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1. Introduction and statement of the main results

Let S2R1+n be the complex vector space of symmetric tensor fields of rank 2 in R1+n. Let Ω be a
bounded domain in R1+n with C∞ boundary and C∞(Ω;S2R1+n) be the space of S2R1+n-valued C∞

smooth symmetric 2-tensor fields on Ω. We represent points in Ω by (t, x). Any F ∈ C∞(Ω;S2R1+n)
will be denoted by

F (t, x) = (Fij(t, x)) where 0 ≤ i, j ≤ n with Fij(t, x) = Fji(t, x) and Fij(t, x) ∈ C∞(Ω).

Note that we have used the 0-index to denote the time component of a symmetric 2-tensor field.
Also note that a function f ∈ C∞(Ω) if it has a smooth extension to a slightly larger open set
containing Ω.

The light ray transform of F ∈ C∞(Ω;S2R1+n) is defined as follows. Consider a point (t, x) ∈ Ω
and fix a direction θ ∈ Sn−1. The light ray transform L of F is the usual ray transform of F through
the point (t, x) in the direction θ̃ = (1, θ). That is,

LF (t, x, θ̃) =

∫
R

n∑
i,j=0

θ̃iθ̃jFij(t+ s, x+ sθ) ds. (1.1)

We have assumed the Einstein summation convention and from now on, with repeating indices,
this will be assumed, with the index varying from 0 to n. We also note that extending F to be 0
outside Ω, the definition of the light ray transform L can be extended to points (t, x) ∈ R1+n and
any θ̃ as defined above. This will be assumed without comment from now on.

In this work, we address the question of characterizing the tensor fields F ∈ C∞(Ω;S2R1+n) such
that LF (t, x, θ̃) = 0 for all (t, x) ∈ R1+n and all θ̃ = (1, θ) with θ ∈ Sn−1 near some fixed θ0 ∈ Sn−1.

Light ray transforms in Euclidean and manifold settings have been studied in several recent works;
see [4, 9, 10, 11, 19, 22]. Most of these works analyze light ray transform from the view point of
microlocal analysis. Light ray transforms arise in the study of inverse problems for hyperbolic PDEs
with time-dependent coefficients as well; see references [1, 2, 3, 5, 6, 7, 8, 12, 13, 14, 17, 18, 20].
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To the best of the authors’ knowledge, an exact description of the kernel of the light ray transform
on symmetric 2-tensor fields has not been precisely studied, and this is the main goal of the paper.
In this work, we use Fourier transform techniques to prove the uniqueness result in the Minkowski
setting. We should mention that the recent paper [4] also deals with uniqueness result for light
ray transforms on symmetric tensor fields and a uniqueness result similar to ours is proven in
the more general setting of Lorentzian manifolds. Our work was done independently, and the
techniques employed here are different from theirs. Specifically, their uniqueness result for the light
ray transform on certain Lorentzian manifolds relies on the uniqueness result for the corresponding
geodesic ray transform on the base space; see [4, Theorem 2]. However, we work directly with the
light ray transform, albeit in the Minkowski setting. Another distinction from the work of [4] is that
our uniqueness result only assumes knowledge of the light ray transform in the neighborhood of a
fixed direction. In other words, ours is a partial data result. The uniqueness result of [4], requires
knowledge of the full light ray transform, even in the setting of Minkowski space.

We now state the main results. ults as well as in proofs below we use the following notation. By
δ, we mean the Euclidean divergence and trace will refer to the Euclidean trace.

In other words, for a symmetric 2-tensor field F = (Fij)0≤i,j≤n:

(δF )i =
∂Fj0

∂t
+

n∑
j=1

∂Fij

∂xi

= ∂iFij. (1.2)

trace(F ) =
n∑

i=0

Fii. (1.3)

In the last equality in (1.2), we emphasize that the Einstein summation convention is assumed
with the index varying between 0 and n and the ∂

∂t
derivative is abbreviated as ∂0 and the space

derivatives ∂
∂xi

are denoted by ∂i for 1 ≤ i ≤ n.

