

Ct
cm ◦ Ccm ⊂ ∆ ∪ C̃

where C̃ is the graph of the reflection

χ(x1, x2, x3, ξ1, ξ2, ξ3) = (x1,−x2, x3, ξ1,−ξ2, ξ3).

We then show that F ∗
cmFcm ∈ I2m,0(∆, G) using arguments similar to those in [1]

for common midpoint SAR that use the machinery in [15, 9]. The normal operator
F ∗
cmFcm is simpler than in common midpoint SAR [1] because there is only one

geometric symmetry (across x2 = 0), whereas in common midpoint SAR [1], there
is symmetry about the x1 = 0 and x2 = 0 axes.

Common offset is easier and, we show that πL : Cco → T ∗(Y )\{0} is an injective
immersion so the Bolker condition holds and F ∗

coFco is a standard pseudodifferential
operator.
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3.1. Proof of Theorem 1.2. In this case we consider Scm(s1, s2) = (s1, s2, 0) and
Rcm(s1, s2) = (s1,−s2, 0), (s1, s2) ∈ Ω ⊂

{
(a, b) ∈ R2 : b > 0

}
. Using (5)

φcm(s1, s2, t, ω, x1, x2, x3) =ω
(
t−

√
(x1 − s1)2 + (x2 − s2)2 + x2

3

−
√
(x1 − s1)2 + (x2 + s2)2 + x2

3

) (6)

We use the notation:

Acm =
√
(x1 − s1)2 + (x2 − s2)2 + x2

3, Bcm =
√
(x1 − s1)2 + (x2 + s2)2 + x2

3.

The canonical relation Ccm ⊂ (T ∗(Y ) \ {0})× (T ∗(X) \ {0}) becomes:

Ccm =

{(
s1, s2, t, (x1 − s1)

(
1

Acm
+

1

Bcm

)
ω,

(
x2 − s2

Acm
− x2 + s2

Bcm

)
ω, ω;

x1, x2, x3, (x1 − s1)

(
1

Acm
+

1

Bcm

)
ω,

(
x2 − s2

Acm
+

x2 + s2

Bcm

)
ω,

x3

(
1

Acm
+

1

Bcm

)
ω

)
: t = Acm +Bcm

}
.

Notice that the canonical coordinates on Ccm are (s1, s2, ω, x1, x2, x3). We assume
that x3 6= 0, that is, that scatterers are contained in the open subsurface x3 > 0.
Next, we consider the projections πL and πR. We have

πL(s1, s2, ω, x1, x2, x3) =

(
s1, s2, ω, Acm +Bcm,(x1 − s1)

(
1

Acm
+

1

Bcm

)
ω,

(
x2 − s2

Acm
− x2 + s2

Bcm

)
ω

)
.

Note that, in the description of πL, we reordered the components to obtain the
identity in the first variables. This ordering will help to find the determinant of
dπL. We get dπL to be

dπL =

(
I 0
∗ C

)

where C is the 3× 3 matrix








(x1 − s1)(
1

Acm
+ 1

Bcm
) x2−s2

Acm
+ x2+s2

Bcm
x3(

1
Acm

+ 1
Bcm

)
(x2−s2)

2+x2
3

A3
cm

+
(x2+s2)

2+x2
3

B3
cm

ω −(x1 − s1)(
x2−s2
A3

cm
+ x2+s2

B3
cm

)ω −(x1 − s1)x3(
1

A3
cm

+ 1
B3

cm
)ω

−(x1 − s1)(
x2−s2
A3

cm
−

x2+s2
B3

cm
)ω ((x1 − s1)2 + x2

3)(
1

A3
cm

−

1
B3

cm
)ω −x3(

x2−s2
A3

cm
−

x2+s2
B3

cm
)ω









.

The determinant of dπL is

4x2s2x3ω
2

(
1

Acm
+

1

Bcm

)(
1 +

x− Scm(s)

Acm
· x−Rcm(s)

Bcm

)
.

Hence πL drops rank by 1 on Σ = {(s, ω, x) ∈ Ccm|x2 = 0} since we assume

x3, s2 6= 0 and since 1
Acm

+ 1
Bcm

6= 0 and 1 + x−Scm(s)
Acm

· x−Rcm(s)
Bcm

6= 0. The last term

is nonzero since the unit vectors x−Scm(s)
Acm

and x−Rcm(s)
Bcm

do not point in the opposite
directions since x3 > 0, that is, there is no direct scattering.

