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Abstract. For an integer r ≥ 0, we prove the rth order Reshetnyak formula for the ray
transform of rank m symmetric tensor fields on Rn. Roughly speaking, for a tensor field
f , the order r refers to L2-integrability of higher order derivatives of the Fourier transform

f̂ over spheres centered at the origin. Certain differential operators A(m,r,l) (0 ≤ l ≤ r)
on the sphere Sn−1 are main ingredients of the formula. The operators are defined by
an algorithm that can be applied for any r although the volume of calculations grows
fast with r. The algorithm is realized for small values of r and Reshetnyak formulas of
orders 0, 1, 2 are presented in an explicit form.

1. Introduction

We have omitted certain technical details in the Introduction. In our opinion, the
Introduction should be understandable for a reader who has a preliminary knowledge of
the Radon transform. Other readers are recommended to read the Introduction together
with Section 2.1.

The ray transform I integrates functions or more generally symmetric tensor fields over
lines in Rn and the Radon transform R integrates functions over hyperplanes. The ray
transform of functions is the main mathematical tool of computer tomography. The ray
transform of vector fields and second rank tensor fields is used in Doppler tomography and
travel time tomography. Note that the Radon transform and ray transform of functions
coincide up to parametrization in the 2-dimensional case.

Let S(Sn−1 × R) be the Schwartz space of functions on Sn−1 × R, where Sn−1 is the
unit sphere in Rn. In an unpublished work by Yu. Reshetnyak (circa 1960), a norm
‖ · ‖

H
(n−1)/2
(n−1)/2

(Sn−1×R)
was introduced on S(Sn−1 × R) (the definition of the norm will be

given in the next section) and the equality

‖f‖L2(Rn) = ‖Rf‖
H

(n−1)/2
(n−1)/2

(Sn−1×R)
(1.1)

was proved for a function f ∈ S(Rn). A proof of (1.1) is presented (with a reference
to Reshetnyak) in the book [2, Section 1.1.5] by I. Gelfand et al. Gelfand calls (1.1)
the Plancherel formula for the Radon transform. We will use the name the Reshetnyak
formula. In our opinion, the proof in [2] is too complicated; at least the cases of even and
odd n should be considered separately. An easier proof based on the Fourier slice theorem
was presented by S. Helgason [3].

The Reshetnyak formula gives the best stability estimate for the inverse problem of
recovering a function f from the Radon transform Rf . But in our opinion, the main
importance of the Reshetnyak formula is the following statement about isometry of the
Radon transform.
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Let Se(Sn−1 × R) be the subspace of S(Sn−1 × R) consisting of functions satisfying
ϕ(−ξ,−p) = ϕ(ξ, p) (the index e stands for “even”). The Reshetnyak formula immediately
implies that the Radon transform extends to the bijective Hilbert space isometry

R : L2(Rn)→ H
(n−1)/2
(n−1)/2,e(S

n−1 × R), (1.2)

where H
(n−1)/2
(n−1)/2,e(S

n−1 × R) is the completion of the space Se(Sn−1 × R) with respect to

the norm ‖ · ‖
H

(n−1)/2
(n−1)/2

(Sn−1×R)
.

The Reshetnyak formula as well as its proof can be easily generalized to the case when
the L2-norm of the function f on the left-hand side of (1.1) is replaced with the Sobolev
norm ‖f‖Hs(Rn) with an arbitrary real s. The following version of the Reshetnyak formula
was proved in [8]:

‖f‖Hs(Rn) = ‖Rf‖
H

(s+n−1)/2
(n−1)/2

(Sn−1×R)
, (1.3)

where ‖ ·‖
H

(s+n−1)/2
(n−1)/2

(Sn−1×R)
is some norm on S(Sn−1×R) which will be defined in the next

section.
The traditional viewpoint in Radon transform theory is that the functions f and Rf are

“equal in their rights”. As long as we consider the classical Sobolev norm of the function
f in (1.3), there should exist a similar formula involving the classical Sobolev norm of
Rf . Indeed, the following version of the Reshetnyak formula is valid:

‖f‖Hs
(1−n)/2(Rn) = ‖Rf‖Hs+(n−1)/2(Sn−1×R). (1.4)

Formulas (1.3) and (1.4) can be obtained simultaneously based on some universal ap-
proach. In the next section, we will introduce Hilbert spaces Hs

t (Rn) (t > −n/2) and
Hs
t,e(Sn−1 × R) (t > −1/2) such that the (generalized) Reshetnyak formula holds:

‖f‖Hs
t (Rn) = ‖Rf‖

H
s+(n−1)/2
t+(n−1)/2

(Sn−1×R)
. (1.5)

Likewise the classical case (1.2), the formula (1.5) allows us to extend the Radon transform
to the bijective isometry of Hilbert spaces

R : Hs
t (Rn)→ H

s+(n−1)/2
t+(n−1)/2,e(S

n−1 × R) (1.6)

for any real s and for any t > −n/2.
Theory of Sobolev spaces considers isotropic and anisotropic spaces. The latter spaces

consist of functions that have different amounts of quadratically integrable derivatives
with respect to different variables.

The manifold Sn−1 ×R consists of pairs (ξ, p), where the variables ξ ∈ Sn−1 and p ∈ R
are of different nature. This causes a natural anisotropy of Sobolev spaces on Sn−1 × R.
Let us consider for instance the case of an integer s ≥ 0. The space Hs

0,e(Sn−1 × R)
consists of even functions ϕ(ξ, p) that have quadratically integrable derivatives of order
≤ s with respect to the p-variable. With respect to the ξ-variable, such a function is
quadratically integrable itself but does not need to be differentiable in any sense. For this
reason, we call (1.6) the zeroth order Reshetnyak formula. Here the term “zeroth order”
means the absence of derivatives with respect to the ξ-variable. In the case of t 6= 0,
the interpretation of elements of Hs

t,e(Sn−1 × R) is not so easy because of the presence of

the factor |q|2t on the right-hand side of formula (2.3) below. Nevertheless, with some
ambiguity, we again can think of ϕ ∈ Hs

t,e(Sn−1 × R) as a function with quadratically
integrable derivatives of order ≤ s with respect to the p-variable.

Studying the Radon transform, we sometimes need to involve partial derivatives of
a function ϕ(ξ, p) with respect to the ξ-variable into our considerations. The scale of
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Hs
t (Sn−1 × R)-spaces is not sufficient for such purposes. Therefore more general Hilbert

spaces H
(r,s)
t (Rn) and H

(r,s)
t (Sn−1×R) were introduced in [10] and the rth order Reshetnyak

formula was proved:

‖f‖
H

(r,s)
t (Rn)

= ‖Rf‖
H

(r,s+(n−1)/2)
t+(n−1)/2

(Sn−1×R)
. (1.7)

The definitions of the spaces H
(r,s)
t (Rn) and H

(r,s)
t,e (Sn−1 × R) are presented in the next

section. With the same ambiguity as above, elements of H
(r,s)
t,e (Sn−1×R) can be thought as

functions ϕ(ξ, p) that have quadratically integrable derivatives of order ≤ r with respect
to the ξ-variable and of order ≤ s with respect to the p-variable. As before, the formula
(1.7) allows us to extend the Radon transform to the bijective isometry of Hilbert spaces

R : H
(r,s)
t (Rn)→ H

(r,s+(n−1)/2)
t+(n−1)/2,e (Sn−1 × R) (1.8)

for any real r, s and for any t > −n/2.
In this paper, we present some results for the ray transform which are similar to the

above-listed statements for the Radon transform. Theory of the ray transform is to some
extent similar to theory of the Radon transform. Nevertheless, the reader should be given
a warning on a couple of essential differences between these two theories.

Let SmRn be the space of rank m symmetric tensors on Rn and let S(Rn;SmRn) be the
Schwartz space of SmRn-valued functions on Rn. Elements of the latter space are smooth
fast decaying rank m symmetric tensor fields. The ray transform is initially defined as the
linear continuous operator

I : S(Rn;SmRn)→ S(TSn−1), (1.9)

where TSn−1 is the tangent bundle of the unit sphere (the precise definition of the space
S(TSn−1) will be given in the next section).

The main difference between tensor tomography and scalar one is caused by the fol-
lowing fact. For m > 0, the operator (1.9) has a big kernel (= the null space) consisting
of so called potential tensor fields. Therefore, speaking on Reshetnyak formulas for the
ray transform, we have to restrict the operator (1.9) to a subspace of S(TSn−1) which
is complementary to the space of potential tensor fields. The most natural choice of
such a complement is the space Ssol(TSn−1) of solenoidal tensor fields (the definition of a
solenoidal tensor field will be given in Section 4). Thus, instead of the operator (1.9), we
consider its restriction

I : Ssol(Rn;SmRn)→ S(TSn−1). (1.10)

It is an injective linear continuous operator.
For a real s and integer r ≥ 0, we introduce norms ‖ · ‖

H
(r,s)
t,sol (Rn;SmRn)

(t > −n/2) and

‖ · ‖
H

(r,s)
t (TSn−1)

(t > −(n− 1)/2) on the spaces Ssol(Rn;SmRn) and S(TSn−1) respectively.

Then we define the Hilbert spaces H
(r,s)
t,sol (Rn;SmRn) and H

(r,s)
t (TSn−1) as the completions

of Ssol(Rn;SmRn) and S(TSn−1) with respect to these norms. Our main result is the
following

Theorem 1.1. For an integer r ≥ 0, real s and t > −n/2, the operator (1.10) extends to
the continuous linear operator

I : H
(r,s)
t,sol (Rn;SmRn)→ H

(r,s+1/2)
t+1/2 (TSn−1) (1.11)

and the rth order Reshetnyak formula

‖f‖
H

(r,s)
t,sol (Rn;SmRn)

= ‖If‖
H

(r,s+1/2)
t+1/2

(TSn−1)
(1.12)
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holds for any f ∈ H
(r,s)
t,sol (Rn;SmRn). In particular, (1.11) is an isometric embedding of

one Hilbert space to another one.

The definition of the norm on the right-hand side of (1.12) is postponed to Section 5.
The late appearance of the main ingredient of Theorem 1.1 is explained by our approach
to the proof of the theorem. We start with the right-hand side of (1.12) and transform
it to a form that does not contain I. After a long chain of transformations, that are
sometimes very non-trivial, we express ‖If‖

H
(r,s+1/2)
t+1/2

(TSn−1)
in terms of f only. Looking at

the expression, we define the norm ‖f‖
H

(r,s)
t,sol (Rn;SmRn)

, see Definition 5.2.

We emphasize the following important difference between Theorem 1.1 and the rth

order Reshetnyak formula for the Radon transform; see (1.7). The spaces H
(r,s)
t (Rn)

and H
(r,s)
t (Sn−1 × R) are defined for all real r while the spaces H

(r,s)
t,sol (Rn;SmRn) and

H
(r,s)
t (TSn−1) are defined for an integer r ≥ 0 only. The difference is caused by the

following. The definition of H
(r,s)
t (Sn−1 × R) uses the powers (1 + ∆S)

r, where 1 is the
identity operator and ∆S is the spherical Laplacian (it is also called the Laplace – Beltrami
operator on the sphere). Since 1+∆S is a positive elliptic self-adjoint operator, its powers
(1 + ∆S)

r are well defined for all r ∈ C [6]. On the other hand, our definition of the space

H
(r,s)
t (TSn−1), presented in Section 3, uses the powers (1 + ∆ξ)

r, where ∆ξ is some self-
adjoint second order differential operator on TSn−1. Since ∆ξ is not an elliptic operator,

we can use powers (1 + ∆S)
r for integers r ≥ 0 only. Probably, the spaces H

(r,s)
t (TSn−1)

can be defined for all real r by some more general approach, but not by our one.
The second important difference between the Radon transform and ray transform is

as follows. As we have mentioned, (1.8) is a surjective isometry between two Hilbert
spaces. On the other hand, (1.11) is an isometric embedding of one Hilbert space to
another one. In the case of n ≥ 3, the range of the operator (1.11) is a proper closed

subspace of H
(r,s+1/2)
t+1/2 (TSn−1) as is seen from the inequality dim(TSn−1) = 2(n− 1) > n.

The range characterization problem for the ray transform goes back to F. John [1]. He
proved that, in the case of m = 0 and n = 3, the range of the operator (1.10) is described
by some second order differential equation. The corresponding result for n ≥ 3 and
arbitrary m was obtained in [7, Theorem 2.10.1]. Instead of one second order equation,
a system of differential equations of order 2(m + 1) appears in the latter case; they
are still called the John equations. In particular, the John equations involve (m + 1)st
order derivatives of the function (If)(x, ξ) with respect to the ξ-variable. Thus, to study
the range characterization problem for the ray transform on Sobolev spaces of rank m

symmetric tensor fields, we really need the space H
(r,s)
t (TSn−1) for r = m+ 1. The range

characterization of the operator (1.11) will be the topic of our forthcoming paper.

2. Summary of prior results

In this section, we define the Radon transform and the ray transform of symmetric
tensor fields. Then we describe prior results on Reshetnyak formulas for these transforms.

2.1. Reshetnyak formulas for the Radon transform. The set of hyperplanes in Rn

can be parameterized by points of Sn−1 × R. Then the Radon transform R is defined by

Rf(ξ, p) =

∫
〈ξ,x〉=p

f(x) dx
(
(ξ, p) ∈ Sn−1 × R

)
,
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where 〈· , ·〉 is the standard dot-product in Rn and dx is the (n− 1)-dimensional Lebesgue
measure on the hyperplane {x | 〈ξ, x〉 = p}. Some condition on f should be imposed for
the integral above to converge.

Let S(Rn) be the Schwartz space of smooth functions rapidly decaying at infinity to-
gether with all derivatives (we use the term “smooth” as the synonym of “C∞-smooth”).
Similarly let S(Sn−1 ×R) be the Schwartz space of functions ϕ(ξ, p) on Sn−1 ×R rapidly
decaying as |p| → ∞ together with all derivatives. Both S(Rn) and S(Sn−1 × R) are
furnished with standard topologies. In fact, the space S(E) is well defined for a smooth
vector bundle E → M over a compact manifold M . Let Se(Sn−1 × R) be the closed
subspace of S(Sn−1 × R) consisting of functions satisfying ϕ(−ξ,−p) = ϕ(ξ, p). Then
R : S(Rn) → Se(Sn−1 × R) is a bounded linear operator and it extends continuously to
certain spaces of functions and distributions.

We use the Fourier transform S(Rn)→ S(Rn), f 7→ f̂ in the form

f̂(y) =
1

(2π)n/2

∫
e−i〈y,x〉f(x) dx.