Theorem 1.1. Let F ∈ C∞(Ω;S2R1+n) be such that δF = 0 and trace(F ) = 0. If for a fixed
θ0 ∈ Sn−1,

LF (t, x, θ̃) = 0 for all (t, x) ∈ R1+n and θ near θ0,

then F = 0.
Theorem 1.2. Let F ∈ C∞(Ω;S2R1+n). Then there exists an F̃ ∈ C∞(Ω;S2R1+n) satisfying
δ(F̃ ) = trace(F̃ ) = 0, a function λ ∈ C∞(Ω), and a vector field v with components in C∞(Ω)
satisfying v|∂Ω = 0 such that F can be decomposed as

F = F̃ + λg + dv. (1.4)
Here g is the Minkowski metric with (−1, 1, 1, · · · , 1) along the diagonal and d is the symmetrized

derivative defined by
(dv)ij =

1

2
(∂ivj + ∂jvi) .

See also [16], where a decomposition result similar in spirit to the one above is shown in a
Riemannian setting.

Combining the above two results, we get the following desired characterization.

Theorem 1.3. Let F ∈ C∞(Ω;S2R1+n). If for a fixed θ0 ∈ Sn−1,
LF (t, x, θ̃) = 0, for all (t, x) ∈ R1+n and θ near θ0,



LIGHT RAY TRANSFORM OF SYMMETRIC 2-TENSOR FIELDS 3

then F = λg + dv, where λ ∈ C∞(Ω), g is the Minkowski metric and v is a vector field with
components in C∞(Ω) with v|∂Ω = 0.

See [10, Lemma 9.1] as well, where a version of Theorem 1.3 is proven in the Euclidean setting
in space dimensions n = 3.

2. Proofs

We prove two lemmas that would immediately give the proof of Theorem 1.1. As mentioned
already, we will extend F as 0 outside Ω.

Lemma 2.1. Under the assumptions of Theorem 1.1, we have the following equality:

θ̃iθ̃jF̂ij(ζ) = 0 for all ζ ∈ (1, θ)⊥ and θ near θ0

where θ ∈ Sn−1 and ⊥ is with respect to the Euclidean metric.

Proof. This is the Fourier slice theorem for the light ray transform. This result is standard; see [19].
We consider the Fourier transform of Fij:

F̂ij(ζ) =

∫
R1+n

Fij(t, x)e
−i(t,x)·ζ dtdx. (2.1)

Using the decomposition, R1+n = R(1, θ)⊕ ℓ with ℓ ∈ (1, θ)⊥ combined with Fubini’s theorem, we
get

F̂ij(ζ) =
√
2

∫
(1,θ)⊥

∫
R

Fij(ℓ+ s(1, θ))e−i(ℓ+s(1,θ))·ζ ds dℓ.

If ζ ∈ (1, θ)⊥, then

θ̃iθ̃jF̂ij(ζ) =
√
2

∫
(1,θ)⊥

∫
R

θ̃iθ̃jFij(s(1, θ) + ℓ)e−iℓ·ζ ds dℓ.

Using the fact that∫
R

θ̃iθ̃jFij(t+ s, x+ sθ) ds = 0, for all (t, x) ∈ R1+n, and θ near θ0, (2.2)

we get

θ̃iθ̃jF̂ij(ζ) = 0 for all ζ ∈ (1, θ)⊥ with θ near θ0. (2.3)
□

In the following lemma, without loss of generality, we fix θ0 = (1, 0 · · · , 0) ∈ Sn−1.

Lemma 2.2. Let F ∈ C∞(Ω;S2R1+n) be such that δF = 0 and trace(F ) = 0. Suppose also that
θ̃iθ̃jF̂ij(ζ) = 0 for ζ ∈ (1, θ)⊥ and θ near θ0. Then

F̂ij(ζ) = 0

in a small conical neighborhood of the space-like vector ζ0 = (0, 0, 1, 0, · · · , 0) ∈ R1+n.
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Proof. In order to make the presentation clear, we first give the proof in R1+3 and then generalize
it to R1+n when n ≥ 4.