Remark 3.1. As already mentioned, we assume that scatterers are contained in
the open subsurface x3 > 0. Furthermore, for applicability of our results to the case
when the background velocity is a slight perturbation of the constant background
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velocity, we also make the assumption that no direct scattering takes place. In
practice, such direct data are usually filtered out. Therefore this is a reasonable
and valid assumption.

Next we classify the singularities of πL on Σ. Notice that on Σ, Acm = Bcm

and the second column of the matrix C above is 0. We have that v ∈ Ker dπL, if
v = (0, 0, 0, δx1, δx2, δx3) = δx1∂x1 + δx2∂x2 + δx3∂x3 , with

(x1 − s1)δx1 + x3δx3 = 0

(s22 + x2
3)δx1 − (x1 − s1)x3δx3 = 0

from the first and the second rows of the above matrix. Notice that the last row
does not give us new information about the kernel. The 2× 2 system we considered
has only the zero solution. Thus Ker dπL =span ∂

∂x2
. We have that Ker dπL * TΣ,

hence πL has a fold singularity.
Next we consider

πR(x1, x2, x3, s1, s2, ω) =

(
x1, x2, x3, (x1 − s1)

(
1

Acm
+

1

Bcm

)
ω,

(
x2 − s2

Acm
+

x2 + s2

Bcm

)
ω, x3

(
1

Acm
+

1

Bcm

)
ω

)
.

We have that πR drops rank by 1 also on Σ. Let v ∈ Ker dπR, with v =
(0, 0, 0, δs1, δs2, δω) = δs1∂s1 + δs2∂s2 + δω∂ω. Since Ker dπR is a linear combina-
tion of ∂s1 , ∂s2 , ∂ω we get that Ker dπR ⊂ TΣ, thus πR has a blowdown singularity
along Σ.

To summarize, we have shown that F ∈ Im(Ccm) with Ccm having πL a map
with fold singularities and πR a map with blowdown singularities. Now, we con-
sider the normal operator F ∗F and the corresponding canonical relation Ct

cm ◦Ccm.
Using the prolate spheroidal coordinates, as done in [1] for common midpoint SAR,

we get: Ct
cm ◦ Ccm = ∆ ∪ C̃ where C̃ = Gr(χ) with χ(x1, x2, x3, ξ1, ξ2, ξ3) =

(x1,−x2, x3, ξ1,−ξ2, ξ3). Also, ∆ and C̃ intersect cleanly in codimension 2.

We now show that F ∗
cmFcm ∈ I2m,0(∆, C̃) where F is given by (4) with the phase

function φ = φcm given by (6). Our strategy of proof is to use the iterated regularity
property characterizing Ip,l classes due to Melrose and Greenleaf-Uhlmann (Propo-
sition 2.7) and is similar to the ones given in [8, 1]. We have that the Schwartz
kernel of F ∗

cmFcm is given by

K(x, y) =

∫
eiΦ(x,y,s1,s2,ω)ã(x, y, s1, s2, ω)ds1ds2dω, (7)

where

Φ(x, y, s1, s2, ω) =

ω

(√
(y1 − s1)2 + (y2 − s2)2 + y23 +

√
(y1 − s1)2 + (y2 + s2)2 + y23 (8)

−
√
(x1 − s1)2 + (x2 − s2)2 + x2

3 −
√
(x1 − s1)2 + (x2 + s2)2 + x2

3

)
. (9)
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The ideal of functions vanishing on ∆ ∪ C̃ is generated by

x1 − y1, x2
2 − y22, ξ1 − η1, (x2 + y2)(ξ2 − η2),

x3 − y3, ξ22 − η22 , ξ3 − η3, (x2 − y2)(ξ2 + η2).

We will now write in terms of derivatives of Φ and smooth functions, the gener-
ators x1 − y1 and x3 − y3. Such expressions for the other generators are similar.

3.1.1. Expression for x1 − y1. Let us write x1 − y1 in the form

x1 − y1 =
f(x, y, s)

ω
∂s1Φ +

g(x, y, s)

ω
∂s2Φ+ h(x, y, s)∂ωΦ,

where f, g, h are smooth functions and Φ is the phase function (9) for the Schwartz
kernel (7).

Let us use the following prolate spheroidal coordinate system:

x1 = s1 + s2 sinh ρ sinφ cos θ

x2 = s2 cosh ρ cosφ (10)

x3 = s2 sinh ρ sinφ sin θ.