Henceforth, we use y for the Fourier variable in Rn or Rn−1 for general n. In the case of
R, we use q as the Fourier variable as in (2.1) below.

The Fourier transform S(Sn−1 × R) → S(Sn−1 × R), ϕ(ξ, p) 7→ ϕ̂(ξ, q) is the one-
dimensional Fourier transform in p while ξ ∈ Sn−1 is considered as a parameter:

ϕ̂(ξ, q) =
1

2π

∫
e−iqpϕ(ξ, p) dp. (2.1)

For real s and t > −n/2, the Hilbert space Hs
t (Rn) is defined as the completion of

S(Rn) with respect to the norm

‖f‖2
Hs
t (Rn) =

∫
Rn

|y|2t(1 + |y|2)s−t|f̂(y)|2 dy (2.2)

and for real s and t > −1/2, the Hilbert space Hs
t,e(Sn−1×R) is defined as the completion

of Se(Sn−1 × R) with respect to the norm

‖ϕ‖2
Hs
t (Sn−1×R) =

1

2(2π)n−1

∫
Sn−1

∫
R

|q|2t(1 + q2)s−t|ϕ̂(ξ, q)|2 dq dξ, (2.3)

where dξ is the standard (n− 1)-dimensional volume form on the sphere Sn−1.
These Sobolev type spaces were introduced in [8]. In the case of t = 0, they coincide

with the standard Sobolev spaces Hs(Rn) and Hs(Sn−1 × R) respectively. The weights
|y|2t(1 + |y|2)s−t and (1 + |y|2)s have the same asymptotics as |y| → ∞, but are very
different near y = 0 if t 6= 0. Therefore ‖ · ‖Hs

t (Rn) can be called the Sobolev norm with
attenuated low frequencies in the case of t > 0 and the Sobolev norm with amplified
low frequencies in the case of t < 0. A similar motivation applies to the Sobolev spaces
Hs
t (Sn−1 × R) as well.
The zeroth order Reshetnyak formula (1.5) is proved in [8] for any real s and t > −n/2.

It allows us to extend the Radon transform to the linear continuous operator (1.6). The
surjectivity of the latter operator is also proved.

To write down higher order Reshetnyak formulas for the Radon transform, we reproduce
some contents from [10]. Let ∆S : C∞(Sn−1) → C∞(Sn−1) be the spherical Laplacian
(this operator was denoted by ∆ξ in [10], but now we reserve the notation ∆ξ for another
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operator introduced below). We choose the sign of the Laplacian so that it is a non-
negative operator. For every real r, the Sobolev space Hr(Sn−1) can be defined as the
completion of C∞(Sn−1) with respect to the norm:

‖ϕ‖2
Hr(Sn−1) = ‖(∆S + 1)r/2ϕ‖2

L2(Sn−1) =

∫
Sn−1

|(∆S + 1)r/2ϕ(ξ)|2 dξ, (2.4)

where 1 is the identity operator. Spherical harmonics of degree l are eigenfunctions of ∆S

∆SYl = λ(l, n)Yl, λ(l, n) = l(l + n− 2).

Choosing an orthonormal basis {Ylm}N(n,l)
m=1 of the space of degree l spherical harmonics, a

function ϕ ∈ C∞(Sn−1) is represented by the Fourier series

ϕ(ξ) =
∞∑
l=0

N(n,l)∑
m=1

ϕlmYlm(ξ).

Then the formula (2.4) can be equivalently written as

‖ϕ‖2
Hr(Sn−1) =

∞∑
l=0

(
λ(l, n) + 1

)r N(n,l)∑
m=1

|ϕlm|2.

Given f ∈ S(Rn), we represent the Fourier transform f̂ ∈ S(Rn) by the series in
spherical harmonics

f̂(y) =
∞∑
l=0

N(n,l)∑
m=1

f̂lm(|y|)Ylm(y/|y|). (2.5)

For arbitrary reals r, s and for t > −n/2, we introduce the norm ‖ · ‖
H

(r,s)
t (Rn)

on S(Rn)

by

‖f‖2

H
(r,s)
t (Rn)

=
∞∑
l=0

(
λ(l, n) + 1

)r N(n,l)∑
m=1

∞∫
0

q2t+n−1(1 + q2)s−t |f̂lm(q)|2 dq, (2.6)

where f̂lm are Fourier coefficients defined by (2.5). Then we define the Hilbert space

H
(r,s)
t (Rn) as the completion of S(Rn) with respect to the norm (2.6).
Similar arguments apply to functions ϕ ∈ S(Sn−1 × R). We represent the Fourier

transform ϕ̂ ∈ S(Sn−1 × R) by the series in spherical harmonics

ϕ̂(ξ, q) =
∞∑
l=0

N(n,l)∑
m=1

ϕ̂lm(q)Ylm(ξ). (2.7)

For reals r, s and t > −1/2, we introduce the norm ‖ · ‖
H

(r,s)
t (Sn−1×R)

on S(Sn−1 × R) by

‖ϕ‖2

H
(r,s)
t (Sn−1×R)

=
1

2(2π)n−1

∞∑
l=0

(
λ(l, n) + 1

)r N(n,l)∑
m=1

∞∫
−∞

|q|2t(1 + q2)s−t |ϕ̂lm(q)|2 dq, (2.8)

and define the Hilbert space H
(r,s)
t,e (Sn−1 × R) as the completion of Se(Sn−1 × R) with

respect to the norm (2.8). In the case of r = 0, the spaces H
(0,s)
t (Rn) and H

(0,s)
t,e (Sn−1×R)

coincide with Hs
t (Rn) and Hs

t,e(Sn−1 × R) respectively.
The higher order Reshetnyak formula (1.7) is proved in [10] for any real r, s and t >
−n/2. It allows us to extend the Radon transform to the linear continuous operator (1.8).
The surjectivity of the latter operator is also proved.
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Here we do not discuss motivation for definitions (2.6) and (2.8). See [10] for such a

motivation. The spaces H
(r,s)
t (Rn) are a little bit mysterious. Nevertheless, they share

many properties of standard Sobolev spaces, see the last section of [10].

2.2. Reshetnyak formulas for the ray transform. Let SmRn be the
(
n+m−1

m

)
-dimen-

sional complex vector space of rank m symmetric tensors on Rn and S(Rn;SmRn) be the
Schwartz space of SmRn-valued functions that are called rank m smooth fast decaying
symmetric tensor fields on Rn. The family of oriented straight lines in Rn is parameterized
by points of the manifold

TSn−1 = {(x, ξ) ∈ Rn × Rn | |ξ| = 1, 〈x, ξ〉 = 0} ⊂ Rn × Rn (2.9)

that is the tangent bundle of the unit sphere Sn−1. Namely, a point (x, ξ) ∈ TSn−1

determines the line {x + tξ | t ∈ R}. The Schwartz space S(TSn−1) is well defined. The
ray transform I is initially considered as the bounded linear operator (1.9) that is defined,
for f = (fi1...im) ∈ S(Rn;SmRn), by

If(x, ξ) =

∞∫
−∞

fi1...im(x+ tξ) ξi1 . . . ξim dt =

∞∫
−∞

〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ TSn−1

)
.

(2.10)
We use the Einstein summation rule: the summation from 1 to n is assumed over every
index repeated in lower and upper positions in a monomial. To adopt our formulas to the
summation rule, we use either lower or upper indices for denoting coordinates of vectors
and tensors. For instance, ξi = ξi in (2.10). There is no difference between covariant and
contravariant tensors since we use Cartesian coordinates only. The dot product on SmRn

is defined by 〈f, g〉 = fi1···img
i1···im and |f | is the corresponding norm. The integrand on

the right-hand side of (2.10) is the dot product of tensors f(x + tξ) and ξm ∈ SmRn.
Being initially defined by (2.10) on smooth fast decaying tensor fields, the operator (1.9)
then extends to some larger spaces of tensor fields.

Next we define certain Sobolev spaces similar to what we did for the Radon transform.
The Fourier transform of a symmetric tensor field f ∈ S(Rn;SmRn) is defined component
wise. The Fourier transform of a function ϕ(x, ξ) ∈ S(TSn−1) is defined as the (n − 1)-
dimensional Fourier transform over the subspace ξ⊥:

ϕ̂(y, ξ) =
1

(2π)(n−1)/2

∫
ξ⊥

e−i〈y,x〉g(x, ξ) dx
(
(y, ξ) ∈ TSn−1

)
.

The Sobolev space Hs
t (Rn;SmRn) (t > −n/2) is defined as the completion of S(Rn;SmRn)

with respect to the norm

‖f‖2
Hs
t (Rn;SmRn) =

∫
Rn

|y|2t(1 + |y|2)s−t|f̂(y)|2 dy,

and for real s and t > −(n − 1)/2, the Sobolev space Hs
t (TSn−1) is defined as the com-

pletion of S(TSn−1) with respect to the norm

‖ϕ‖2
Hs
t (TSn−1) =

Γ
(
n−1

2

)
4π(n+1)/2

∫
Sn−1

∫
ξ⊥

|y|2t(1 + |y|2)s−t|ϕ̂(y, ξ)|2 dy dξ. (2.11)

The zeroth order Reshetnyak formula for the ray transform of symmetric tensor fields was
proved in [7, Theorem 2.15.1] for s = t = 0 and in [8] for arbitrary (s, t). These results
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are equivalent to Theorem 1.1 in the case of r = 0 although the equivalence is not easy
to check. We will discuss the equivalence in Section 5.

Similar to what we did for the Radon transform, we would like to define more regular
Sobolev spaces with the goal of deriving higher order Reshetnyak formulas. This is not
at all straightforward. An important step in this direction was undertaken in [9] where a
first order Reshetnyak formula for the ray transform of functions was proved.

We summarize the existing results:

(1) higher order Reshetnyak formulas for the Radon transform,
(2) zeroth order Reshetnyak formula for the ray transform of tensor fields
(3) first order Reshetnyak formula for the ray transform of functions.

The outline of the paper is as follows. In Section 3, we define an operator ∆ξ that serves
as an analog of the spherical Laplacian. This is the most important operator necessary
to define higher order versions of Sobolev norms on TSn−1. In Section 4, we consider
so called tangential tensor fields well adopted to the foliation of Rn \ {0} into spheres
centered at the origin. The Fourier transform of a solenoidal tensor field is a tangential
tensor field. Theorem 5.1 gives the Reshetnyak formula of an arbitrary integer order r ≥ 0
for rank m solenoidal tensor fields. The formula involves certain differential operators
A(m,r,l) (0 ≤ l ≤ r) on the sphere Sn−1 which are defined by a long chain of formulas and
recurrent relations. In particular, the operators A(m,r,l) participate in Definition 5.2 of the
norm ‖ · ‖

H
(r,s)
t,sol (Rn;SmRn)

. Our main result, Theorem 1.1, is actually an easy corollary of

Theorem 5.1. For r = 0, 1, 2, we present explicit versions of the Reshetnyak formula in
Section 6.

3. The spaces H
(r,s)
t (TSn−1)

Our aim in the section is to define more regular, in terms of higher differentiability in
the ξ-variable, Sobolev spaces on TSn−1.

We first recall some first order differential operators on TSn−1 introduced in [5]. Con-
sider Rn × Rn with variables (x, ξ) and introduce the following vector fields:

X̃i =
∂

∂xi
− ξiξp

∂

∂xp
,

Ξ̃i =
∂

∂ξi
− xiξp

∂

∂xp
− ξiξp

∂

∂ξp
.

(3.1)

As shown in [5], these vector fields are tangent to TSn−1 at every point (x, ξ) ∈ TSn−1,
and therefore can be viewed as vector fields on TSn−1. Let Xi and Ξi be the restrictions
of these vector fields on TSn−1.

We introduce the second order differential operator ∆ξ on TSn−1 by

∆ξ = −
n∑
i=1

Ξ2
i .

Obviously, it is an invariant operator, i.e., independent of the choice of Cartesian coordi-
nates. This operator will be used for defining Sobolev spaces on TSn−1.

Recall from (2.11), for ϕj ∈ S(TSn−1) (j = 1, 2),

(ϕ1, ϕ2)Hs
t (TSn−1) =

Γ
(
n−1

2

)
4π(n+1)/2

∫
Sn−1

∫
ξ⊥

|y|2t(1 + |y|2)s−tϕ̂1(y, ξ) ϕ̂2(y, ξ) dydξ. (3.2)
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Theorem 3.1. For every real s and every t > −(n− 1)/2, the adjoint of the operator Ξi

with respect to the Hs
t (TSn−1) inner product (3.2) is expressed by

Ξ∗i = −Ξi + (n− 1)ξi, (3.3)

where ξi stands for the operator of multiplication by ξi.

Proof. We start with the case of s = t = 0. The L2-product on TSn−1 is defined as

(ϕ1, ϕ2)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

ϕ1(x, ξ)ϕ2(x, ξ) dxdξ. (3.4)

Given two functions ϕj ∈ S(TSn−1) (j = 1, 2), define functions ψj ∈ C∞
(
Rn × (Rn \

{0})
)

by

ψj(x, ξ) = ϕj

(
x− 〈ξ, x〉

ξ|2
ξ,

ξ

|ξ|

)
.

These functions satisfy

ψj(x+ tξ, ξ) = ψj(x, ξ) (t ∈ R), ψj(x, tξ) = ψj(x, ξ) (0 6= t ∈ R). (3.5)

Therefore

ξp
∂ψj
∂xp

= 0, ξp
∂ψj
∂ξp

= 0. (3.6)

Since ϕj = ψj|TSn−1 (j = 1, 2), we can write

(Ξiϕ1, ϕ2)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

(Ξ̃iψ1)(x, ξ)ψ2(x, ξ) dxdξ. (3.7)

By the definition of Ξ̃i,

Ξ̃iψj =
∂ψj
∂ξi
− xiξp

∂ψj
∂xp
− ξiξp

∂ψj
∂ξp

.

Two last terms on the right-hand side are equal to zero by (3.6) and the formula simplifies
to the following one:

Ξ̃iψj =
∂ψj
∂ξi

(j = 1, 2). (3.8)

In view of (3.8), formula (3.7) becomes

(Ξiϕ1, ϕ2)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

∂ψ1

∂ξi
(x, ξ)ψ2(x, ξ) dxdξ.

Quite similarly,

(ϕ1,Ξiϕ2)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

ψ1(x, ξ)
∂ψ2

∂ξi
(x, ξ) dxdξ.