First let us show that F̂ij(ζ0) = 0 for all 0 ≤ i, j ≤ 3. We fix θ0 = (1, 0, 0). Note that (1, θ0)·ζ0 = 0.
Consider

θ0(a) = (cos a, 0, sin a). (2.4)
If a is near 0, then θ0(a) is near θ0. Also note that (1, θ0(a)) · ζ0 = 0. Substituting ζ0 = (0, 0, 1, 0)
and θ0(a) as above into (2.3), we get,(

F̂00 + 2 cos aF̂01 + 2 sin aF̂03 + cos2 aF̂11 + 2 sin a cos aF̂13 + sin2 aF̂33

)
(ζ0) = 0. (2.5)

Let us differentiate this equation with respect to a four times. We get,(
−2 sin aF̂01 + 2 cos aF̂03 − sin 2aF̂11 + 2 cos 2aF̂13 + sin 2aF̂33

)
(ζ0) = 0 (2.6)(

−2 cos aF̂01 − 2 sin aF̂03 − 2 cos 2aF̂11 − 4 sin 2aF̂13 + 2 cos 2aF̂33

)
(ζ0) = 0 (2.7)(

2 sin aF̂01 − 2 cos aF̂03 + 4 sin 2aF̂11 − 8 cos 2aF̂13 − 4 sin 2aF̂33

)
(ζ0) = 0 (2.8)(

2 cos aF̂01 + 2 sin aF̂03 + 8 cos 2aF̂11 + 16 sin 2aF̂13 − 8 cos 2aF̂33

)
(ζ0) = 0. (2.9)

Letting a → 0 in (2.5), (2.6), (2.7), (2.8) and (2.9), we have the following 5 equations:(
F̂00 + 2F̂01 + F̂11

)
(ζ0) = 0 (2.10)(

F̂03 + F̂13

)
(ζ0) = 0 (2.11)(

F̂01 + F̂11 − F̂33

)
(ζ0) = 0 (2.12)(

F̂03 + 4F̂13

)
(ζ0) = 0 (2.13)(

F̂01 + 4F̂11 − 4F̂33

)
(ζ0) = 0. (2.14)

Since δ(F ) = trace(F ) = 0, we have

F̂02(ζ0) = F̂12(ζ0) = F̂22(ζ0) = F̂32(ζ0) = 0, (2.15)(
F̂00 + F̂11 + F̂22 + F̂33

)
(ζ0) = 0. (2.16)

From (2.11) and (2.13), we get that F̂03(ζ0) = F̂13(ζ0) = 0. Subtracting (2.12) from (2.14), we
get that F̂11(ζ0) = F̂33(ζ0). Therefore (2.12) gives that F̂01(ζ0) = 0. Substituting F̂11(ζ0) = F̂33(ζ0)

into (2.16), and using the fact that F̂22(ζ0) = 0 from (2.15), we get that F̂00(ζ0) + 2F̂11(ζ0) = 0.
Combining this with (2.10), we get that F̂00(ζ0) = F̂11(ζ0) = 0. Combining all these, we have now
shown that F̂ij(ζ0) = 0 for all 0 ≤ i, j ≤ 3.

Next our goal is to show that if ζ is any non-zero space-like vector in a small enough conical
neighborhood (in the Euclidean sense) of ζ0, then F̂ij(ζ) = 0, for 0 ≤ i, j ≤ 3 as well. We recall
that a non-zero vector ζ = (ζ0, ζ1, ζ2, ζ3) is space-like if |ζ0| < ∥(ζ1, ζ2, ζ3)∥, where the norm ∥·∥
refers to the Euclidean norm.

We start with a unit vector (ζ1, ζ2, ζ3) in R3, and we choose ζ0 = − sinφ. Then (− sinφ, ζ1, ζ2, ζ3)
is a space-like vector for −π/2 < φ < π/2.
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Let us recall that in showing F̂ij(ζ0) = 0, we considered a perturbation θ0(a) (see (2.4)) of the
vector θ0 = (1, 0, 0). Note that we required that θ0(a) was close enough to θ0 and (1, θ0(a)) · ζ0 = 0.
The following calculations are motivated by having these same requirements for the vector ζ =
(− sinφ, ζ1, ζ2, ζ3).

Since we are interested in a non-zero space-like vector in a small enough conical neighborhood of
ζ0, let us choose

ζ1 = sinα cos β, ζ2 = cosα and ζ3 = sinα sin β.

Then clearly ζ is close to (0, 1, 0) whenever α and β are close enough to 0, and choosing φ close to
0, we get that the space-like vector ζ = (− sinφ, ζ1, ζ2, ζ3) is close enough to (0, 0, 1, 0).

