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Abstract. The paper considers a class of elliptical and circular Radon transforms appearing in problems of ultrasound

imaging. These transforms put into correspondence to an unknown image function f in 2D its integrals Rf along
a family of ellipses (or circles). From the imaging point of view, of particular interest is the circular geometry of
data acquisition. Here the generalized Radon transform R integrates f along ellipses (circles) with their foci (centers)
located on a fixed circle C. We prove that such transforms can be uniquely inverted from radially incomplete data to

recover the image function in annular regions. Our results hold for cases when f is supported inside and/or outside
of the data acquisition circle C.

1. Introduction

In various modalities of ultrasound imaging, the object under investigation is probed by sending through it
acoustic waves and measuring the resulting wave reflections. In the bi-static setup of ultrasound reflection tomography
(URT) one uses an emitter and a receiver separated from each other to send and receive acoustic signals at various
locations around the body. In mono-static case the same device (a transducer) works both as an emitter and as a
receiver.

The mathematical model considered in this paper uses two simplifying assumptions, which hold reasonably well
in many applications. We assume that the speed of sound propagation in the medium is constant and the medium is
weakly reflecting. The latter means that we ignore the signals that arrive at the receiver after reflecting more than
once inside the object. Under these assumptions, the time delay t between sending and receiving the signal defines
the distance d1 + d2 traveled by the wave from the emitter to the reflection location and from there to the receiver.
Hence the measured signal is the superposition of all echoes generated by inclusions located at points x that have a
constant sum d1+d2 of distances to the emitter and the receiver. In bi-static setup this corresponds to the integral of
the acoustic reflectivity function f(x) along an ellipse with foci at the emitter and receiver locations. In mono-static
setup it corresponds to the integral of f(x) along a circle centered at the transducer location. The grayscale graph
of f(x) is used as an image of the medium, hence we need to find f from its corresponding integrals. By measuring
the wave reflections for different time delays and different locations of the emitter and receiver one can generate a
set of integrals Rf of the function f along a 2D family of ellipses or circles. The problem of image reconstruction in
URT is then mathematically equivalent to the inversion of the corresponding generalized Radon transform R. For
more details and rigorous derivation of the mathematical model we refer the reader to [6, 13, 16] and the references
there.

From the imaging point of view of particular interest is the circular geometry of data acquisition. Here the
emitter and the receiver travel along a circle C and are a fixed distance 2a apart from each other. In the mono-static
case that fixed distance is simply 0. By making the signal measurements for various positions γT (ϕ) of the emitter
and γR(ϕ) of the receiver and various time delays t, one can generate a 2D set of integrals Rf(ϕ, t) along ellipses
(circles). These ellipses have foci at γT (ϕ) and γR(ϕ) (circles have centers at γT (ϕ)) and the size of their major and
minor semi-axes (or radii for circles) are defined by t (see Figure 1).

The problem of inversion of the circular Radon transform (CRT) has been extensively studied before by various
authors (e.g. see [1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19] and the references there). Most of these
works deal with the inversion of CRT when the Rf data is available for all possible radii. Few of them deal with
the inversion of CRT from radially incomplete data and we refer the reader to [4] for a detailed discussion of those
works. However very little is known about inversion of the elliptical Radon transforms (ERT). Some limited results
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Figure 1. The sketch of the bi-static setup of URT and the variables.

were established in [3, 12, 13, 19], most of which deal with inversion of ERT from either full or half data in the
“radial” variable.

In [4] the authors provided an exact inversion formula for CRT from radially partial data in the circular geometry
of data acquisition. The current paper builds up on the results and techniques established in [4] and presents some
further results both for CRT and ERT. We prove that such transforms can be uniquely inverted from radially
incomplete data, that is, from data where t is limited to a small subset of R+. Our inversion formulas recover the
image function f in annular regions defined by the smallest and largest available values of t. The results hold for
cases when f is supported inside C (e.g. in mammography [13, 14]), outside of C (e.g. in intravascular imaging [6]),
or simultaneously both inside and outside (e.g. in radar imaging [3]).