Taking the sum of two last equalities, we have

(Ξiϕ1, ϕ2)L2(TSn−1) + (ϕ1,Ξiϕ2)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

∂

∂ξi
(
ψ1(x, ξ)ψ2(x, ξ)

)
dxdξ. (3.9)

Define the function g ∈ C∞(Rn \ {0}) by

g(ξ) =

∫
ξ⊥

ψ1(x, ξ)ψ2(x, ξ) dx. (3.10)



10 V. P. KRISHNAN AND V. A. SHARAFUTDINOV

Let us compute the derivative ∂g
∂ξi

. To this end we use the same trick as in the proof of

[5, Lemma 4.4]. Namely, fix a vector ξ0 ∈ Sn−1. For an arbitrary vector ξ ∈ Rn \ {0}
sufficiently close to ξ0, the orthogonal projection

ξ⊥0 → ξ⊥, x′ 7→ x = x′ − 〈ξ, x
′〉

|ξ|2
ξ (3.11)

is one-to-one. We change the integration variable in (3.10) according to (3.11). The
Jacobian of the change is |ξ|〈ξ0, ξ〉−1. After the change, formula (3.10) takes the form

g(ξ) =
|ξ|
〈ξ0, ξ〉

∫
ξ⊥0

ψ1

(
x′ − 〈ξ, x

′〉
|ξ|2

ξ, ξ
)
ψ2

(
x′ − 〈ξ, x

′〉
|ξ|2

ξ, ξ
)
dx′.

With the help of (3.5), this formula is simplified to the following one:

g(ξ) =
|ξ|
〈ξ0, ξ〉

∫
ξ⊥0

ψ1(x′, ξ)ψ2(x′, ξ) dx′.

We can now differentiate this equality with respect to ξi

∂g

∂ξi
(ξ) =

〈ξ0, ξ〉ξi − |ξ|2ξ0,i

|ξ|〈ξ0, ξ〉2

∫
ξ⊥0

ψ1(x′, ξ)ψ2(x′, ξ) dx′

+
|ξ|
〈ξ0, ξ〉

∫
ξ⊥0

∂ψ1

∂ξi
ψ2(x′, ξ) dx′ +

|ξ|
〈ξ0, ξ〉

∫
ξ⊥0

ψ1(x′, ξ)
∂ψ2

∂ξi
(x′, ξ) dx′.

On assuming ξ0 ∈ Sn−1, we set ξ = ξ0 in the latter formula. The formula simplifies to
the following one:

∂g

∂ξi
(ξ0) =

∫
ξ⊥0

∂ψ1

∂ξi
(x′, ξ0)ψ2(x′, ξ0) dx′ +

∫
ξ⊥0

ψ1(x′, ξ0)
∂ψ2

∂ξi
(x′, ξ0) dx′.

Replacing the notations ξ0 and x′ with ξ and x respectively, we obtain

∂g

∂ξi
(ξ) =

∫
ξ⊥

∂

∂ξi

(
ψ1(x, ξ)ψ2(x, ξ)

)
(x, ξ) dx for ξ ∈ Sn−1. (3.12)

We use the following obvious fact. If a function f ∈ C(Rn \ {0}) is positively homoge-
neous of degree λ > −n, then∫

Sn−1

f(ξ) dξ = (λ+ n)

∫
|z|≤1

f(z) dz.

We apply this fact to the function ∂g
∂ξi

that is positively homogeneous of degree −1 as is

seen from (3.5) and (3.12). Thus,∫
Sn−1

∂g

∂ξi
(ξ) dξ = (n− 1)

∫
|z|≤1

∂g(z)

∂zi
dz.

Transforming the right-hand integral with the help of the divergence theorem, we obtain∫
Sn−1

∂g

∂ξi
(ξ) dξ = (n− 1)

∫
Sn−1

ξi g(ξ) dξ.
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Together with (3.10) and (3.12), this gives∫
Sn−1

∫
ξ⊥

∂

∂ξi

(
ψ1(x, ξ)ψ2(x, ξ)

)
(x, ξ) dxdξ = (n− 1)

∫
Sn−1

∫
ξ⊥

ξi ϕ1(x, ξ)ϕ2(x, ξ) dxdξ.

With the help of the last formula, the equality (3.9) takes the form

(Ξiϕ1, ϕ2)L2(TSn−1) + (ϕ1,Ξiϕ2)L2(TSn−1) = (n− 1)(ϕ1, ξiϕ2)L2(TSn−1).

This is equivalent to (3.3) in the case of s = t = 0.
Let us now prove (3.3) for an arbitrary s ∈ R and t > −(n− 1)/2. In view of (3.4), the

definition (3.2) can be written as

(ϕ1, ϕ2)Hs
t (TSn−1) = (ϕ̂1, wϕ̂2)L2(TSn−1),

where the weight w is defined by

w = w(|y|) =
Γ
(
n−1

2

)
4π(n+1)/2

|y|2t(1 + |y|2)s−t.

Observe that Ξiw = 0. Indeed, Ξi|y|2 = 0 as immediately follows from the definition of
Ξi.

First of all,

(Ξiϕ1, ϕ2)Hs
t (TSn−1) = (Ξ̂iϕ1, wϕ̂2)L2(TSn−1).

Since Ξ̂iϕ1 = Ξiϕ̂1 by [5, Lemma 4.4], this can be written as

(Ξiϕ1, ϕ2)Hs
t (TSn−1) = (Ξiϕ̂1, wϕ̂2)L2(TSn−1).

Applying (3.3) for s = t = 0, we obtain

(Ξiϕ1, ϕ2)Hs
t (TSn−1) =

(
ϕ̂1,
(
− Ξi + (n− 1)ξi

)
(wϕ̂2)

)
L2(TSn−1)

.

Since Ξiw = 0, this can be written as

(Ξiϕ1, ϕ2)Hs
t (TSn−1) =

(
ϕ̂1, w

(
− Ξi + (n− 1)ξi

)
ϕ̂2

)
L2(TSn−1)

.

Transforming the right-hand side in the reverse order, we see that

(Ξiϕ1, ϕ2)Hs
t (TSn−1) =

(
ϕ̂1, w

(
− Ξ̂iϕ2 + (n− 1)ξ̂iϕ2

))
L2(TSn−1)

=
(
ϕ1,
(
− Ξi + (n− 1)ξi

)
ϕ2

)
Hs
t (TSn−1)

.

�

Theorem 3.1 has the following corollary.

Lemma 3.2. The operator

∆ξ = −
n∑
i=1

Ξ2
i = −ΞiΞi : S(TSn−1)→ S(TSn−1) (3.13)

is positive semi-definite with respect to the Hs
t (TSn−1)-product for any real s and t >

−(n− 1)/2.
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Proof. For ϕ ∈ S(TSn−1) by Theorem 3.1,(
∆ξϕ, ϕ

)
Hs
t (TSn−1)

= −
(
ΞiΞ

iϕ, ϕ
)
Hs
t (TSn−1)

= −
(
Ξiϕ,Ξ∗iϕ

)
Hs
t (TSn−1)

=
(
Ξiϕ,Ξiϕ

)
Hs
t (TSn−1)

− (n− 1)
(
Ξiϕ, ξiϕ

)
Hs
t (TSn−1)

=
(
Ξiϕ,Ξiϕ

)
Hs
t (TSn−1)

− (n− 1)
(
ξiΞ

iϕ, ϕ
)
Hs
t (TSn−1)

.

The last term on the right-hand side is equal to zero since ξiΞ
i = 0 which can be verified

directly and follows from the definition of TSn−1; see (2.9). Thus,

(
∆ξϕ, ϕ

)
Hs
t (TSn−1)

=
n∑
i=1

‖Ξiϕ‖2
Hs
t (TSn−1) ≥ 0. (3.14)

�

We will frequently use the operators

〈ξ, ∂ξ〉 = ξp
∂

∂ξp
, 〈ξ, ∂x〉 = ξp

∂

∂xp
, 〈x, ∂ξ〉 = xp

∂

∂ξp
, 〈x, ∂x〉 = xp

∂

∂xp
.

Lemma 3.3. Given ϕ ∈ S(TSn−1), let a function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
satisfy

ψ|TSn−1 = ϕ. Then

∆ξϕ =
[(
−

n∑
i=1

∂2

∂ξ2
i

+〈ξ, ∂ξ〉2+(n−2)〈ξ, ∂ξ〉−|x|2〈ξ, ∂x〉2+2〈x, ∂ξ〉〈ξ, ∂x〉−〈x, ∂x〉
)
ψ
]
TSn−1

.

(3.15)

Proof. Ξ2
iϕ = Ξ̃2

iψ|TSn−1 , where

Ξ̃2
iψ =

( ∂

∂ξi
− xiξp

∂

∂xp
− ξiξp

∂

∂ξp

)( ∂

∂ξi
− xiξq

∂

∂xq
− ξiξq

∂

∂ξq

)
ψ.

After opening parentheses,

Ξ̃2
iϕ =

( ∂2

∂ξ2
i

+ ξ2
i ξ
pξq

∂2

∂ξp∂ξq
− 2ξiξ

p ∂2

∂ξi∂ξp

− 2xiξ
p ∂2

∂xp∂ξi
+ x2

i ξ
pξq

∂2

∂xp∂xq
+ 2xiξiξ

pξq
∂2

∂xp∂xq

− xi
∂

∂xi
− ξp ∂

∂ξp
− ξi

∂

∂ξi
+ 2ξ2

i ξ
p ∂

∂ξp
+ 2xiξiξ

p ∂

∂xp

)
ψ.

We restrict this equality to TSn−1, where |ξ| = 1 and 〈x, ξ〉 = 0. Performing the summa-
tion over i, we obtain

∆ξϕ =

[(
−

n∑
i=1

∂2

∂ξ2
i

+ ξpξq
∂2

∂ξp∂ξq
− |x|2ξpξq ∂2

∂xp∂xq
+ 2xqξp

∂2

∂xp∂ξq

+ xp
∂

∂xp
+ (n− 1)ξp

∂

∂ξp

)
ψ
]
TSn−1

.

(3.16)
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Obviously,

ξpξq
∂2

∂ξp∂ξq
= 〈ξ, ∂ξ〉2 − 〈ξ, ∂ξ〉,

ξpξq
∂2

∂xp∂xq
= 〈ξ, ∂x〉2,

xqξp
∂2

∂xp∂ξq
= 〈x, ∂ξ〉〈ξ, ∂x〉 − 〈x, ∂x〉.

Substituting these values into (3.16), we obtain (3.15). �

In what follows, we will mostly use the following partial case of Lemma 3.3. Given a
function ϕ ∈ S(TSn−1) and an integer m ≥ 0, define the function ψ ∈ C∞

(
Rn×(Rn\{0})

)
by

ψ(x, ξ) = |ξ|mϕ
(
x− 〈x, ξ〉

|ξ|2
ξ,

ξ

|ξ|

)
. (3.17)

Then ψ|TSn−1 = ϕ and the formula (3.15) is valid. The function ψ satisfies

ψ(x+ tξ, ξ) = ψ(x, ξ) (t ∈ R), ψ(x, tξ) = tmψ(x, ξ) (0 6= t ∈ R). (3.18)

This implies
〈ξ, ∂x〉ψ = 0, 〈ξ, ∂ξ〉ψ = mψ. (3.19)

The formula (3.15) is now simplified to the following one:

∆ξϕ =
[(
−

n∑
i=1

∂2

∂ξ2
i

− 〈x, ∂x〉+m(m+ n− 2)
)
ψ
]
TSn−1

. (3.20)

Definition 3.4. For an integer r ≥ 0, real s and t > −(n− 1)/2, introduce the norm on
S(TSn−1) (1 is the identity operator)

‖ϕ‖2

H
(r,s)
t (TSn−1)

=
(
(1 + ∆ξ)

rϕ, ϕ
)
Hs
t (TSn−1)

=
r∑
l=0

(
r

l

)(
∆l
ξϕ, ϕ

)
Hs
t (TSn−1)

(3.21)

and define the Hilbert space H
(r,s)
t (TSn−1) as the completion of S(TSn−1) with respect to

the norm (3.21).

We note that for any integer r ≥ 0, real s and t > −(n − 1)/2, there is a continuous

embedding H
(r,s)
t (TSn−1) ⊂ Hs

t (TSn−1). Also for integers r1 ≥ r2, we have the continuous

embedding H
(r1,s)
t (TSn−1) ⊂ H

(r2,s)
t (TSn−1).

Comparing (3.21) with (2.4) and (2.8), we see the analogy: the operator ∆ξ is used in
the Definition 3.4 in the same way as the spherical Laplacian ∆S is used in the definition

of H
(r,s)
t (Sn−1 × R). However, there is the important difference between these operators:

∆ξ is not an elliptic operator. Therefore we cannot use powers (∆ξ + 1)r with arbitrary

real r. This is the main reason why the spaces H
(r,s)
t (TSn−1) are defined for integer r ≥ 0

only. Unlike Sn−1 × R, the tangent bundle TSn−1 → Sn−1 is not trivial (with exceptions
of n = 2, 4, 8); therefore the usage of spherical harmonics on TSn−1 is rather problematic.

4. Tangential tensor fields

Unlike the Radon transform, the operator (1.9) is not injective in the case of m > 0.
Given If for a tensor field f ∈ S(Rn;SmRn), we can recover the solenoidal part of f
only, see [7, Section 2.12]. Therefore the Reshetnyak formulas make sense on the space of
solenoidal symmetric tensor fields.
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We distinguish the subspace Ssol(Rn;SmRn) in S(Rn;SmRn) consisting of tensor fields
g ∈ S(Rn;SmRn) satisfying

n∑
p=1

∂gpi2...im
∂xp

= 0. (4.1)

Such g are called (smooth fast decaying) solenoidal tensor fields of rank m. The equation
(4.1) is equivalently written in terms of the Fourier transform f = ĝ as

ypfpi2...im(y) = 0. (4.2)

Recall that we use y as the Fourier dual variable of x. In other words, the Fourier transform
maps Ssol(Rn;SmRn) isomorphically onto the subspace S>(Rn;SmRn) ⊂ S(Rn;SmRn)
consisting of tensor fields f satisfying (4.2). Such f will be called (smooth fast decaying)
tangential tensor fields of rank m. Here the term “tangential” is used in the sense “tangent
to spheres centered at the origin”.

We are going to prove the Reshetnyak formula

‖g‖
H

(r,s)
t,sol (Rn;SmRn)

= ‖Ig‖
H

(r,s)
t (TSn−1)

(4.3)

for a solenoidal tensor field g ∈ Ssol(Rn;SmRn). The norm on the right-hand side of (4.3)
was defined in the previous section, see (3.21). But the norm on the left-hand side of (4.3)
is not defined yet. The latter norm will appear in the process of the proof; see Definition
5.2. The Reshetnyak formula (4.3) will be proved in the next section. In the current
section, we will develop some machinery for treating tangential tensor fields.