Next choose θ0(φ) = (cosφ, sinφ, 0) for φ close to 0 and the perturbation of θ0(φ) for a close to
0 by

θ0(φ, a) = (cos a cosφ, sinφ, sin a cosφ) .

Our goal is next to modify θ0(φ, a) to Θ0(φ, a) such that (1,Θ0(φ, a)) · ζ = 0. To this end, let us
consider the orthogonal matrix A:

A =

cosα cos β − sinα cosα sin β
sinα cos β cosα sinα sin β
− sin β 0 cos β

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Define Θ0, Θ0(φ) and Θ0(a, φ) by

Θ0 = AT

10
0

 =

cosα cos β
− sinα

cosα sin β

 ,

Θ0(φ) = AT θ0(φ) = AT

cosφsinφ
0

 =

a11 cosφ+ a21 sinφ
a12 cosφ+ a22 sinφ
a13 cosφ+ a23 sinφ


and

Θ0(φ, a) = AT θ0(φ, a) =

a11 cos a cosφ+ a21 sinφ+ a31 sin a cosφ
a12 cos a cosφ+ a22 sinφ+ a32 sin a cosφ
a13 cos a cosφ+ a23 sinφ+ a33 sin a cosφ

 =

A1(a)
A2(a)
A3(a)

 .

We first note that if a, φ, α and β are close enough to 0, then Θ0(φ, a) is close enough to θ0. As
before, defining Θ̃(φ, a) = (1,Θ(φ, a)), we have LF (t, x, Θ̃0(φ, a)) is 0.

Next we show that for all φ, a, α and β close enough to 0, (1,Θ0(φ, a))·ζ = 0. To see this, consider

(− sinφ, sinα cos β, cosα, sinα sin β) · (1,Θ0(φ)) = − sinφ+ ⟨
(
ζ1, ζ2, ζ3

)
, AT (θ0(φ, a))⟩

= − sinφ+ ⟨A
(
ζ1, ζ2, ζ3

)
, θ0(φ, a)⟩.

The matrix A is such that A (ζ1, ζ2, ζ3) = (0, 1, 0).
Since θ0(φ, a) = (cos a cosφ, sinφ, sin a cosφ), we now get that (1,Θ0(φ, a)) · ζ = 0. Using this
choice of Θ0(φ, a) in (2.3), we get
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(
F̂00 + 2A1(a)F̂01 + 2A2(a)F̂02 + 2A3(a)F̂03 + (A1(a))

2F̂11 + 2A1(a)A2(a)F̂12

+ 2A1(a)A3(a)F̂13 + (A2(a))
2 F̂22 + 2A2(a)A3(a)F̂23 + (A3(a))

2 F̂33

)
(ζ) = 0. (2.17)

As before, we consider (2.17) and differentiate it 4 times and let a → 0. These would give 5
equations. Also since F is divergence free and trace free, we have the following 5 equations:(

− sinφF̂00 + a21F̂01 + a22F̂02 + a23F̂03

)
(ζ) = 0(

− sinφF̂10 + a21F̂11 + a22F̂12 + a23F̂13

)
(ζ) = 0(

− sinφF̂20 + a21F̂21 + a22F̂22 + a23F̂23

)
(ζ) = 0(

− sinφF̂30 + a21F̂31 + a22F̂32 + a23F̂33

)
(ζ) = 0(

F̂00 + F̂11 + F̂22 + F̂33

)
(ζ) = 0.

(2.18)

Together, these would give 10 equations and determinant of the matrix formed by the coefficients
is continuous as a function of α, β and φ. We show that this determinant is non-zero, which would
give that F̂ij(ζ) = 0 for 0 ≤ i, j ≤ 3. In order to show that the determinant is non-vanishing, it is
enough to observe that as α, β, φ → 0 in these 10 equations, we would get the same set of equations
as in (2.10) - (2.16). However, we have already shown that F̂ij(ζ0) = 0 for 0 ≤ i, j ≤ 3, using these
equations. By continuity of the determinant, we have that the matrix of coefficients formed by the
10 equations mentioned above has non-zero determinant when α, β, φ close to 0. Hence we have
F̂ij(ζ) = 0 for 0 ≤ i, j ≤ 3, where ζ = (− sinφ, sinα cos β, cosα, sinα sin β), with α, β and φ are
near 0. Repeating the same argument as above, we can show that F̂ij(λζ) = 0 for 0 ≤ i, j ≤ 3,
where ζ is as above and λ > 0. This concludes the Lemma 2.2 for the case of n = 3.