For y = (y1, y2, y3), we use the above coordinates but with (ρ, φ, θ) replaced by
(ρ′, φ′, θ′).

In this coordinate system, we have

Acm =
√
(x1 − s1)2 + (x2 − s2)2 + x2

3 = s2(cosh ρ− cosφ),

Bcm =
√
(x1 − s1)2 + (x2 + s2)2 + x2

3 = s2(cosh ρ+ cosφ).
(11)

A′
cm and B′

cm are similarly defined with (ρ, φ) replaced by (ρ′, φ′).
Furthermore,

∂ωΦ = 2s2(cosh ρ
′ − cosh ρ) (12)

∂s1Φ = 2ω

(
cosh ρ sinh ρ sinφ cos θ

cosh2 ρ− cos2 φ
− cosh ρ′ sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′

)
(13)

∂s2Φ = 2ω

(
cosh ρ′ sin2 φ′

cosh2 ρ′ − cos2 φ′
− cosh ρ sin2 φ

cosh2 ρ− cos2 φ

)
. (14)

Now

x1 − y1 = s2 (sinh ρ sinφ cos θ − sinh ρ′ sinφ′ cos θ′) .

From (11) we obtain,

− 1

2ω
∂s1Φ =

cosh ρ′ sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′
− cosh ρ sinh ρ sinφ cos θ

cosh2 ρ− cos2 φ
(15)

Adding and subtracting cosh ρ in the first term on the right hand side of Equation
(15) (the equation above), and rearranging, we get

−∂s1Φ

2ω
=

(cosh ρ′ − cosh ρ+ cosh ρ) sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′
− cosh ρ sinh ρ sinφ cos θ

cosh2 ρ− cos2 φ

= (cosh ρ′ − cosh ρ)
sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′

+ cosh ρ

(
sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′
− sinh ρ sinφ cos θ

cosh2 ρ− cos2 φ

)
.
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Now using the expression for cosh ρ′ − cosh ρ, adding and subtracting

cosh ρ sinh ρ′ sinφ′ cos θ′

cosh2 ρ− cos2 φ

and simplifying, we get

−∂s1Φ

2ω
=

∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)

+ cosh ρ
( sinh ρ′ sinφ′ cos θ′

cosh2 ρ′ − cos2 φ′
− sinh ρ′ sinφ′ cos θ′

cosh2 ρ− cos2 φ

)

+ cosh ρ

(
sinh ρ′ sinφ′ cos θ′

cosh2 ρ− cos2 φ
− sinh ρ sinφ cos θ

cosh2 ρ− cos2 φ

)
(16)

=− ∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)

(
cosh ρ cosh ρ′ + cos2 φ

cosh2 ρ− cos2 φ

)
− (x1 − y1) cosh ρ

s2(cosh
2 ρ− cos2 φ)

+ cosh ρ sinh ρ′ sinφ′ cos θ′
(

cos2 φ′ − cos2 φ

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)

)

We now obtain an expression involving ∂s2Φ for

cos2 φ′ − cos2 φ

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)
.

From (14), we have,
∂s2Φ

2ω =
(

cosh ρ′ sin2 φ′

cosh2 ρ′−cos2 φ′
− cosh ρ sin2 φ

cosh2 ρ−cos2 φ

)
. Simplifying this, we

get,

∂s2Φ

2ω
=

cosh ρ′(sin2 φ′ − sin2 φ)

cosh2 ρ′ − cos2 φ′
+

(cosh ρ′ − cosh ρ) sin2 φ

cosh2 ρ′ − cos2 φ′

+
cosh ρ sin2 φ

cosh2 ρ′ − cos2 φ′
− cosh ρ sin2 φ

cosh2 ρ− cos2 φ

=
cosh ρ′(cos2 φ− cos2 φ′)

cosh2 ρ′ − cos2 φ′
+

∂ωΦ

2s2

(
sin2 φ

cosh2 ρ′ − cos2 φ′

)

+
cosh ρ sin2 φ(cosh2 ρ− cosh2 ρ′ + cos2 φ′ − cos2 φ)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

=
(cos2 φ− cos2 φ′)

(
cosh ρ(cosh ρ′ cosh ρ− 1) + cos2 φ(cosh ρ− cosh ρ′)

)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

− ∂ωΦ

2s2

sin2 φ(cosh ρ cosh ρ′ + cos2 φ)

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)

=
(cos2 φ− cos2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)
(cosh ρ(cosh ρ′ cosh ρ− 1))