Let us recall the main relation between the ray transform and Fourier transform [7,
formula 2.1.15]. If f = ĝ for a tensor field g ∈ S(Rn;SmRn), then

Îg(y, ξ) = (2π)1/2fi1...im(y)ξi1 . . . ξim for (y, ξ) ∈ TSn−1. (4.4)

We have thus to compute the norm ‖ϕ‖
H

(r,s)
t (TSn−1)

of the function

ϕ(y, ξ) =
(
fi1...im(y)ξi1 . . . ξim

)∣∣
TSn−1 (4.5)

for a tangential tensor field f ∈ S>(Rn;SmRn). We start with computing ∆ξϕ. To this
end we use formulas of the previous section with the following modification. In view of
(4.2) and (4.5), points of the manifold TSn−1 are denoted by (y, ξ) in this section, since
they are actually treated as Fourier dual variables of (x, ξ).

For a function ϕ defined by (4.5), the formula (3.17) simplifies a little bit:

ψ(y, ξ) = fi1...im
(
y − 〈y, ξ〉

|ξ|2
ξ
)
ξi1 . . . ξim . (4.6)

We differentiate this equality with respect to ξi

∂ψ

∂ξi
(y, ξ) = mfii2...im

(
y − 〈y, ξ〉

|ξ|2
ξ
)
ξi2 . . . ξim

−
(〈y, ξ〉
|ξ|2

δji +
yiξ

j

|ξ|2
− 2
〈y, ξ〉ξiξj

|ξ|4
)∂fi1...im

∂yj

(
y − 〈y, ξ〉

|ξ|2
ξ
)
ξi1 . . . ξim ,

where δji = δij = δij is the Kronecker tensor. We again differentiate this equality with
respect to ξi and then set |ξ| = 1 and 〈y, ξ〉 = 0 in the resulting formula. In this way we
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obtain

∂2ψ

∂ξ2
i

∣∣∣
TSn−1

= m(m− 1)fiii3...im(y)ξi3 . . . ξim − 2myiξ
j ∂fii2...im

∂yj
(y)ξi2 . . . ξim

+ y2
i ξ
jξk

∂2fi1...im
∂yj∂yk

(y)ξi1 . . . ξim − 2(yiδ
j
i − yiξiξj)

∂fi1...im
∂yj

(y)ξi1 . . . ξim .

Performing the summation over i, we obtain
n∑
i=1

∂2ψ

∂ξ2
i

∣∣∣
TSn−1

= m(m− 1)δpqfpqi1...im−2(y)ξi1 . . . ξim−2 − 2myp
∂fpi2...im
∂yj

(y)ξjξi2 . . . ξim

+ |y|2 ∂
2fi1...im
∂yj∂yk

(y)ξjξkξi1 . . . ξim − 2yp
∂fi1...im
∂yp

(y)ξi1 . . . ξim .

(4.7)
Differentiating the equality (4.2), we see that

yp
∂fpi2...im
∂yj

= −fji2...im . (4.8)

Replacing the second term on the right-hand side of (4.7) with this expression, we obtain
n∑
i=1

∂2ψ

∂ξ2
i

∣∣∣
TSn−1

=

[
m(m− 1)δpqfpqi1...im−2(y)ξi1 . . . ξim−2 + 2mfi1...im(y)ξi1 . . . ξim

+ |y|2 ∂2fi1...im
∂yim+1∂yim+2

(y)ξi1 . . . ξim+2 − 2
(
〈y, ∂y〉f

)
i1...im

ξi1 . . . ξim
]
TSn−1

.

(4.9)
Now, we compute the second term on the right-hand side of (3.20). To this end we

apply the operator 〈y, ∂y〉 to the equation (4.6)

〈y, ∂y〉ψ = yp
∂

∂yp

(
fi1...im

(
y − 〈y, ξ〉

|ξ|2
ξ
)
ξi1 . . . ξim

)
= yp

∂fi1...im
∂yj

(
y − 〈y, ξ〉

|ξ|2
ξ
)(
δjp −

ξpξ
j

|ξ|2
)
ξi1 . . . ξim .

Setting |ξ| = 1, 〈y, ξ〉 = 0, we obtain

(〈y, ∂y〉ψ)|TSn−1 =
(
〈y, ∂y〉f

)
i1...im

ξi1 . . . ξim . (4.10)

We substitute expressions (4.9) and (4.10) into (3.20)

∆ξϕ =

[
− |y|2 ∂2fi1...im

∂yim+1∂yim+2
(y)ξi1 . . . ξim+2 +

(
〈y, ∂y〉f

)
i1...im

ξi1 . . . ξim

+m(m+ n− 4)fi1...im(y)ξi1 . . . ξim −m(m− 1)δpqfpqi1...im−2(y)ξi1 . . . ξim−2

]
TSn−1

.

(4.11)
We are going to rewrite (4.11) in terms of tensor notations. First of all, the operator

of contraction with the Kronecker tensor is denoted by j, this operator is widely used in
[7]. Thus,

δpqfpqi1...im−2(y)ξi1 . . . ξim−2 = (jf)i1...im−2(y)ξi1 . . . ξim−2 .

Let us also introduce the temporary notation

hi1...im+2(y) = σ(i1 . . . im+2)
∂2fi1...im

∂yim+1∂yim+2
(y), (4.12)
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where σ(i1 . . . im+2) is the symmetrization. The formula (4.11) takes the form

∆ξϕ =

[
− |y|2 hi1...im+2(y)ξi1 . . . ξim+2 +

(
〈y, ∂y〉f

)
i1...im

ξi1 . . . ξim

+m(m+ n− 4)fi1...im(y)ξi1 . . . ξim −m(m− 1)(jf)i1...im−2(y)ξi1 . . . ξim−2

]
TSn−1

.

(4.13)
There is no problem with two last terms on the right-hand side of (4.13). But first two
terms are problematic. Indeed, the radial derivative 〈y, ∂y〉f should not participate in
the final formula for ∆ξϕ. The tensor field h, defined by (4.12), is not tangential. Our
conjecture is that the sum of first two terms on the right-hand side of (4.13) can be
expressed in terms of some operators sending tangential tensor fields again to tangential
fields. To realize this idea, we have to consider tangential tensor fields that do not need
to be symmetric.

Let f = (fi1...im) be a smooth tensor field on Rn \ {0} which is not assumed to be
symmetric. Instead of (4.2), we assume now that f(y) is orthogonal to y with respect to
any index, i.e.,

ypfi1...ik−1pik+1...im(y) = 0 for 1 ≤ k ≤ m. (4.14)

Such f are again called tangential tensor fields. A tangential tensor field f can be re-
stricted to the sphere Sn−1

ρ = {y ∈ Rn | |y| = ρ} for every ρ > 0. For the restriction
f |Sn−1

ρ
, we can consider the covariant derivative ∇(f |Sn−1

ρ
) with respect to the Levi-Civita

connection on the sphere Sn−1
ρ considered as a Riemannian manifold with the metric in-

duced by the Euclidean metric of Rn. Then the tensor field ∇(f |Sn−1
ρ

), being defined on

Sn−1
ρ for every ρ > 0 and smoothly depending on ρ, can be again considered as a rank
m+ 1 tangential tensor field on Rn \ {0}. The latter tensor field will be denoted by ∇f .
Let us compute coordinates of ∇f . We use Cartesian coordinates on Rn but do not use
any coordinates on spheres Sn−1

ρ , this is the main idea of the current section.
For simplicity, we will do calculations in the case of m = 2 and then will present

an obvious generalization of resulting formulas for a general m. A second rank tensor
field f = (fij) can be considered as the bilinear form f(Y, Z) = fijY

iZj on the space of
vector fields. The main relation between inner geometry of a submanifold and geometry
of an ambient manifold [4] is expressed in our situation as follows. Let ∇′ be the Levi-
Civita connection of the standard Euclidean metric on Rn and ∇ be the Levi-Civita
connection of the Riemannian metric on Sn−1

ρ induced by the Euclidean metric of Rn.

Given three smooth vector fields X, Y, Z on Sn−1
ρ , extend them to smooth vector fields

on a neighborhood of Sn−1
ρ in Rn and denote the extensions by X, Y, Z again. Then for a

point y ∈ Sn−1
ρ ,(

(∇Xf)(Y, Z)
)
(y) =

(
(∇′PXf)(PY, PZ)

)
(y)

=
(
PX

(
f(PY, PZ)

)
− f(∇′PXPY, PZ)− f(PY,∇′PXPZ)

)
(y),

(4.15)
where P : Rn → y⊥ is the orthogonal projection.

Choose Cartesian coordinates (y1, . . . , yn) in Rn and let ∂i = ∂
∂yi

be the coordinate

basis. For vector fields X = X i∂i, Y = Y i∂i, Z = Zi∂i,

(PX)i = X i − 1

|y|2
ypX

p yi, (∇′XY )i = Xj ∂Y
i

∂yj
. (4.16)
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By (4.14), f(PY, PZ) = f(Y, Z). Therefore formula (4.15) gives

(∇Xf)(Y, Z) = (PX)k
∂

∂yk

(
f(Y, Z)

)
− f

(
(∇′PXPY )i∂i, (PZ)j∂j

)
− f

(
(PY )i∂i, (∇′PXPZ)j∂j

)
= (PX)k

∂

∂yk

(
fij(PY )i(PZ)j

)
− (∇′PXPY )i(PZ)jfij − (PY )i(∇′PXPZ)jfij.

On using (4.16), we obtain

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
) ∂

∂yk
(
Y iZjfij

)
−
(
Xk − 1

|y|2
ypX

p yk
)[ ∂

∂yk
(
Y i − 1

|y|2
yqY

q yi
)](

Zj − 1

|y|2
yrZ

r yj
)
fij

−
(
Y i − 1

|y|2
ypY

p yi
)(
Xk − 1

|y|2
yqX

q yk
)[ ∂

∂yk
(
Zj − 1

|y|2
yrZ

r yj
)]
fij.

Using (4.14) again, we simplify this formula a little bit:

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
) ∂

∂yk
(
Y iZjfij

)
−
(
Xk − 1

|y|2
ypX

p yk
)[ ∂

∂yk
(
Y i − 1

|y|2
yqY

q yi
)]
Zjfij

− Y i
(
Xk − 1

|y|2
yqX

q yk
)[ ∂

∂yk
(
Zj − 1

|y|2
yrZ

r yj
)]
fij.

After implementing differentiations, some terms cancel each other, and we obtain

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
)
Y iZj ∂fij

∂yk

+
(
Xk − 1

|y|2
ypX

p yk
)[ ∂

∂yk

( 1

|y|2
yqY

q yi
)]
Zjfij

+ Y i
(
Xk − 1

|y|2
yqX

q yk
)[ ∂

∂yk

( 1

|y|2
yrZ

r yj
)]
fij.

We write this in the form

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
)
Y iZj ∂fij

∂yk

+
(
Xk − 1

|y|2
ypX

p yk
)[ 1

|y|2
yqY

qδik +
∂

∂yk

( 1

|y|2
yqY

q
)
yi
]
Zjfij

+ Y i
(
Xk − 1

|y|2
yqX

q yk
)[ 1

|y|2
yrZ

rδjk +
∂

∂yk

( 1

|y|2
yrZ

r
)
yj
]
fij.
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Again using (4.14), this is simplified to the following formula

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
)
Y iZj ∂fij

∂yk

+
(
Xk − 1

|y|2
ypX

p yk
) 1

|y|2
yqY

qδikZ
jfij

+ Y i
(
Xk − 1

|y|2
yqX

q yk
) 1

|y|2
yrZ

rδjkfij.

We perform the contractions with the Kronecker tensor in two last terms

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
)
Y iZj ∂fij

∂yk

+
(
Xk − 1

|y|2
ypX

p yk
) 1

|y|2
yqY

qZjfkj

+ Y i
(
Xk − 1

|y|2
yqX

q yk
) 1

|y|2
yrZ

rfik

and again simplify with the help of (4.14)

(∇Xf)(Y, Z) =
(
Xk − 1

|y|2
ypX

p yk
)
Y iZj ∂fij

∂yk
+

1

|y|2
yqX

kY qZjfkj +
1

|y|2
yrX

kY iZrfik.

This can be written as

(∇Xf)(Y, Z) = XkY iZj ∂fij
∂yk
− 1

|y|2
ypX

pY iZj〈y, ∂y〉fij

+
1

|y|2
yqX

kY qZjfkj +
1

|y|2
yrX

kY iZrfik.

Changing notations of summation indices, we write this in the form

(∇Xf)(Y, Z) = XkY iZj
(∂fij
∂yk

+
yi
|y|2

fkj +
yj
|y|2

fik −
yk
|y|2
〈y, ∂y〉fij

)
.

This means that

∇kfij =
∂fij
∂yk

+
yi
|y|2

fkj +
yj
|y|2

fik −
yk
|y|2
〈y, ∂y〉fij.

This formula has the obvious generalization to tensor fields of arbitrary rank

∇kfi1...im =
∂fi1...im
∂yk

+
m∑
a=1

yia
|y|2

fi1...ia−1kia+1...im −
yk
|y|2
〈y, ∂y〉fi1...im . (4.17)

The proof is actually the same.
We emphasize that formula (4.17) is proved for a tangential tensor field f = (fi1...im)

which is not assumed to be symmetric. As is seen from (4.17), ∇f is again a tangential
tensor field. The latter fact was mentioned above.

Next, we are going to derive a similar formula for second order covariant derivatives of a
tangential tensor field. This is actually an iteration of formula (4.17). We again consider
the case of m = 2. Let f = (fij) be a tangential tensor field which is not assumed to be
symmetric. Applying formula (4.17) to the third rank tangential tensor field ∇f , we have

∇l∇kfij =
∂

∂yl
∇kfij +

yk
|y|2
∇lfij +

yi
|y|2
∇kflj +

yj
|y|2
∇kfil −

yl
|y|2
〈y, ∂y〉∇kfij.
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Substitute the expression (4.17) for the first term on the right-hand side

∇l∇kfij =
∂

∂yl

(∂fij
∂yk

+
yi
|y|2

fkj +
yj
|y|2

fik −
yk
|y|2
〈y, ∂y〉fij

)
+

yk
|y|2
∇lfij +

yi
|y|2
∇kflj +

yj
|y|2
∇kfil −

yl
|y|2
〈y, ∂y〉∇kfij.