Now we consider the general case n ≥ 4.
As before, first let us show that F̂ij(ζ0) = 0 for all 0 ≤ i, j ≤ n, where recall that ζ0 =

(0, 0, 1, 0, · · · , 0). We fix θ0 = (1, 0, 0, · · · , 0) ∈ Sn−1. Note that (1, θ0) · ζ0 = 0. Consider
θk(a) = cos ae1 + sin aek for k ≥ 3, (2.19)

θkl(a) = cos ae1 +
1√
2
sin aek +

1√
2
sin ael for 3 ≤ k < l ≤ n (2.20)

where ej ∈ Rn be vector in Rn whose jth entry is 1 and other entries are zero. If a is near 0, then
θ0(a) is near θ0. Also note that (1, θk(a)) · ζ0 = 0 and (1, θkl(a)) · ζ0 = 0. Now substituting this
choice of ζ0, θk(a) and θkl(a) into (2.3), we get,(

F̂00 + 2 cos aF̂01 + 2 sin aF̂0k + cos2 aF̂11 + 2 sin a cos aF̂1k + sin2 aF̂kk

)
(ζ0) = 0 for k ≥ 3. (2.21)(

F̂00 + 2 cos aF̂01 +
√
2 sin aF̂0k +

√
2 sin aF̂0l + cos2 aF̂11 +

√
2 sin a cos aF̂1k

+
√
2 sin a cos aF̂1l +

sin2 a

2

(
F̂kk + 2F̂kl + F̂ll

))
(ζ0) = 0 for 3 ≤ k < l ≤ n.

(2.22)

Differentiating (2.21) 4 times and letting a → 0, we arrive at the following equations:
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(
F̂00 + 2F̂01 + F̂11

)
(ζ0) = 0 (2.23)(

F̂0k + F̂1k

)
(ζ0) = 0 (2.24)(

F̂01 − F̂11 + F̂kk

)
(ζ0) = 0 (2.25)(

F̂0k + 4F̂1k

)
(ζ0) = 0 (2.26)(

−F̂01 + 4F̂11 − 4F̂kk

)
(ζ0) = 0. (2.27)

Similarly, we differentiate (2.22) with respect to a 4 times and let a → 0. We get,(
− 2 sin aF̂01 +

√
2 cos aF̂0k +

√
2 cos aF̂0l − sin 2aF̂11 +

√
2 cos 2aF̂1k

+
√
2 cos 2aF̂1l +

sin 2a

2

(
F̂kk + 2F̂kl + F̂ll

))
(ζ0) = 0; 3 ≤ k < l ≤ n

(2.28)

(
− 2 cos aF̂01 −

√
2 sin aF̂0k −

√
2 sin aF̂0l − 2 cos 2aF̂11 − 2

√
2 sin 2aF̂1k

− 2
√
2 sin 2aF̂1l + cos 2a

(
F̂kk + 2F̂kl + F̂ll

))
(ζ0) = 0; 3 ≤ k < l ≤ n.

(2.29)

(
2 sin aF̂01 −

√
2 cos aF̂0k −

√
2 cos aF̂0l + 4 sin 2aF̂11 − 4

√
2 cos 2aF̂1k

− 4
√
2 cos 2aF̂1l − 2 sin 2a

(
F̂kk + 2F̂kl + F̂ll

))
(ζ0) = 0; 3 ≤ k < l ≤ n.

(2.30)

(
2 cos aF̂01 +

√
2 sin aF̂0k +

√
2 sin aF̂0l + 8 cos 2aF̂11 + 8

√
2 sin 2aF̂1k

+ 8
√
2 sin 2aF̂1l − 4 cos 2a

(
F̂kk + 2F̂kl + F̂ll

))
(ζ0) = 0; 3 ≤ k < l ≤ n.