The rest of the paper is organized as follows. In Section 2, we introduce the notations and definitions. In Section
3, we present the main results in the form of three theorems. The proofs of these theorems are provided in Section
4. Section 5 includes additional remarks and acknowledgments.

2. Notations

Let us consider a generalized Radon transform integrating a function f(x) of two variables along ellipses with
the foci located on the circle C(0, R) centered at 0 of radius R and 2a units apart (see Figure 1). We denote the
fixed difference between the polar angles of the two foci by 2α, where α ∈ (0, π/2) and define

a = R sinα, b = R cosα.

We parameterize the location of the foci by

γT (ϕ) = R (cos(ϕ− α), sin(ϕ− α)),

γR(ϕ) = R (cos(ϕ+ α), sin(ϕ+ α)) for ϕ ∈ [0, 2π].

Thus the foci move on the unit circle and are always 2a units apart. For ϕ ∈ [0, 2π] and ρ > 0, let

E(ρ, ϕ) = {x ∈ R2 : |x− γT (ϕ)|+ |x− γR(ϕ)| = 2
√
ρ2 + a2}.

Note that the center of the ellipse E(ρ, ϕ) is (b cosϕ, b sinϕ) and ρ is the minor semiaxis of E(ρ, ϕ).
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Consider a compactly supported function f(r, θ), where (r, θ) denote the polar coordinates in the plane. The
elliptical Radon transform (ERT) of f on the ellipse parameterized by (ρ, ϕ) is denoted by

REf(ρ, ϕ) =

∫
E(ρ,ϕ)

f(r, θ) ds,

where ds is the arc-length measure on the ellipse.
If we take a = α = 0 then the foci coincide and the ellipses E(ρ, ϕ) become circles

C(ρ, ϕ) = {x ∈ R2 : |x− γT (ϕ)| = ρ}.

The resulting circular Radon transform (CRT) of f on the circle parameterized by (ρ, ϕ) is denoted by

RCf(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) ds,

where ds is the arc-length measure on the circle.
In the rest of the text we will use the notation g(ρ, ϕ) to denote either REf(ρ, ϕ), or (when working with CRT)

RCf(ρ, ϕ).
Since both f(r, θ) and g(ρ, ϕ) are 2π-periodic in the second variable one can expand these functions into Fourier

series.

(1) f(r, θ) =
∞∑

n=−∞
fn(r) e

inθ

and

(2) g(ρ, ϕ) =
∞∑

n=−∞
gn(ρ) e

inϕ,

where

fn(r) =
1

2π

2π∫
0

f(r, θ) e−inθdθ

and

gn(ρ) =
1

2π

2π∫
0

g(ρ, ϕ) e−inϕdϕ.

We will use Cormack-type [8] inversion strategy to recover Fourier coefficients of f from those of g for limited
values of ρ both for CRT and ERT in various setups of the support of f .

In the statements below we denote by A(r1, r2) the open annulus with radii 0 < r1 < r2 centered at the origin

A(r1, r2) = {(r, θ) : r ∈ (r1, r2), θ ∈ [0, 2π]}.

The disc of radius R centered at the origin is denoted by D(0, R).
The k-th order Chebyshev polynomial of the first kind is denoted by Tk, i.e.

Tk(t) = cos(k arccos t).

3. Main Results

The first statement in this section is a generalization of Theorem 1 from [4], which was proved for CRT, to the
case of ERT.

Theorem 3.1. Let f(r, θ) be a continuous function supported inside the annulus A(ε, b). Suppose REf(ρ, ϕ) is
known for all ϕ ∈ [0, 2π] and ρ ∈ (0, b− ε), then f(r, θ) can be uniquely recovered.
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Figure 2. A sketch for Theorem 3.1. The shaded area denotes the support of f , the dashed circle
is the set of centers of the integration ellipses.

In this and other theorems of this section we require f to be continuous, which guarantees the convergence of the
Fourier series (1) and (2) almost everywhere. If one needs to ensure convergence everywhere, then some additional
conditions on f (e.g. bounded variation) should be added. At the same time, if we assume that f is only piecewise
continuous with respect to r for each fixed θ, then we will recover f correctly at points of continuity. As a result, if
the function f is not identically zero in D(0, ε1), then one can consider a modified function f̃ such, that

f̃(r, θ) =


0, r ≤ ε

f(r, θ), ε1 < r < b

smooth cutoff , ε < r < ε1.