Implementing the differentiation, we obtain the final formula

∇l∇kfij =
∂2fij
∂yk∂yl

+
yi
|y|2

∂fkj
∂yl

+
yj
|y|2

∂fik
∂yl
− yk
|y|2
〈y, ∂y〉

∂fij
∂yl

+
1

|y|2
δilfkj +

1

|y|2
δjlfik −

2yiyl
|y|4

fkj −
2yjyl
|y|4

fik

− 1

|y|2
δkl〈y, ∂y〉fij −

yk
|y|2

∂fij
∂yl

+
2ykyl
|y|4
〈y, ∂y〉fij

+
yk
|y|2
∇lfij +

yi
|y|2
∇kflj +

yj
|y|2
∇kfil −

yl
|y|2
〈y, ∂y〉∇kfij.

This formula has the obvious generalization to tangential tensor fields of arbitrary rank

∇k1∇k2fi1...im =
∂2fi1...im
∂yk1∂yk2

+
1

|y|2
m∑
a=1

yia
∂fi1...ia−1k2ia+1...im

∂yk1
− 1

|y|2
yk2〈y, ∂y〉

∂fi1...im
∂yk1

+
1

|y|2
m∑
a=1

δiak1fi1...ia−1k2ia+1...im −
2

|y|4
yk1

m∑
a=1

yiafi1...ia−1k2ia+1...im

+
2

|y|4
yk2yk2〈y, ∂y〉fi1...im −

1

|y|2
δk1k2〈y, ∂y〉fi1...im −

1

|y|2
yk2

∂fi1...im
∂yk1

+
1

|y|2
yk2∇k1fi1...im +

1

|y|2
m∑
a=1

yia∇k2fi1...ia−1k1ia+1...im −
1

|y|2
yk1〈y, ∂y〉∇k2fi1...im .

(4.18)
Let us rewrite (4.18) in the form

∇k1∇k2fi1...im =
∂2fi1...im
∂yk1∂yk2

+
1

|y|2
m∑
a=1

δiak1fi1...ia−1k2ia+1...im −
1

|y|2
δk1k2〈y, ∂y〉fi1...im + . . . ,

where dots stand fore some sum of terms containing at least one factor from the list
yi1 , . . . , yim+2 . We express second order partial derivatives from this

∂2fi1...im
∂yim+1∂yim+2

= ∇im+1∇im+2fi1...im −
1

|y|2
m∑
a=1

δiaim+1fi1...ia−1im+2ia+1...im

+
1

|y|2
δim+1im+2〈y, ∂y〉fi1...im + . . . .

(4.19)

Recall that the Schwartz space S>(Rn;SmRn) of symmetric rank m tangential tensor
fields was introduced after formula (4.2). Along with the latter space we will use the space
C∞> (Rn \ {0};SmRn) consisting of smooth symmetric rank m tensor fields on Rn \ {0}
satisfying (4.2). The domain Rn \ {0} is foliated into spheres centered at the origin

Rn \ {0} =
⋃
ρ>0

Sn−1
ρ
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and the covariant derivative in (4.19) is understood in the sense of Riemannian geometry
of the spheres, as is explained after formula (4.14). The first order differential operator

d : C∞> (Rn \ {0};SmRn)→ C∞> (Rn \ {0};Sm+1Rn) (4.20)

defined by
(df)i1...im+1 = σ(i1 . . . im+1)(∇i1fi2...im+1) (4.21)

is called the inner derivative. Actually this operator is defined on any Riemannian man-
ifold and is widely used in integral geometry of tensor fields [7]. But in this paper the
operator is always understood in the sense of spheres Sn−1

ρ .
Now, we substitute the expression (4.19) into the formula (4.12)

hi1...im+2(y) = (d2f)i1...im+2(y) +
1

|y|2
σ(i1 . . . im+2)

(
δi1i2(〈y, ∂y〉f)i3...im+2(y)

)
− m

|y|2
σ(i1 . . . im+2)

(
δi1i2fi3...im+2(y)

)
+ . . . .

Insert this expression into (4.13). The terms denoted by dots disappear since 〈y, ξ〉 = 0
on TSn−1 and we obtain

∆ξϕ =

[
− |y|2 (d2f)i1...im+2(y)ξi1 . . . ξim+2 − δi1i2(〈y, ∂y〉f)i3...im+2(y)ξi1 . . . ξim+2

+mδi1i2fi3...im+2(y)ξi1 . . . ξim+2 +
(
〈y, ∂y〉f

)
i1...im

ξi1 . . . ξim

+m(m+ n− 4)fi1...im(y)ξi1 . . . ξim −m(m− 1)(jf)i1...im−2(y)ξi1 . . . ξim−2

]
TSn−1

.

After obvious simplifications, this becomes

∆ξϕ =

[
− |y|2 (d2f)i1...im+2(y)ξi1 . . . ξim+2 +m(m+ n− 3)fi1...im(y)ξi1 . . . ξim

−m(m− 1)(jf)i1...im−2(y)ξi1 . . . ξim−2

]
TSn−1

.

(4.22)

The most important feature of the formula is the absence of the radial derivative 〈y, ∂y〉.
Recall that ϕ = [fi1...im(y)ξi1 . . . ξim ]TSn−1 .

Next we consider higher powers of the operator ∆ξ.

Proposition 4.1. Let us consider d2, j and |y|2 as variables of degrees 2, −2 and 0 respec-
tively. Assume that d2 and j do not commute while |y|2 commutes with d2 and j. Given
integers r ≥ 0 and m ≥ 0, there exist homogeneous polynomials P (r,k)(|y|2d2, j) (−r ≤
k ≤ r) of degree 2k with integer coefficients such that the equality

∆r
ξ

[
fi1...im(y)ξi1 . . . ξim

]
TSn−1 =

r∑
k=−r

[(
P (r,k)(|y|2d2, j)f

)
i1...im+2k

(y)ξi1 . . . ξim+2k
]
TSn−1

(4.23)
holds for any tensor field f ∈ C∞> (Rn\{0};SmRn). The polynomials P (r,k)(|y|2d2, j) (−r ≤
k ≤ r) are defined by the recurrent relations

P (0,0)(|y|2d2, j) = 1 (4.24)

and
P (r+1,k)(|y|2d2, j) =− |y|2d2P (r,k−1)(|y|2d2, j)

+ (m+2k)(m+n+2k−3)P (r,k)(|y|2d2, j)

− (m+2k+2)(m+2k+1)jP (r,k+1)(|y|2d2, j),

(4.25)
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where it is assumed that P (r,k) = 0 for |k| > r.

Proof. We emphasize that the polynomials P (r,k) depend on (m,n) although the depen-
dence is not designated explicitly.

We prove (4.23)–(4.25) by induction in r. For r = 0, (4.23) holds tautologically (the
left- and right-hand sides coincide). Assume (4.23) to be valid for some r. Apply the
operator ∆ξ to (4.23)

∆r+1
ξ

[
fi1...im(y)ξi1 . . . ξim

]
TSn−1 =

r∑
k=−r

∆ξ

[
(P (r,k)f)i1...im+2k

(y)ξi1 . . . ξim+2k
]
TSn−1 (4.26)

For brevity we write P (r,k) instead of P (r,k)(|y|2d2, j). The tensor field P (r,k)f of rank
m+ 2k is also a symmetric tangential tensor field. By (4.22),

∆ξ

[
(P (r,k)f)i1...im+2k

(y)ξi1 . . . ξim+2k
]
TSn−1 =

=

[
− |y|2 (d2P (r,k)f)i1...im+2k+2

(y)ξi1 . . . ξim+2k+2

+ (m+2k)(m+n+2k−3)(P (r,k)f)i1...im+2k
(y)ξi1 . . . ξim+2k

− (m+2k)(m+2k−1)(jP (r,k)f)i1...im+2k−2
(y)ξi1 . . . ξim+2k−2

]
TSn−1

.

Substitute this expression into (4.26)

∆r+1
ξ

[
fi1...im(y)ξi1 . . . ξim

]
TSn−1 =

=
r∑

k=−r

[
− |y|2 (d2P (r,k)f)i1...im+2k+2

(y)ξi1 . . . ξim+2k+2

+ (m+2k)(m+n+2k−3)(P (r,k)f)i1...im+2k
(y)ξi1 . . . ξim+2k

− (m+2k)(m+2k−1)(jP (r,k)f)i1...im+2k−2
(y)ξi1 . . . ξim+2k−2

]
TSn−1

.

On the right-hand side, we group together polynomials of the same degree in ξ. The
formula becomes

∆r+1
ξ

[
fi1...im(y)ξi1 . . . ξim

]
TSn−1 =

=
r+1∑

k=−r−1

{[(
− |y|2 d2P (r,k−1) + (m+2k)(m+n+2k−3)P (r,k)

− (m+2k+2)(m+2k+1)jP (r,k+1)
)
f
]
i1...im+2k

(y)ξi1 . . . ξim+2k

}
TSn−1

.

This finishes the induction step. �

5. Higher order Reshetnyak formulas

Recall that the unit sphere Sn−1 is considered as a Riemannian manifold with the
Riemannian metric induced by the Euclidean metric of Rn. Let τ ′Sn−1 be the cotangent
bundle and Smτ ′Sn−1 be the (complex) vector bundle of rank m symmetric covariant ten-
sors. There is a natural Hermitian dot-product in fibers, therefore Smτ ′Sn−1 is a Hermitian
vector bundle. The action of the orthogonal group O(n) on Sn−1 extends to the action on
Smτ ′Sn−1 by automorphisms of the Hermitian vector bundle.
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The space C∞(Smτ ′Sn−1) of smooth sections of Smτ ′Sn−1 is the space of rank m symmetric
tensor fields on the sphere. The Hermitian dot-product of Smτ ′Sn−1 defines L2-product on
the space C∞(Smτ ′Sn−1), so it makes sense to speak of adjoint operators as well as of the
action of the orthogonal group on C∞(Smτ ′Sn−1).

We use two algebraic operators

i : Smτ ′Sn−1 → Sm+2τ ′Sn−1 , j : Sm+2τ ′Sn−1 → Smτ ′Sn−1 (5.1)

of symmetric multiplication by the metric tensor and of contraction with the metric tensor.
More precisely, these operators are defined as follows:

(if)i1···im+2 = σ(i1 · · · im+2)
(
gi1i2fi3···im+2

)
, (5.2)

(jf)i1···im = gi1i2fi1···im+2 . (5.3)

The operators i and j are adjoint to each other. We also use two first order differential
operators

d : C∞(Smτ ′Sn−1)→ C∞(Sm+1τ ′Sn−1), δ : C∞(Sm+1τ ′Sn−1)→ C∞(Smτ ′Sn−1).

The inner derivative d is defined in local coordinates by (4.21) where ∇ stands for the
covariant derivative with respect to the Levi-Chivita connection on Sn−1. The divergence
δ is defined in local coordinates by

(δf)i1...im = gpq∇pfqi1...im ,
where (gpq) = (gpq)

−1 and (gpq) is the metric tensor. The operators d and −δ are adjoint
to each other. Each of i, j, d, δ is an invariant operator, i.e., commutes with the action of
the orthogonal group.

Recall that the spaces H
(r,s)
t (TSn−1) were introduced by Definition 3.4.

Theorem 5.1. Given integers m ≥ 0, n ≥ 2 and r ≥ 0, there exist self-adjoint linear
differential operators

A(m,r,l) : C∞(Smτ ′Sn−1)→ C∞(Smτ ′Sn−1) (0 ≤ l ≤ r) (5.4)

such that the equality

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=

r∑
l=0

∞∫
0

ρ2t+2l+n−1(1 + ρ2)s−t
∫

Sn−1

〈A(m,r,l)f̂ , f̂〉(ρξ) dξdρ (5.5)

holds for any real s, t > −n/2 and for any solenoidal tensor field field f ∈ Ssol(Rn;SmRn).
The operators A(m,r,l) can be expressed as polynomials of (non-commuting) variables

(i, j, d, δ) with real coefficients depending on (m,n, r, l). The polynomials can be obtained
by some recurrent procedure that will be presented below. In particular, each of A(m,r,l)

is an invariant operator, i.e., commutes with the action of the orthogonal group. Every
A(m,r,l) is a homogeneous differential operator of order 2l; more precisely, A(m,r,l) can be
written as a homogeneous polynomial of degree 2l of two (non-commuting) variables d and
δ with coefficients depending on i and j (the coefficients not always commute with each
other as well as with d and δ).

For every ρ > 0,
∑r

l=0 ρ
lA(m,r,l) is a positive operator. In particular, A(m,r,0) and A(m,r,r)

are positive operators.

If the right-hand side of (5.5) is equal to zero for f ∈ Ssol(Rn;SmRn), then f = 0 since
a solenoidal tensor field is uniquely determined by its ray transform [7, Theorem 2.12.2].
Therefore Theorem 5.1 suggests the following definition
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Definition 5.2. For an integer r ≥ 0, real s and t > −n/2, define the norm on the space
Ssol(Rn;SmRn)

‖f‖2

H
(r,s)
t,sol (Rn;SmRn)

=
r∑
l=0

∞∫
0

ρ2t+2l+n−1(1 + ρ2)s−t
∫

Sn−1

〈A(m,r,l)f̂ , f̂〉(ρξ) dξdρ (5.6)

and let the Hilbert space H
(r,s)
t,sol (Rn;SmRn) be the completion of Ssol(Rn;SmRn) with respect

to the norm (5.6).

For integer r ≥ 0, real s and t > −n/2, we have a continuous embeddingH
(r,s)
t,sol (Rn;SmRn) ⊂

Hs
t (Rn;SmRn). Also for integers r1 ≥ r2, we have a continuous embeddingH

(r1,s)
t,sol )(Rn;SmRn) ⊂

H
(r2,s)
t,sol )(Rn;SmRn).
Theorem 1.1 follows from Theorem 5.1. Indeed, the Reshetnyak formula (1.12) holds

for f ∈ Ssol(Rn;SmRn) by Theorem 5.1. This immediately implies the existence of the

continuous extension (1.11) as well as the validity of (1.2) for f ∈ H(r,s)
t,sol (Rn;SmRn) since

both spaces in (1.1) are completions of the corresponding Schwartz spaces.
One more important corollary of Theorem 5.1 is the following

Proposition 5.3. (1) The space H
(r,s)
t,sol (Rn;SmRn) is isotropic in the following sense. For

any linear orthogonal transform U of Rn, the map Ssol(Rn;SmRn)→ Ssol(Rn;SmRn), f 7→
f ◦ U extends to an isometry of H

(r,s)
t,sol (Rn;SmRn).