− ∂ωΦ

2s2

(
cos2 φ(cos2 φ− cos2 φ′) + sin2 φ(cosh ρ cosh ρ′ + cos2 φ)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)

=
(cos2 φ− cos2 φ′) cosh ρ(cosh ρ′ cosh ρ− 1)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

− ∂ωΦ

2s2

(sin2 φ cosh ρ cosh ρ′ + cos2 φ sin2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)
.
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Hence

cos2 φ− cos2 φ′

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

=
∂ωΦ

2s2

(sin2 φ cosh ρ cosh ρ′ + cos2 φ sin2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)(cosh ρ(cosh ρ coshρ′ − 1))
(17)

+
∂s2Φ

2ω

1

cosh ρ(cosh ρ cosh ρ′ − 1)
.

Now we have from (16)

−(x1 − y1) cosh ρ

s2(cosh
2 ρ− cos2 φ)

= −∂s1Φ

2ω
+

∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)

(
cosh ρ cosh ρ′ + cos2 φ

cosh2 ρ− cos2 φ

)

+ cosh ρ sinh ρ′ sinφ′ cos θ′
(

cos2 φ− cos2 φ′

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)

)
.

Then from(17), we have

−(x1 − y1) cosh ρ

s2(cosh
2 ρ− cos2 φ)

= −∂s1Φ

2ω
+

∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)

(
cosh ρ cosh ρ′ + cos2 φ

cosh2 ρ− cos2 φ

)

+ cosh ρ sinh ρ′ sinφ′ cos θ′

(
∂s2Φ

2ω

1

cosh ρ(cosh ρ cosh ρ′ − 1)

+
∂ωΦ

2s2

(sin2 φ cosh ρ coshρ′ + cos2 φ sin2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)(cosh ρ(cosh ρ cosh ρ′ − 1))

)
.

Simplifying, we obtain,

− (x1 − y1) cosh ρ

s2(cosh
2 ρ− cos2 φ)

= −∂s1Φ

2ω
+

∂s2Φ

2ω

(
sinh ρ′ sinφ′ cos θ′

cosh ρ cosh ρ′ − 1

)

+
∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)
×

×
(
(cosh ρ cosh ρ′ + cos2 φ) +

sin2 φ cosh ρ cosh ρ′ + cos2 φ sin2 φ′

cosh ρ cosh ρ′ − 1

)

= −∂s1Φ

2ω
+

∂s2Φ

2ω

(
sinh ρ′ sinφ′ cos θ′

cosh ρ cosh ρ′ − 1

)

+
∂ωΦ

2s2

sinh ρ′ sinφ′ cos θ′

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

(
cosh2 ρ cosh2 ρ′ − cos2 φ cos2 φ′

cosh ρ cosh ρ′ − 1

)
.

Hence

x1 − y1 =
s2

2ω

(
cosh2 ρ− cos2 φ

cosh ρ

)
∂s1Φ

− s2

2ω

(
cosh2 ρ− cos2 φ

cosh ρ

)(
sinh ρ′ sinφ′ cos θ′

cosh ρ cosh ρ′ − 1

)
∂s2Φ (18)

− sinh ρ′ sinφ′ cos θ′

2(cosh2 ρ′ − cos2 φ′)

(
cosh2 ρ cosh2 ρ′ − cos2 φ cos2 φ′

(cosh ρ cosh ρ′ − 1) cosh ρ

)
∂ωΦ.
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We now write this expression in Cartesian coordinates using the notation from (11).
We have the following expressions:

cosh2 ρ− cos2 φ =
AcmBcm

s22
, cosh2 ρ′ − cos2 φ′ =

A′
cmB

′
cm

s22
,

sinh ρ′ sinφ′ cos θ′ =
2(y1 − s1)

s2
, cosh ρ =

Acm +Bcm

2s2
, cosh ρ′ =

A′
cm +B′

cm

2s2
,

cosφ =
Bcm −Acm

2s2
, cosφ′ =

B′
cm −A′

cm

2s2
.

Thus x1 − y1 becomes

x1 − y1 =
1

ω

(
AcmBcm

Acm +Bcm

)
∂s1Φ (19)

− 8s2
ω

(
AcmBcm

Acm +Bcm

)(
y1 − s1

(Acm +Bcm)(A′
cm +B′

cm)− 4s22

)
∂s2Φ

−
[(

(Acm +Bcm)
2(A′

cm +B′
cm)

2 − (Acm −Bcm)
2(A′

cm −B′
cm)

2

(Acm +Bcm)(A′
cm +B′

cm)− 4s22

)

×
(

y1 − s1

2A′
cmB

′
cm(Acm +Bcm)

)]
∂ωΦ.