It is easy to notice that if ε < ε1 then f̃ satisfies the hypothesis of the theorem, and by sending ε1 → ε we also have
REf(ρ, ϕ) = RE f̃(ρ, ϕ) for all ϕ ∈ [0, 2π] and ρ ∈ (0, b− ε1). Hence we get the following statement.

Remark 3.2. In order to reconstruct the function f(r, θ) in any subset Ω of the disc of its support D(0, R), one
needs to know REf(ρ, ϕ) only for ρ < b−R0, where R0 = inf{|x|, x ∈ Ω}.

In other words, to image something at depth d from the surface of the disc, one only needs REf(ρ, ϕ) data for
ρ ∈ [0, d], without making any assumptions about the shape of the support of f inside that disc.

The next two theorems demonstrate the possibility of inverting the CRT and ERT from radially partial data
when the support of the function f lies on both sides of the data acquisition circle C (see Figures 3 and 4).

Theorem 3.3. Let f(r, θ) be a continuous function supported inside the disc D(0, R2) with R2 > 2R. Suppose
RC(ρ, ϕ) is known for all ϕ ∈ [0, 2π] and ρ ∈ [R2 − R,R2 + R], then f(r, θ) can be uniquely recovered in A(R1, R2)
where R1 = R2 − 2R.

Theorem 3.4. Let f(r, θ) be a continuous function supported inside the disc D(0, R2) with R2 > 2b. Suppose
RE(ρ, ϕ) is known for all ϕ ∈ [0, 2π] and ρ ∈ [R2 − b,R2 + b], then f(r, θ) can be uniquely recovered in A(R1, R2)
where R1 = R2 − 2b.

4. Proofs

The proofs of all three theorems are similar. The idea is to reduce the problem of inverting the generalized
Radon transforms to solving an integral equation with a special kernel for Fourier coefficients of f . We will prove
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Figure 3. A sketch for Theorem 3.3. The shaded area denotes the support of f , the dashed inner
circle is the set of transducer locations (centers of integration circles).
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Figure 4. A sketch for Theorem 3.4. The shaded area denotes the support of f , the dashed inner
circle is the set of the centers of integration ellipses.

Theorem 3.1 in detail, then indicate the arising differences in the proofs of the other two theorems, and the strategy
of dealing with those differences.

Proof of Theorem 3.1. By using the definition of ERT and the Fourier series expansion of f we get

g(ρ, ϕ) =

∫
E(ρ,ϕ)

f(r, θ) ds =
+∞∑

n=−∞

∫
E(ρ,ϕ)

fn(r) e
inθ ds =

+∞∑
n=−∞

∫
E+(ρ,ϕ)

fn(r)
(
einθ + ein(2ϕ−θ)

)
ds

where E+(ρ, ϕ) denotes the part of the ellipse E(ρ, ϕ) corresponding to θ ≥ ϕ (see Figure 1). Simplifying further we
get
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g(ρ, ϕ) = 2
+∞∑

n=−∞

∫
E+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] einϕds.

Comparing this equation with (2) we obtain

(3) gn(ρ) = 2

∫
E+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] ds.

As we explicitly show below (see formulas (4) and (5)) the Fourier series expansion diagonalizes the Radon transform,
i.e. gn depends only on fn and vice versa for all integer values of n. Hence the problem of inverting ERT in this
setup is reduced to solving the one-dimensional integral equation (3). Let us discuss this in detail.

Since the left-hand side of equation (3) does not depend on ϕ, it should hold for any choice of ϕ in the right-
hand side. Without loss of generality, we will assume from now on that ϕ = π/2. Then the points of E+(ρ, ϕ) for
ρ ∈ (0, b− ε) will be limited to the second quadrant. We parameterize the points on E+(ρ, ϕ) as follows:

x(t) = −
√

ρ2 + a2 sin t, y(t) = b− ρ cos t, t ∈ [0, π/2].