(2) The space H
(r,s)
t,sol (Rn;SmRn) is homogeneous in the following sense. For any a ∈ Rn,

the map Ssol(Rn;SmRn) → Ssol(Rn;SmRn), f(x) 7→ f(x + a) extends to an isometry of

H
(r,s)
t,sol (Rn;SmRn).

Proof. The first statement immediately follows from the invariance of operators A(m,r,l)

with respect to the action of the orthogonal group mentioned in Theorem 5.1.
The validity of the second statement is not seen from Definition 5.2. Nevertheless,

the second statement easily follows from the Reshetnyak formula (1.12). Indeed, if fa =
f(x + a) for f ∈ Ssol(Rn;SmRn) and a ∈ Rn, then (Ifa)(x, ξ) = (If)(x + a, ξ) and
‖Ifa‖H(r,s+1/2)

t+1/2
(TSn−1)

= ‖If‖
H

(r,s+1/2)
t+1/2

(TSn−1)
. �

The rest of the section is devoted to the proof of Theorem 5.1.
Given f ∈ Ssol(Rn;SmRn), we will transform the norm ‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
in order to

express it in terms independent of the ray transform. There will be several transformation
steps.

Let ϕ = If ∈ S(TSn−1). By (4.4),

ϕ̂(y, ξ) = (2π)1/2f̂i1...im(y)ξi1 . . . ξim
(
(y, ξ) ∈ TSn−1

)
. (5.7)

By Definition 3.4,

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
= ‖ϕ‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=
(
(1 + ∆ξ)

rϕ, ϕ
)
H
s+1/2
t+1/2

(TSn−1)

=
r∑
q=0

(
r

q

)(
∆q
ξϕ, ϕ

)
H
s+1/2
t+1/2

(TSn−1)
.

(5.8)

We have thus to compute the scalar products

(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
(0 ≤ q ≤ r).
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By the definition (2.11),

(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

Γ
(
n−1

2

)
4π(n+1)/2

∫
Sn−1

∫
ξ⊥

|y|2t+1(1 + |y|2)s−t∆̂q
ξϕ(y, ξ) ϕ̂(y, ξ) dydξ.

Since ∆ξ = −
∑

i Ξ
2
i commutes with the Fourier transform [5, Lemma 4.4], this can be

written as

(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

Γ
(
n−1

2

)
4π(n+1)/2

∫
Sn−1

∫
ξ⊥

|y|2t+1(1 + |y|2)s−t(∆q
ξϕ̂)(y, ξ) ϕ̂(y, ξ) dydξ.

Substituting the value (5.7) for ϕ̂, we obtain

2π(n−1)/2

Γ
(
n−1

2

) (∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

∫
Sn−1

∫
ξ⊥

|y|2t+1(1 + |y|2)s−t∆q
ξ

(
f̂i1...im(y)ξi1 . . . ξim

)
f̂j1...jm(y) ξj1 . . . ξjm dydξ.

(5.9)

Since f is a solenoidal tensor field, f̂ is a tangential tensor field. By Proposition 4.1,

∆q
ξ

(
f̂i1...im(y)ξi1 . . . ξim

)
=

q∑
k=−q

(P (q,k)f̂)i1...im+2k
(y)ξi1 . . . ξim+2k

(
(y, ξ) ∈ TSn−1

)
.

Substituting this expression into (5.9), we obtain

2π(n−1)/2

Γ
(
n−1

2

) (∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

q∑
k=−q

∫
Sn−1

∫
ξ⊥

|y|2t+1(1 + |y|2)s−t(P (q,k)f̂)i1...im+2k
(y)f̂im+2k+1...i2m+2k

(y) ξi1 . . . ξi2m+2k dydξ.

Changing the order of integrations with the help of [7, Lemma 2.15.3], we obtain

2π(n−1)/2

Γ
(
n−1

2

) (∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

q∑
k=−q

∫
Rn

|y|2t(1+|y|2)s−t(P (q,k)f̂)i1...im+2k
(y)f̂im+2k+1...i2m+2k

(y)

∫
Sn−1∩y⊥

ξi1 . . . ξi2m+2k dn−2ξ dy.

(5.10)
By [7, Lemma 2.15.4],∫

Sn−1∩y⊥

ξi1 . . . ξi2m+2k dn−2ξ =
2Γ(m+ k + 1/2)π(n−2)/2

Γ
(
m+ k + n−1

2

) (εm+k)i1...i2m+2k(y), (5.11)

where

(εm+k)i1...i2m+2k(y) = σ(i1 . . . i2m+2k)
(
δi1i2− y

i1yi2

|y|2
)
. . .
(
δi2m+2k−1i2m+2k − y

i2m+2k−1yi2m+2k

|y|2
)
.

(5.12)
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Substituting the expression (5.11) into (5.10), we obtain

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) ∫
Rn

|y|2t(1+|y|2)s−t×

× (εm+k)i1...i2m+2k(y)(P (q,k)f̂)i1...im+2k
(y)f̂im+2k+1...i2m+2k

(y) dy.
(5.13)

Observe that both tensors f̂(y) and (P (l,k)f̂)(y) are orthogonal to the vector y with
respect to any index. Therefore we can delete the second term yiyj/|y|2 in all factors
on the right-hand side of (5.12). In other words, the tensor field εm+k(y) in the formula
(5.13) can be replaced with the tensor δm+k, where

(δm+k)i1...i2m+2k = σ(i1 . . . i2m+2k)
(
δi1i2 . . . δi2m+2k−1i2m+2k

)
. (5.14)

The formula (5.13) becomes

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) ∫
Rn

|y|2t(1+|y|2)s−t×

× (δm+k)i1...i2m+2k(P (q,k)f̂)i1...im+2k
(y)f̂im+2k+1...i2m+2k

(y) dy.
(5.15)

For m+ 2k ≥ 0, we define the linear algebraic operator

C(m,k) : Sm+2kRn → SmRn (5.16)

by

〈C(m,k)g, h〉 = (δm+k)i1...i2m+2kgi1...im+2k
him+2k+1...i2m+2k

(
g ∈ Sm+2kRn, h ∈ SmRn

)
.

(5.17)
Then the formula (5.15) can be written in the form

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) ∫
Rn

|y|2t(1+|y|2)s−t〈C(m,k)P (q,k)(|y|2d2, j)f̂(y), f̂(y)〉 dy.
(5.18)

Recall that i : SmRn → Sm+2Rn and j : Sm+2Rn → SmRn are the operators of
symmetric multiplication by the Kronecker tensor and of contraction with the Kronecker
tensor. They are defined by

(if)i1...im+2 = σ(i1 . . . im+2)(δi1i2fi3...im+2), (jf)i1...im = δpqfpqi1...im .

Lemma 5.4. For integers m ≥ 0 and k satisfying m + 2k ≥ 0, the operator C(m,k) is
expressed in terms of the operators i and j as follows:

C(m,k) =

[m/2]∑
p=max(0,−k)

ap(m, k) ipjp+k, (5.19)

where [m/2] is the integer part of m/2 and

ap(m, k) =
2m−2pm!(m+ k)!(m+ 2k)!

(m− 2p)!p!(p+ k)!(2m+ 2k)!
. (5.20)
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Proof. We present the proof in the case of an even m only. For odd m the proof is quite
similar. We write 2m instead of m in all formulas in the proof. The proof is based on
combinatorial arguments.

We rewrite (5.17) in the form

〈C(2m,k)g, h〉 =

=
[
σ(i1 . . . i2m+2kj1 . . . j2m)

(
δi1i2 . . . δi2m+2k−1i2m+2kδj1j2 . . . δj2m−1j2m

)]
gi1...i2m+2k

h̄j1...j2m .

After performing the symmetrization, this becomes

〈C(2m,k)g, h〉 =
1

(4m+ 2k)!

∑
π∈Π4m+2k

δπ1π2 . . . δπ4m+2k−1π4m+2kgi1...i2m+2k
h̄j1...j2m , (5.21)

where the summation is performed over all permutations

π =

(
1 · · · 4m+ 2k
π1 · · · π4m+2k

)
.

We write a permutation π ∈ Π4m+2k as a sequence of pairs

π =
(
(π1, π2), (π3, π4), . . . , (π4m+2k−1, π4m+2k)

)
. (5.22)

Pairs can be of 3 kinds:

first kind : both elements of the pair belong to the set {j1, . . . , j2m};
second kind : one element of the pair belongs to {i1, . . . , i2m+2k}

and another element of the pair belongs to {j1, . . . , j2m};
third kind : both elements of the pair belong to the set {i1, . . . , i2m+2k}.

Obviously, the number of first kind pairs in a permutation is ≤ m. Let a permutation
π ∈ Π4m+2k contain exactly m − p pairs of first kind. Then π contains also 2p pairs of
second kind and m+ k − p pairs of third kind. Therefore m+ k − p ≥ 0. Thus,

0 ≤ p ≤ min(m,m+ k).

We represent Π4m+2k as the disjoint union

Π4m+2k =

min(m,m+k)⋃
p=0

Πp
4m+2k,

where Πp
4m+2k consists of permutations containing exactly m − p pairs of the first kind.

The formula (5.21) is now written as

〈C(2m,k)g, h〉 =
1

(4m+ 2k)!

min(m,m+k)∑
p=0

∑
π∈Πp4m+2k

δπ1π2 . . . δπ4m+2k−1π4m+2kgi1...i2m+2k
h̄j1...j2m .

(5.23)
All summands of the inner sum coincide. Indeed, as we have mentioned, a permutation
π ∈ Πp

4m+2k contains m− p first kind pairs, 2p second kind pairs and m+ k− p third kind
pairs. Therefore

δπ1π2 . . . δπ4m+2k−1π4m+2kgi1...i2m+2k
h̄j1...j2m = 〈jm+k−pf, jm−pg〉 = 〈im−pjm+k−pf, g〉.

The last equality holds since j∗ = i. The formula (5.23) now gives

C(2m,k) =
1

(4m+ 2k)!

min(m,m+k)∑
p=0

N(2m, k; p) im−pjm+k−p, (5.24)
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where N(2m, k; p) is the amount of elements in the set Πp
4m+2k.

It remains to compute N(2m, k; p). To this end we describe the following algorithm of
constructing all permutations π of the set Πp

4m+2k. We start with an empty permutation

π =
(
(·, ·)1, (·, ·)2, . . . , (·, ·)2m+k

)
. (5.25)

Then we fill in all positions of the permutation in three steps.
1. We choose a subset {jα1 , . . . , jα2m−2p} of the set {j1, . . . , j2m}. There are(

2m

2m− 2p

)
(5.26)

choices. Then we order the subset to obtain

(2m− 2p)! (5.27)

sequences of pairs
(
(jα1 , jα2), . . . , (jα2m−2p−1 , jα2m−2p)

)
. Preserving the order of pairs as

well as order of elements in each pair, we insert these pairs into the permutation (5.25).
This can be done in (

2m+ k

m− p

)
(5.28)

ways. The result of the first step is a set of partially completed permutations. Every such
permutation contains m− p pairs of first kind but still contains m+ k + p empty pairs.

2. On the second step, we insert pairs of second kind. Let π be one of partially com-
pleted permutations obtained on the first step. Let again {jα1 , . . . , jα2m−2p} be the subset
of elements participating in π. Let {jβ1 , . . . , jβ2p} = {j1, . . . , j2m} \ {jα1 , . . . , jα2m−2p}.
Starting with the set {jβ1 , . . . , jβ2p}, we create ordered sequences of 2p second kind pairs.
To this end we first order the set {jβ1 , . . . , jβ2p}; this gives

(2p)! (5.29)

ordered sequences (jβ1 , . . . , jβ2p). Then, we choose a subset {iγ1 , . . . , iγ2p} of the set
{i1, . . . , i2m+2k}; there are (

2m+ 2k

2p

)
(5.30)

choices. Finally, we unite each element of the sequence (jβ1 , . . . , jβ2p) with one element of
the set {iγ1 , . . . , iγ2p} into a second kind pair; this can be done in

22p(2p)! (5.31)

ways. If (jβr , iγs) is a second kind pair, then (iγs , jβr) is also a second kind pair; this
explains the factor 22p in (5.31).

Next, preserving the order of pairs as well as order of elements in each pair, we insert
created second kind pairs into the partially completed permutation π. This can be done
in (

m+ k + p

2p

)
(5.32)

ways since we insert 2p pairs to m+ k+ p vacant positions in π. The result of the second
step is a set of partially completed permutations containing m− p first kind pairs and 2p
second kind pairs. Every such permutation still contains m+ k − p empty pairs.

3. For every partially completed permutation π created on the second step, we still
have 2m+ 2k− 2p elements of the set {i1, . . . , i2m+2k} which do not participate in π. We
just insert these elements in an arbitrary order into m+ k− p empty pairs of π. This can
be done in

(2m+ 2k − 2p)! (5.33)
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ways. This finishes the algorithm.
The algorithm gives us all permutations of the set Πp

4m+2k with no duplication. Thus,
the total amount N(2m, k; p) of elements of Πp

4m+2k is equal to the product of quantities
(5.26)–(5.33), i.e.,

N(2m, k; p) =

(
2m

2m− 2p

)
(2m− 2p)!

(
2m+ k

m− p

)
(2p)!

(
2m+ 2k

2p

)
×

× 22p(2p)!

(
m+ k + p

2p

)
(2m+ 2k − 2p)!.

After obvious simplifications, this becomes

N(2m, k; p) =
22p(2m)!(2m+ k)!(2m+ 2k)!

(2p)!(m− p)(m+ k − p)!
.

Substituting this value into (5.24), we obtain

C(2m,k) =
1

(4m+ 2k)!

min(m,m+k)∑
p=0

22p(2m)!(2m+ k)!(2m+ 2k)!

(2p)!(m− p)(m+ k − p)!
im−pjm+k−p, (5.34)

Finally, changing the summation variable as p = m− q in (5.34), we get

C(2m,k) =
1

(4m+ 2k)!

m∑
q=max(0,−k)

22m−2q(2m)!(2m+ k)!(2m+ 2k)!

(2m− 2q)!q!(k + q)!
im−pjm+k−p.