3.1.2. Expression for x3 − y3. Next we consider x3 − y3. We have

x
2
3 − y

2
3 = s

2
2

(

sinh2
ρ sin2

φ sin2
θ − sinh2

ρ
′ sin2

φ
′ sin2

θ
′
)

= s
2
2

(

sinh2
ρ sin2

φ− sinh2
ρ sin2

φ cos2 θ − sinh2
ρ
′ sin2

φ
′ + sinh2

ρ
′ sin2

φ
′ cos2 θ′

)

= (y1 − s1)
2 − (x1 − s1)

2 + s
2
2

(

(1− cosh2
ρ)(1− cos2 φ)− (1− cosh2

ρ
′)(1− cos2 φ′)

)

= (y1 − x1)(y1 + x1 − 2s1) + s
2
2

(

cosh2
ρ
′ − cosh2

ρ+ cos2 φ′ − cos2 φ
)

+ s
2
2

(

cosh2
ρ cos2 φ− cosh2

ρ
′ cos2 φ′

)

= (y1 − x1)(y1 + x1 − 2s1) + s
2
2

(

(cosh2
ρ
′ − cosh2

ρ) sin2
φ+ sinh2

ρ
′(cos2 φ− cos2 φ′)

)

.

(20)

We already have an expression for (x1−y1) from (19), the second expression in the right
hand side of (20) can be written in terms of ∂ωΦ (see (12)) and for the third expression

in (20), we use (17). Now since x3 − y3 =
x2
3−y2

3
x3+y3

and due to the assumption that the

support of the function lies above the x1-x2 plane, x3 + y3 will never be zero; see Remark
3.1. Therefore, we have an expression in terms of the derivatives (12), (13) and (14) for
x3 − y3.

We can find expressions similar to the one for (x1 − y1) in (19) for the remaining terms
in (10) by using (12)-(14) and (17) as in the above two calculations. Finally we proceed

as in [8, 1] to show that F ∗

cmFcm ∈ I2m,0(∆, C̃).

3.2. Proof of Theorem 1.3. In the common offset geometry, we consider, for α > 0
fixed, Sco(s1, s2) = (s1, s2 + α, 0) and Rco(s1, s2) = (s1, s2 − α, 0). The phase function

φco(s1, s2, t, ω, x1, x2, x3) = ω
(

t−
√

(x1 − s1)2 + (x2 − s2 − α)2 + x2
3

−
√

(x1 − s1)2 + (x2 − s2 + α)2 + x2
3

)

.

(21)
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We let

Aco =
√

(x1 − s1)2 + (x2 − s2 − α)2 + x2
3,

Bco =
√

(x1 − s1)2 + (x2 − s2 + α)2 + x2
3.

The canonical relation Cco ⊂ T ∗Y \ {0} × T ∗X \ {0} is

Cco =

{

(

s1, s2, Aco +Bco, ω(x1 − s1)

(

1

Aco
+

1

Bco

)

, ω

(

x2 − s2 − α

Aco
+

x2 − s2 + α

Bco

)

, ω;

x1, x2, x3, ω(x1 − s1)

(

1

Aco
+

1

Bco

)

, ω

(

x2 − s2 − α

Aco
+

x2 − s2 + α

Bco

)

,

ωx3

(

1

Aco
+

1

Bco

))

}

.

Note that (s1, s2, ω, x1, x2, x3) is a parametrization of Cco. Using this parametriza-
tion, we compute the determinant of dπL where πL is the left projection

πL(s1, s2, ω, x1, x2, x3) =

(
s1, s2, ω, Aco +Bco,ω(x1 − s1)

(
1

Aco
+

1

Bco

)
,

ω

(
x2 − s2 − α

Aco
+

x2 − s2 + α

Bco

))
.