For brevity denote A =
√
ρ2 + a2 and B = ρ. Then simple calculations show that

ds =
√
A2 cos2 t+B2 sin2 t dt,

θ − ϕ = arccos

(
b−B cos t

r

)
,

cos t =
−bρ+

√
R2ρ2 + a2(R2 − r2)

a2
, and

sin2 t =

[
a2 +

(√
R2ρ2 + a2(R2 − r2)− bρ

)] [
a2 −

(√
R2ρ2 + a2(R2 − r2)− bρ

)]
a4

.

Let us now rewrite the integral in (3) in the variable r. We have gn(ρ) =

= 2a

b∫
b−ρ

r fn(r) Tn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2) dr√

R2ρ2 + a2(R2 − r2)
√

(a2 + (
√
R2ρ2 + a2(R2 − r2)− bρ))(a2 − (

√
R2ρ2 + a2(R2 − r2)− bρ))

=

b∫
b−ρ

K̃n(ρ, r)√
a2 + bρ−

√
R2ρ2 + a2(R2 − r2)

fn(r) dr

where

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)√

R2ρ2 + a2(R2 − r2)
√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

Making the change of variables u = b− r, we get

(4) gn(ρ) =

ρ∫
0

K̃n(ρ, b− u)√
a2 + bρ−

√
R2ρ2 + a2(R2 − (b− u)2)

fn(b− u) du =

ρ∫
0

Kn(ρ, u)√
ρ− u

Fn(u) du,

where

(5) Fn(u) = fn(b− u) and Kn(ρ, u) =
K̃n(ρ, b− u)

√
ρ− u√

a2 + bρ−
√
R2ρ2 + a2(R2 − (b− u)2)

.

A simple calculation shows that a2 + bρ−
√
R2ρ2 + a2(R2 − (b− u)2) = 0 if and only if u = ρ and its derivative

at u = ρ does not vanish. Therefore, Kn(ρ, u) is a C1 function.
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Hence (4) is a Volterra integral equation of the first kind with a weakly singular kernel (e.g. see [18, 20]). This
type of equations have a unique solution and there is a standard approach for writing down that solution through
a resolvent kernel using Picard’s process of successive approximations (e.g. see [18]). The details of this part follow
exactly as in [4, Theorem 1], and this finishes the proof. �

Proof of Theorem 3.3. Similar to the proof of the previous theorem we have

g(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) ds =

∞∑
n=−∞

∫
C(ρ,ϕ)

fn(r) e
inθds =

∞∑
n=−∞

∫
C+(ρ,ϕ)

fn(r)
(
einθ + ein(2ϕ−θ)

)
ds

where C+(ρ, ϕ) denotes the part of the circle C(ρ, ϕ) corresponding to θ ≥ ϕ.

g(ρ, ϕ) = 2
∞∑

n=−∞

∫
C+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] einϕds.

Therefore we have,

(6) gn(ρ) = 2

∫
C+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] ds.

Then

θ − ϕ = arccos

(
r2 +R2 − ρ2

2rR

)
and

gn(ρ) = 2

∫
C+(ρ,ϕ)

fn(r) Tn

(
r2 +R2 − ρ2

2rR

)
ds

=
2

R

R2∫
ρ−R

r Tn

(
r2+R2−ρ2

2rR

)
√
1−

(
ρ2+R2−r2

2ρR

)2
fn(r) dr

Let us make the substitution, u = R2 − r. We get

gn(ρ) =
2

R

R2+R−ρ∫
0

(R2 − u)Tn

(
(R2−u)2+R2−ρ2

2(R2−u)R

)
√

1−
(

ρ2+R2−(R2−u)2

2ρR

)2
fn(R2 − u) du

Setting ρ̃ = R2 +R− ρ for simplicity and renaming ρ̃ as ρ, we have

gn(R2 +R− ρ) =
2

R

ρ∫
0

(R2 − u) Tn

(
(R2−u)2+R2−(R2+R−ρ)2

2(R2−u)R

)
√
1−

(
(R2+R−ρ)2+R2−(R2−u)2

2(R2+R−ρ)R

)2
fn(R2 − u) du

= 4

ρ∫
0

(R2 +R− ρ)(R2 − u)Tn

(
(R2−u)2+R2−(R2+R−ρ)2

2(R2−u)R

)
√
(ρ− u)(2R2 − ρ− u)(2R+ u− ρ)(2R+ 2R2 − ρ− u)

fn(R2 − u) du

=

ρ∫
0

Kn(ρ, u)√
ρ− u

Fn(u) du.