This coincides with (5.19)–(5.20) for an even m. �

Recall that P (q,k)(|y|2d2, j) is a homogeneous polynomial of degree 2k in the variables
|y|2d2 and j since degrees of d2, j, |y|2 are 2,−2 and 0 respectively; the variables d2 and
j do not commute while |y|2 commutes with d2 and j. Let us explicitly designate the
dependence on |y|2. To this end we represent

P (q,k)(|y|2d2, j) =

|k|∑
l=0

|y|2lP (q,k,l)(d2, j), (5.35)

where the polynomial P (q,k,l)(d2, j) is homogeneous of degree 2l in d2 and homogeneous
of degree 2k − 2l in j. Substituting the expression (5.35) into (5.18), we obtain

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) |k|∑
l=0

∫
Rn

|y|2(t+l)(1+|y|2)s−t〈C(m,k)P (q,k,l)(d2, j)f̂(y), f̂(y)〉 dy.

We can now change integration variables. Setting y = ρξ, we obtain

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) |k|∑
l=0

∞∫
0

ρ2(t+l)+n−1(1+ρ2)s−t
∫

Sn−1

〈C(m,k)P (q,k,l)(d2, j)f̂ , f̂〉)(ρξ) dξdρ.

(5.36)
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The operators d and j are now understood in the sense of intrinsic geometry of the sphere
Sn−1 furnished by the standard Riemannian metric: d is the inner derivative and j is the
contraction with the metric tensor.

Let us introduce the weighted L2-product on the space S(Rn;SmRn)

(f, g)L2,s
t (Rn;SmRn)=

∫
Rn

|y|2t(1+ |y|2)s−t〈f, g〉(y) dy =

∞∫
0

ρ2t+n−1(1+ρ2)s−t
∫

Sn−1

〈f, g〉(ρξ) dξdρ.

(5.37)
On the right-hand side of (5.37), 〈f, g〉 stands for the dot-product in fibers of the Hermitian
vector bundle Smτ ′Sn−1 mentioned above.

The formula (5.36) can be written as

π1/2

Γ
(
n−1

2

)(∆q
ξϕ, ϕ)

H
s+1/2
t+1/2

(TSn−1)
=

q∑
k=−q

Γ(m+k+1/2)

Γ
(
m+k+ n−1

2

) |k|∑
l=0

(
C(m,k)P (q,k,l)f̂ , f̂

)
L2,s+l
t+l (Rn;SmRn)

.

(5.38)
We remember that ϕ = If . It makes sense to group together terms with the same

value of l on the right-hand side of (5.38). We write (5.38) in the form

(∆q
ξIf, If)

H
s+1/2
t+1/2

(TSn−1)
=

q∑
l=0

(
B(m,q,l)f̂ , f̂

)
L2,s+l
t+l (Rn;SmRn)

, (5.39)

where

B(m,q,l) =
∑

−q≤k≤q,|k|≥l

Γ
(
n−1

2

)
Γ(m+k+1/2)

π1/2Γ
(
m+k+ n−1

2

) C(m,k)P (q,k,l)(d2, j). (5.40)

Substituting the expression (5.40) into (5.8), we have

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=

r∑
l=0

(
Ã(m,r,l)f̂ , f̂

)
L2,s+l
t+l (Rn;SmRn)

, (5.41)

where

Ã(m,r,l) =
r∑
q=l

(
r

q

)
B(m,q,l). (5.42)

In view of the definition (5.37), the formula (5.40) takes the form

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=

r∑
l=0

∞∫
0

ρ2t+2l+n−1(1 + ρ2)s−t
∫

Sn−1

〈Ã(m,r,l)f̂ , f̂〉(ρξ) dξdρ. (5.43)

Proof of Theorem 5.1. In the general case Ã(m,r,l) is not a self-adjoint operator, the cor-
responding example will be presented in Section 6. But all A(m,r,l) must be self-adjoint
operators in Theorem 5.1. This can be achieved as follows. Applying the complex conju-
gation to (5.43), we obtain

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=

r∑
l=0

∞∫
0

ρ2t+n−1(1 + ρ2)s−t
∫

Sn−1

〈(Ã(m,r,l))∗f̂ , f̂〉(ρξ) dξdρ.

Taking the sum of this equality with (5.43), we arrive to (5.5) with the self-adjoint oper-
ators

A(m,r,l) =
1

2

(
Ã(m,r,l) + (Ã(m,r,l))∗

)
. (5.44)
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Thus, the operators A(m,r,l) are defined in several steps: the recurrent relation (4.25),
formulas (5.19)–(5.20), (5.35), (5.40), (5.42), and (5.44). These formulas constitute the
algorithm for computing the operators A(m,r,l). We will realize the algorithm for r = 0, 1, 2
in Section 7. The algorithm can be used for every r, but the volume of calculations grows
fast with r.

According to the algorithm, every A(m,r,l) can be represented as a polynomial of (non-
commuting) variables d, i, j. This implies that all A(m,r,l) are invariant operators, i.e., they
commute with the action of the orthogonal group on Sn−1.

As mentioned after (5.35), P (q,k,l)(d2, j) is a homogeneous polynomial of degree 2l in
d2, if the degree of d2 is assumed to be equal to 2. In other words, P (q,k,l)(d2, j) is a
homogeneous differential operator of order 2l. The coefficients C(m,k) in (5.40) are pure
algebraic operators. Therefore A(m,r,l) is a homogeneous differential operator of order 2l
on Sn−1. The divergence δ is mentioned in Theorem 5.4 since the operator δ appears in
commutator formulas for d and j, see the next section.

The right-hand side of (5.5) is positive for every tensor field f ∈ Ssol(Rn;SmRn) which
is not identically equal to zero. This statement follows from (5.5) since a solenoidal tensor
field is uniquely determined by its ray transform [7, Theorem 2.12.2]. We believe that all
A(m,r,l) are non-negative operators. This fact will be checked for r = 0, 1, 2 and for small
m in Section 7, but so far we cannot prove it for general (m, r).

Let us now prove that
∑r

l=0 ρ
lA(m,r,l) is a positive operator for every ρ > 0. In particular,

if ρ is either very small or very big, this gives the positiveness of the operators A(m,r,0)

and A(m,r,r) since A(m,r,l) are independent of ρ.
In (5.5), f is an arbitrary tensor field from the space Ssol(Rn;SmRn). In terms of

the Fourier transform this means that f̂ is an arbitrary tensor field from S>(Rn;SmRn).

On using the latter fact we separate variables in (5.5), that is, choose f̂ in the form

f̂(ρξ) = α(ρ)g(ξ), where g ∈ C∞(Smτ ′Sn−1) is an arbitrary tensor field on the sphere and
α is an arbitrary function from S(R). For such a choice, (5.5) becomes

‖If‖2

H
(r,s+1/2)
t+1/2

(TSn−1)
=

r∑
l=0

∞∫
0

ρ2t+2l+n−1(1 + ρ2)s−tα2(ρ)

∫
Sn−1

〈A(m,r,l)g, g〉(ξ) dξdρ.

In particular,
∞∫

0

ρ2t+n−1(1 + ρ2)s−tα2(ρ)
( ∫
Sn−1

〈 r∑
l=0

ρ2lA(m,r,l)g, g
〉

(ξ) dξ
)
dρ > 0 (5.45)

for any tensor field g ∈ C∞(Smτ ′Sn−1) not identically equal to zero.
Let us use the arbitrariness of the function α in (5.45). For a fixed ρ0 > 0, we can

choose α ∈ S(R) supported in an arbitrary neighborhood of ρ0. Therefore (5.45) implies∫
Sn−1

〈 r∑
l=0

ρ2l
0 A

(m,r,l)g, g
〉

(ξ) dξ > 0.

This proves the positiveness of
∑r

l=0 ρ
lA(m,r,l) since ρ0 > 0 is arbitrary. �

We finish the section with a remark that is important for applications of Theorems 1.1
and 5.1. Recall [7, Theorem 2.6.2] that a tensor f ∈ S(Rn;SmRn) is uniquely represented
as the sum of solenoidal and potential parts

f = sf + dv, δ sf = 0. (5.46)
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The ray transform does not see the potential part, i.e., If = I(sf). The tensor field sf
belongs to the space C∞sol(Rn;SmRn) but not to Ssol(Rn;SmRn). Indeed, in the general
case sf(x) decays at infinity as (1 + |x|)1−n but does not fast decay. Therefore, formally
speaking, Theorem 5.1 does not apply to sf . Nevertheless, the situation can be easily

improved. Indeed, the Fourier transform ŝf(y) is smooth on Rn \ {0}, fast decays at

infinity but has a singularity at y = 0. Fortunately, ŝf(y) is bounded on the whole of

Rn, i.e., the singularity concerns positive order derivatives of ŝf(y) only, see [7, Theorem

2.6.2]. This immediately implies that sf belongs to H
(r,s)
t,sol (Rn;SmRn) and Theorem 1.1

applies to sf . Moreover, Theorem 5.1 actually applies to sf too. Indeed, by (5.7), the
function

ϕ(y, ξ) =
[
ŝf i1...im(y)ξi1 . . . ξim

]
TSn−1

= (2π)−1/2Îf

belongs to S(TSn−1). Recall that our proof of (5.5) is based on the usage of this function.
Thus, no singularity appears on the right-hand side of (5.5) while replacing f with sf for
f ∈ S(Rn;SmRn).

The decomposition (5.46) is also valid for symmetric tensor fields of less regularity, see
for example [8, Theorem 3.5]. Theorems 1.1 and 5.1 with appropriate modifications apply
to sf in all such cases.

6. Reshetnyak formulas of orders 0, 1, 2

6.1. Zeroth order Reshetnyak formula. In the case of r = 0, Theorem 5.1 gives: for
every real s and t > −n/2, the equality

‖If‖2

H
s+1/2
t+1/2

(TSn−1)
=

∞∫
0

ρ2t+n−1(1 + ρ2)s−t
∫

Sn−1

〈A(m,0,0)f̂ , f̂〉(ρξ) dξdρ (6.1)

holds for any tensor field f ∈ Ssol(Rn;SmRn). The operator A(m,r,l) is defined in Sections
4–5 by a chain of formulas and recurrent relations. Almost all these formulas are very
easy in the case of r = l = 0 and we obtain

A(m,0,0) =
Γ
(
n−1

2

)
2π(n−1)/2

[m/2]∑
k=0

ak(m,n) ikjk. (6.2)

Here [m/2] is the integer part of m/2 and the coefficients are expressed by

ak(m,n) =
2m+1π(n−2)/2(m!)3Γ

(
m+ 1

2

)
(2m)!Γ

(
m+ n−1

2

) 1

22k(k!)2(m− 2k)!
. (6.3)

This actually coincides with [8, Theorem 4.2]. Nevertheless, we indicate 3 following
differences between [8, Theorem 4.2] and (6.2)–(6.3).

(1) The factor
Γ
(
n−1
2

)
2π(n−1)/2 is added on the right-hand side of (6.2) since the definition

‖ϕ‖2
Hs
t (TSn−1) =

1

2π

∫
Sn−1

∫
ξ⊥

|y|2t(1 + |y|2)s−t|ϕ̂(y, ξ)|2 dydξ

is used in [8] which differs by the factor 2π(n−1)/2

Γ
(
n−1
2

) of our definition (2.11).

(2) The factor π(n−2)/2 is written on the right hand side of (6.3) instead of the factor
π(n−1)/2 in the formula for ak(m,n) in [8, Theorem 4.2]; it is just a misprint in [8],
compare with [7, formula 2.5.3].
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(3) The factor (m!)3 participates on the right-hand side of (6.3) although it is absent
in both [7] and [8]; this is also a misprint (indeed, the factor (m!)3 is presented
in formula (4.11) of [8] but the factor is lost in the corresponding formula in the
statement of [8, Theorem 4.2]; unfortunately, the same misprint is in [7]).

As is seen from (6.2), A(m,0,0) is a positive self-adjoint operator.

6.2. First order Reshetnyak formula. By Theorem 5.1, the first order Reshetnyak
formula

‖If‖2

H
(1,s+1/2)
t+1/2

(TSn−1)
=

∞∫
0

ρ2t+n+1(1 + ρ2)s−t
∫

Sn−1

〈A(m,1,1)f̂ , f̂〉(ρξ) dξdρ

+

∞∫
0

ρ2t+n−1(1 + ρ2)s−t
∫

Sn−1

〈A(m,1,0)f̂ , f̂〉(ρξ) dξdρ

(6.4)

holds for every real s, t > −n/2 and for any tensor field f ∈ Ssol(Rn;SmRn).
By Theorem 5.1, A(m,1,1) is a second order differential operator while A(m,1,0) is an al-

gebraic operator. We compute these operators following the scheme presented in Sections
4–5, but in the reverse order.

First of all by (5.44),

A(m,1,0) =
1

2

(
Ã(m,1,0) + (Ã(m,1,0))∗

)
, A(m,1,1) =

1

2

(
Ã(m,1,1) + (Ã(m,1,1))∗

)
(6.5)

By (5.42),

Ã(m,1,0) = B(m,0,0) +B(m,1,0), Ã(m,1,1) = B(m,1,1). (6.6)

By (5.40),

B(m,0,0) =
Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) C(m,0)P (0,0,0),

B(m,1,0) =
Γ
(
n−1

2

)
Γ(m−1/2)

π1/2Γ
(
m+ n−3

2

) C(m,−1)P (1,−1,0) +
Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) C(m,0)P (1,0,0)

+
Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) C(m,1)P (1,1,0),

B(m,1,1) =
Γ
(
n−1

2

)
Γ(m−1/2)

π1/2Γ
(
m+ n−3

2

) C(m,−1)P (1,−1,1) +
Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) C(m,1)P (1,1,1).

Substitute these values into (6.6)

Ã(m,1,0) =
Γ
(
n−1

2

)
π1/2

[
Γ(m−1/2)

Γ
(
m+ n−3

2

)C(m,−1)P (1,−1,0) +
Γ(m+1/2)

Γ
(
m+ n−1

2

)C(m,0)
(
P (1,0,0) + 1

)
+

Γ(m+3/2)

Γ
(
m+ n+1

2

)C(m,1)P (1,1,0)

]
,

Ã(m,1,1) =
Γ
(
n−1

2

)
π1/2

[
Γ(m−1/2)

Γ
(
m+ n−3

2

)C(m,−1)P (1,−1,1) +
Γ(m+3/2)

Γ
(
m+ n+1

2

)C(m,1)P (1,1,1)

]
.
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We have used that P (0,0,0) is the identity operator 1 as follows from Proposition 4.1 and
formula (5.35). This can be simplified a little bit:

Ã(m,1,0) =
Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) [2m+n−3

2m−1
C(m,−1)P (1,−1,0) + C(m,0)

(
P (1,0,0) + 1

)
+

2m+1

2m+n−1
C(m,1)P (1,1,0)

]
,

Ã(m,1,1) =
Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) [(2m+n−1)(2m+n−3)

(2m+1)(2m−1)
C(m,−1)P (1,−1,1) + C(m,1)P (1,1,1)

]
.