Notice that in the description of πL, we reordered the components to obtain the
identity in the first variables. This will help to find the determinant of dπL. With
this ordering, we have

dπL =

(
I 0
∗ D

)
(22)

where D is the matrix


(x1 − s1)
(

1
Aco

+ 1
Bco

)

x2−s2−α

Aco
+

x2−s2+α

Bco
x3

(

1
Aco

+ 1
Bco

)

ω

(

(x2−s2−α)2+x
2
3

A3
co

+
(x2−s2+α)2+x

2
3

B3
co

)

−ω(x1 − s1)

(

x2−s2−α

A3
co

+
x2−s2+α

B3
co

)

−ωx3(x1 − s1)

(

1
A3

co
+ 1

B3
co

)

−ω(x1 − s1)

(

x2−s2−α

A3
co

+
x2−s2+α

B3
co

)

ω((x1 − s1)
2 + x2

3)

(

1
A3

co
+ 1

B3
co

)

−ωx3

(

x2−s2−α

A3
co

+
x2−s2+α

B3
co

)




and the determinant of dπL is

ω2x3

(
1

Aco
+

1

Bco

)(
1 +

x− Sco(s)

Aco
· x−Rco(s)

Bco

)(
1

A2
co

+
1

B2
co

)
.

We have x3 6= 0, 1
Aco

+ 1
Bco

6= 0, 1
A2

co
+ 1

B2
co

6= 0 and 1 + x−Sco(s)
Aco

· x−Rco(s)
Bco

6= 0.

The last term is nonzero since the unit vectors x−Sco(s)
Aco

and x−Rco(s)
Bco

do not point
in opposite directions since x3 > 0; see Remark 3.1.

Since every term in the determinant is nonzero we obtain that πL is a local
diffeomorphism. Thus πR is also a local diffeomorphism and we get that Cco is a
local canonical graph. Next we show that πL is injective. We use the following
prolate coordinates

x1 = s1 + α sinh ρ sinφ cos θ

x2 = s2 + α cosh ρ cosφ

x3 = α sinh ρ sinφ sin θ

with ρ > 0, 0 < φ < π, 0 < θ < π (since x3 > 0). In these new coordinates we have

Aco =
√
(x1 − s1)2 + (x2 − s2 − α)2 + x2

3 = α(cosh ρ− cosφ),

Bco =
√
(x1 − s1)2 + (x2 − s2 + α)2 + x2

3 = α(cosh ρ+ cosφ).
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Thus

Aco +Bco = 2α cosh ρ (23)

(x1 − s1)

(
1

Aco
+

1

Bco

)
=

2 sinh ρ cosh ρ sinφ cos θ

cosh2 ρ− cos2 φ
(24)

x2 − s2 − α

Aco
+

x2 − s2 + α

Bco
=

2 sinh2 ρ cosφ

cosh2 ρ− cos2 φ
(25)

In order to prove injectivity, we show that we can uniquely and smoothly deter-
mine x1, x2, x3 from

Aco +Bco, (x1 − s1)

(
1

Aco
+

1

Bco

)
,
x2 − s2 − α

Aco
+

x2 − s2 + α

Bco

or equivalently uniquely determine ρ, φ, θ from relations (23) to (25).
Notice that from (23) we can uniquely and smoothly determine ρ.

Using (25), we know 2 sinh2 ρ cosφ
cosh2 ρ−cos2 φ

:= D (say) or cosφ
cosh2 ρ−cos2 φ

= D
2 sinh2 ρ

:= D1.

Solving for cosφ we obtain cosφ =
−1+

√
1+4D2

1 cosh2 ρ

2D1
which uniquely and smoothly

determines φ.
From (24), knowing ρ and φ we can uniquely and smoothly determine θ. Thus

πL is an embedding, and the Bolker Assumption holds, so by [20, 17], we have
F ∗
coFco ∈ I2m(∆) which means that F ∗

coFco is a pseudodifferential operator and
hence the normal operator does not introduce additional singularities.

Remark 3.2. Now that we have proven that the normal operator for common
offset geometry is a ΨDO but the normal operator for common midpoint is not,
we would like to make some geometric observations about the associated canonical
relations.

For the common midpoint wavefront relation, Ccm, we see that pairs of wavefront
set elements (x1, x2, x3; ξ1, ξ2, ξ3) and (x1,−x2, x3; ξ1,−ξ2, ξ3) are associated to the
same wavefront element of the data. Note that this symmetry in the wavefront
relation also essentially comes from an obvious reciprocity between the source and
the receiver. This shows that the canonical relation Ccm is (at least) a 2:1 relation.
Hence we intuitively expect artifacts and that F ∗

cmFcm is not a ΨDO; see Remark
1.1 as well. No obvious symmetry is present in the common offset geometry and it
is not surprising that F ∗

coFco is a ΨDO.
Our theorems make precise these intuitive observations. Additionally the fact

that F ∗
cmFcm is in an I2m,0 class shows that artifacts are added by our reconstruction

method and they are of the same strength as the original singularities that generate
them.
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