Here Kn and Fn are

Kn(ρ, u) =
4(R2 +R− ρ)(R2 − u)Tn

(
(R2−u)2+R2−(R2+R−ρ)2

2(R2−u)R

)
√
(ρ− u)(2R2 − ρ− u)(2R+ u− ρ)(2R+ 2R2 − ρ− u)

and
Fn(u) = fn(R2 − u).



8 AMBARTSOUMIAN AND KRISHNAN

Note that Kn(ρ, u) is a C1 function. Rest of the proof follows exactly as in [4, Theorem 1]. This completes the
proof. �

Proof of Theorem 3.4. We have

g(ρ, ϕ) =

∫
E(ρ,ϕ)

f(r, θ) ds =
∞∑

n=−∞

∫
E(ρ,ϕ)

fn(r) e
inθ ds =

∞∑
n=−∞

∫
E+(ρ,ϕ)

fn(r)
(
einθ + ein(2ϕ−θ)

)
ds

where E+(ρ, ϕ) denotes the part of the ellipse E(ρ, ϕ) corresponding to θ ≥ ϕ.

g(ρ, ϕ) = 2

∞∑
n=−∞

∫
E+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] einϕds.

Therefore we have,

(7) gn(ρ) = 2

∫
E+(ρ,ϕ)

fn(r) cos [n(θ − ϕ)] ds.

We first observe that, without loss of generality, we may assume from now on that ϕ = π/2. We introduce the
following elliptic coordinates on the ellipse determined by ρ:

x(t) = −
√
ρ2 + a2 sin t, y(t) = b− ρ cos t.

For simplicity denote A =
√
ρ2 + a2 and B = ρ.

ds =
√
A2 cos2 t+B2 sin2 t dt

θ − ϕ = arccos

(
b−B cos t

r

)
cos t =

−bρ+
√
R2ρ2 + a2(R2 − r2)

a2

sin2 t =
(a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ))(a2 − (

√
R2ρ2 + a2(R2 − r2)− bρ))

a4

Let us now rewrite the integral in (7) in the variable r. We have gn(ρ) =

= 2a

R2∫
ρ−b

rfn(r)Tn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)√

R2ρ2 + a2(R2 − r2)
√
(a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ))(a2 − (

√
R2ρ2 + a2(R2 − r2)− bρ))

dr

=

R2∫
ρ−b

K̃n(ρ, r)√
a2 + bρ−

√
R2ρ2 + a2(R2 − r2)

fn(r) dr

where

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)√

R2ρ2 + a2(R2 − r2)
√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

Making the change of variable u = R2 − r, ρ̃ = R2 + b− ρ, and replacing ρ̃ by ρ, we get

gn(R2 + b− ρ) =

ρ∫
0

K̃n(R2 + b− ρ,R2 − u)√
a2 + b(R2 + b− ρ)−

√
R2(R2 + b− ρ)2 + a2(R2 − (R2 − u)2)

fn(R2 − u) du

=

ρ∫
0

Kn(ρ, u)√
ρ− u

Fn(u) du,
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where Fn(u) = fn(R2 − u) and

Kn(ρ, u) =
K̃n(R2 + b− ρ,R2 − u)

√
ρ− u√

a2 + b(R2 + b− ρ)−
√
R2(R2 + b− ρ)2 + a2(R2 − (R2 − u)2)

.

A simple calculation would show that a2 + b(R2 + b − ρ) −
√
R2(R2 + b− ρ)2 + a2(R2 − (R2 − u)2 = 0 if and only

if u = ρ and its derivative at u = ρ does not vanish. Therefore, Kn(ρ, u) is a C1 function.
Now rest of the proof follows exactly as in [4, Theorem 1].

�
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