(6.7)
Using recurrent relations of Proposition 4.1, we compute

P (1,−1) = m(m+ 1)j, P (1,0) = m(m+ n− 3), P (1,1) = −|y|2d2. (6.8)

This implies with the help of (5.35),

P (1,−1,0) = m(m+ 1)j, P (1,−1,1) = 0, P (1,0,0) = m(m+ n− 3), P (1,1,0) = 0, P (1,1,1) = −d2.
(6.9)

Substitute these values into (6.7)

Ã(m,1,0) =
Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) [m(m+1)(2m+n−3)

2m−1
C(m,−1)j +

(
m(m+n−3) + 1

)
C(m,0)

]
,

Ã(m,1,1) = −
Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) C(m,1)d2.

(6.10)
By Lemma 5.4,

C(m,−1) =

[m/2]∑
p=1

ap(m,−1)ipjp−1, ap(m,−1) =
2m−2pm!(m− 1)!(m− 2)!

(m− 2p)!p!(p− 1)!(2m− 2)!
;

C(m,0) =

[m/2]∑
p=0

ap(m, 0)ipjp, ap(m, 0) =
2m−2p(m!)3

(m− 2p)!(p!)2(2m)!
;

C(m,1) =

[m/2]∑
p=0

ap(m, 1)ipjp+1, ap(m, 1) =
2m−2pm!(m+ 1)!(m+ 2)!

(m− 2p)!p!(p+ 1)!(2m+ 2)!
.

(6.11)

Substituting values (6.11) into the first of formulas (6.10), we have

Ã(m,1,0) =
Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) [(m(m+n−3) + 1
)
a0(m, 0)

+

[m/2]∑
p=1

(m(m+1)(2m+n−3)

2m− 1
ap(m,−1) +

(
m(m+n−3) + 1

)
ap(m, 0)

)
ipjp

]
.

On assuming a0(m,−1) = 0, this can be written as

Ã(m,1,0) =

[m/2]∑
p=0

α(m,1,0)
p ipjp, (6.12)
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where

α(m,1,0)
p =

Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) [m(m+1)(2m+n−3)

2m− 1
ap(m,−1)+

(
m(m+n−3)+1

)
ap(m, 0)

]
.

Substituting values (6.11) for ap(m,−1) and ap(m, 0), we obtain

α(m,1,0)
p =

Γ
(
n−1

2

)
Γ(m+1/2)m(m!)2(m−2)!

π1/2Γ
(
m+ n−1

2

)
(2m)!

2m−2p

(p!)2(m− 2p)!
×

×
[
2p(m+1)(2m+n−3) + (m−1)

(
m(m+n−3) + 1

)]
(m ≥ 2).

(6.13)

Because of the factor (m− 2)!, this formula makes sense for m ≥ 2. We will consider the
cases of m = 0 and m = 1 a little bit later.

Substituting the value for C(m,1) from (6.11) into the second of formulas (6.10), we have

Ã(m,1,1) = −
Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) [m/2]∑
p=0

ap(m, 1) ipjp+1d2.

This can be written as

Ã(m,1,1) = −
[m/2]∑
p=0

α(m,1,1)
p ipjp+1d2, (6.14)

where

α(m,1,1)
p =

Γ
(
n−1

2

)
Γ(m+3/2)

π1/2Γ
(
m+ n+1

2

) ap(m, 1).

Substituting the value (6.11) for ap(m, 1), we obtain

α(m,1,1)
p =

Γ
(
n−1

2

)
Γ(m+3/2)m!(m+1)!(m+2)!

π1/2Γ
(
m+ n+1

2

)
(2m+ 2)!

2m−2p

p!(p+1)!(m− 2p)!
. (6.15)

Let us also specify the formula (6.13) for m = 0 and m = 1. In the case of m = 0, the
first of formulas (6.10) gives Ã(m,1,0) = C(0,0). By (6.11), C(0,0) = a0(0, 0)1 = 1. Thus,

Ã(m,1,0) = 1. (6.16)

In the case of m = 1, the first of formulas (6.10) gives Ã(m,1,0) = 2C(1,−1)j + C(1,0). By
(6.11), C(1,−1) = 0 and C(1,0) = a0(1, 0)1 = 1. Therefore Ã(m,1,0) = 1. Thus, we can
assume (6.12) to be valid for all m with the formula (6.13) added by

α
(0,1,0)
0 = α

(1,1,0)
0 = 1. (6.17)

As is seen from (6.12)–(6.13), Ã(m,1,0) is a positive self-adjoint operator. By Theorem
5.4, A(m,1,1) = 1

2

(
Ã(m,1,1) + (Ã(m,1,1))∗

)
must be a positive operator. As far as the operator

Ã(m,1,1) is concerned, its non-negativeness and self-adjointness are not obvious. Deleting
factors independent of p in (6.15), we pose the following

Conjecture 6.1. The second order differential operator

D(m) = −
[m/2]∑
p=0

2−2p

p!(p+1)!(m− 2p)!
ipjp+1d2 : C∞(Smτ ′Sn−1)→ C∞(Smτ ′Sn−1) (6.18)

is a non-negative self-adjoint operator for every m.
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If the self-adjointness of D(m) was proved, then its positiveness would follow by Theorem
5.4. We will check Conjecture 6.1 for m = 0, 1, 2. In the general case the conjecture
remains unproved.

We use local coordinates on the sphere, (gij) is the metric tensor and (gij) = (gij)
−1.

In the case of m = 0, the formula (6.18) becomes D(0) = −jd2 = −∆, where ∆ = gij∇i∇j
is the rough Laplacian. Conjecture 6.1 is true for m = 0.

In the case of m = 1, the formula (6.18) becomes

(D(1)f)i = −(jd2f)i = −1

6
gjk(∇i∇jfk +∇j∇ifk +∇i∇kfj +∇k∇ifj +∇j∇kfi +∇k∇jfi).

We write this as

(D(1)f)i = −1

3

(
(dδf)i +∇p∇ifp + (∆f)i

)
. (6.19)

On the other hand,

(df)ij =
1

2
(∇ifj +∇jfi)

and

(δdf)i = gpq∇p(df)iq =
1

2
gpq∇p(∇ifq +∇qfi)

=
1

2
gpq(∇p∇ifq +∇p∇qfi) =

1

2

(
∇p∇ifp + (∆f)i

)
.

From this

∇p∇ifp + (∆f)i = 2(δdf)i.

Substituting this expression into (6.19), we obtain

D(1) = −2

3
δd− 1

3
dδ.

Both −dδ and −δd are non-negative self-adjoint operators. Thus, Conjecture 6.1 is true
for m = 1.

In the case of m = 2, the formula (6.18) becomes

D(2) = −1

2
jd2 − 1

8
ij2d2 on S2. (6.20)

For a symmetric tensor field f = (fij), we have

(d2f)ijkl =
1

12

(
∇i∇jfkl +∇j∇ifkl +∇i∇kfjl +∇k∇ifjl +∇i∇lfjk +∇l∇ifjk

+∇j∇kfil +∇k∇jfil +∇j∇lfik +∇l∇jfik +∇k∇lfij +∇l∇kfij
)
.

Contracting this equality with the metric tensor gkl, we get

(jd2f)ij =
1

6
∇i∇jfpp +

1

6

(
∇i∇pfpj +∇j∇pfpi +∇p∇ifpj +∇p∇jfpi + (∆f)ij

)
. (6.21)

This can be written as

(jd2f)ij =
1

3
(dδf)ij +

1

6

(
∇p∇ifpj +∇p∇jfpi + (∆f)ij

)
+

1

6
(d2jf)ij. (6.22)

On the other hand,

(df)ijk =
1

3
(∇ifjk +∇jfik +∇kfij)
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and

(δdf)ij = gpq∇p(df)ijq =
1

3
gpq∇p(∇ifjq +∇jfjq +∇qfij)

=
1

3
gpq(∇p(∇ifjq +∇jfiq +∇p∇qfij) =

1

3

(
∇p∇ifpj +∇p∇jfpi + (∆f)ij

)
.

From this

∇p∇ifpj +∇p∇jfpi + (∆f)ij = 3(δdf)ij.

Substituting this expression into (6.22), we obtain

jd2 =
1

3
dδ +

1

2
δd+

1

6
d2j on S2. (6.23)

Contracting the equality (6.21) with the metric tensor gij, we obtain

j2d2 =
2

3
δ2 +

1

6
∆ j +

1

6
j∆.

The operators ∆ and j commute. Therefore

j2d2 =
2

3
δ2 +

1

3
∆ j on S2. (6.24)

Substituting (6.23) and (6.24) into (6.20), we have

D(2) = −1

6
dδ − 1

4
δd− 1

24
i∆ j − 1

12
d2j − 1

12
iδ2. (6.25)

The first three terms on the right-hand side are self-adjoint operators while two last
terms are adjoint to each other. Therefore this formula implies that D(2) is a self-adjoint
operator. The coincidence of coefficients at two last terms on the right-hand side of (6.25)
looks as a good fortune. The main difficulty of the proof of Conjecture 6.1 in the general
case is just getting such coincidences.

We have thus proved the Conjecture 6.1 for m = 0, 1, 2. Observe that we have used no
specifics of the sphere, i.e., Sn−1 can be replaced with an arbitrary compact Riemannian
manifold in (6.18).

As we have mentioned, the positiveness of the operator D(m) on the sphere follows from
its self-adjointness in virtue of Theorem 5.1. The following fact is also of some interest:
the non-negativeness of the operator D(2) on an arbitrary compact Riemannian manifold
can be derived from (6.25). We do not present the derivation.

6.3. Second order Reshetnyak formula. According to Theorem 5.1, the second order
Reshetnyak formula

‖If‖2

H
(2,s+1/2)
t+1/2

(TSn−1)
=

∞∫
0

ρ2t+n+3(1 + ρ2)s−t
∫

Sn−1

〈A(m,2,2)f̂ , f̂〉(ρξ) dξdρ

+

∞∫
0

ρ2t+n+1(1 + ρ2)s−t
∫

Sn−1

〈A(m,2,1)f̂ , f̂〉(ρξ) dξdρ

+

∞∫
0

ρ2t+n−1(1 + ρ2)s−t
∫

Sn−1

〈A(m,2,0)f̂ , f̂〉(ρξ) dξdρ

(6.26)

holds for any tensor field f ∈ Ssol(Rn;S2Rn). Here s ∈ R is arbitrary and t > −n/2.
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We again have by (5.44)

A(m,2,l) =
1

2

(
Ã(m,2,l) + (Ã(m,2,l))∗

)
(l = 0, 1, 2) (6.27)

The operators Ã(m,2,0), Ã(m,2,1), Ã(m,2,2) are computed by the same scheme as in the previ-
ous subsection, but all calculations are more bulky. We present the result.

First of all
Ã(0,2,0) = 1, Ã(1,2,0) = (n− 1)1 (6.28)

and

Ã(m,2,0) =

[m/2]∑
p=0

α(m,2,0)
p ipjp (m ≥ 2), (6.29)

where

α(m,2,0)
p =

Γ
(
n−1

2

)
Γ(m+1/2)

π1/2Γ
(
m+ n−1

2

) 2m−2pm2m!(m− 1)!(m− 2)!

(m− 2p)!(p!)2(2m)!
×

×
[
(m− 1)(m2+mn−3m+1)2 + 4(2m+n−3)(m2+mn−3m+1)p

− 4(m+1)(2m+n−3)(2m+n−5)p2
]

(m ≥ 2).

(6.30)

Next,

Ã(m,2,1) = −
[m/2]∑
p=0

α(m,2,1)
p ipjp+1d2, (6.31)

where

α(m,2,1)
p =

2m+1m!(m+1)!(m+2)!(m2+mn−m+n−1)Γ
(
n−1

2

)
Γ(m+3/2)

π1/2(2m+ 2)!Γ
(
m+ n+1

2

) ×

× 1

22pp!(p+1)!(m−2p)!
.

(6.32)

Finally,

Ã(m,2,2) =

[m/2]∑
p=0

α(m,2,2)
p ipjp+2d4, (6.33)

where

α(m,2,2)
p =

2mm!(m+2)!(m+4)!Γ
(
n−1

2

)
Γ(m+5/2)

π1/2(2m+ 4)!Γ
(
m+ n+3

2

) 1

22pp!(p+ 2)!(m− 2p)!
. (6.34)

As is seen from (6.29), Ã(m,2,0) is a self-adjoint operator. Therefore A(m,2,0) = Ã(m,2,0)

by (6.27). Theorem 5.1 guarantees that A(m,2,0) is a positive operator. The latter fact can
be also derived from (6.28)–(6.30). Indeed, all coefficients in (6.29) are positive as one
can easily check by an elementary analysis of the quadratic trinomial in brackets on the
right-hand side of (6.30).

For small values of m, the operators Ã(m,2,1) and Ã(m,2,2) look as follows:

Ã(0,2,1) = −∆, Ã(0,2,2) =
1

n2 − 1
(∆2 + 2 δ2d2); (6.35)

Ã(1,2,1) = −2(2n− 1)

n2 − 1
(dδ + 2δd),

Ã(1,2,2) =
1

(n2 − 1)(n+ 3)
(6δ2d2 + 4δdδd+ dδdδ + 2dδ2d+ 2δd2δ); (6.36)
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Ã(2,2,1) = − 60(3n+ 1)

(n2 − 1)(n+ 3)
(6 δd+ 4 dδ + iδdj + 2 d2j), (6.37)

Ã(2,2,2) =
6

(n2−1)(n+3)(n+5)

(
24 δ2d2 + 4 d2δ2 + 18 δdδd+ 8 dδdδ + 12 dδ2d+ 12 δd2δ

+ 2 iδ2d2j + iδdδdj + 6 δd3j + 6 iδ3d+ 4 dδd2j + 4 iδ2dδ + 2 d2δdj + 2iδdδ2
)
.

(6.38)
As is seen from (6.37), Ã(2,2,1) is not a self-adjoint operator. Indeed, three first terms on

the right-hand side of (6.37) are self-adjoint operators, but d2j is not self-adjoint. Thus,
the symmetrization (5.44) is an essential step of our algorithm for computing A(m,r,l).

For the operators Ã(m,2,2), the same question can be asked as in the Conjecture 6.1:
is Ã(m,2,2) a self-adjoint operator? The answer is positive for m = 0, 1, 2 as is seen from
(6.35), (6.36) and (6.38). For a general m, the question remains open.
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