(2.31)

Letting a → 0 in (2.28) - (2.31), we have,(
F̂0k + F̂0l + F̂1k + F̂1l

)
(ζ0) = 0 (2.32)(

−2F̂01 − 2F̂11 + F̂kk + 2F̂kl + F̂ll

)
(ζ0) = 0; k ≥ 3 (2.33)(

F̂0k + F̂0l + 4F̂1k + 4F̂1l

)
(ζ0) = 0; k ≥ 3. (2.34)(

2F̂01 + 8F̂11 − 4(F̂kk + 2F̂kl + F̂ll)
)
(ζ0) = 0; 3 ≤ k < l ≤ n. (2.35)

Now we consider (2.23) - (2.26) and (2.32) - (2.35) combined with the following two equations:

F̂02(ζ0) = F̂12(ζ0) = F̂22(ζ0) = · · · = F̂n2(ζ0) = 0; (2.36)(
F̂00 + F̂11 + F̂22 + F̂33 + · · ·+ F̂nn

)
(ζ0) = 0, (2.37)

since δ(F ) = trace(F ) = 0.
We now show that these equations imply that F̂ij(ζ0) = 0 for all 0 ≤ i, j ≤ n.



8 KRISHNAN, SENAPATI AND VASHISTH

Adding (2.35) and (2.33), we get,

2F̂11 − (F̂kk + 2F̂kl + F̂ll)(ζ0) = 0 for 3 ≤ k < l ̸= n. (2.38)

Subtracting (2.34) from (2.32), we get,

(F̂1k + F̂1l)(ζ0) = (F̂0k + F̂0l)(ζ0) = 0 for 3 ≤ k < l ̸= n. (2.39)

Adding (2.25) and (2.27), we get,

F̂11(ζ0) = F̂kk(ζ0) for k ≥ 3 and F̂01(ζ0) = 0. (2.40)

Now combined with the previous equation, we have from (2.23) that

F̂00(ζ0) = −F̂11(ζ0). (2.41)

From (2.24) and (2.26), we have that

F̂1k(ζ0) = F̂0k(ζ0) = 0 for k ≥ 3. (2.42)

Now we already know from (2.36) that F̂22(ζ0) = 0. Using (2.40) and (2.41) in (2.37), we get that

(n− 2)F̂11(ζ0) = 0. (2.43)

This then implies that
F̂mm(ζ0) = 0 for all 0 ≤ m ≤ n. (2.44)

Now from (2.38), this then implies that

F̂kl(ζ0) = 0 for all 3 ≤ k < l ≤ n. (2.45)

Now combined with (2.36), we now have that

F̂ij(ζ0) = 0 for all 0 ≤ i, j ≤ n. (2.46)

Next our goal is to show that if ζ is any non-zero space-like vector in a small enough conical
neighborhood (in the Euclidean sense) of ζ0, then F̂ij(ζ) = 0, for 0 ≤ i, j ≤ n as well. We recall
that a non-zero vector ζ = (ζ0, ζ1, ζ2, · · · , ζn) is space-like if |ζ0| < ∥(ζ1, ζ2, · · · , ζn)∥, where the
norm ∥·∥ refers to the Euclidean norm.

We start with a unit vector in Rn, ζ ′ := (ζ1, ζ2, · · · , ζn), and let us choose ζ0 = − sinφ. Then
(− sinφ, ζ1, ζ2, · · · , ζn) is a space-like vector if −π/2 < φ < π/2.

Let us recall that in showing F̂ij(ζ0) = 0, we considered a perturbation θ0(a) (see (2.19)) of the
vector θ0 = (1, 0, · · · , 0). Note that we required that θ0(a) was close enough to θ0 and (1, θ0(a))·ζ0 =
0. As in the proof for the case n = 3, the calculations below are motivated by these requirements
for the vector ζ = (− sinφ, ζ1, ζ2, · · · , ζn).

Since we are interested in a non-zero space-like vector in a small enough conical neighborhood of
ζ0, let us choose ζ ′ as

ζ ′ = (cosφ1 sinφ2, cosφ2, sinφ1 sinφ2 cosφ3, · · · , sinφ1 sinφ2 · · · sinφn−2 sinφn−1).

Then clearly ζ ′ is close to (0, 1, 0, · · · , 0) ∈ Rn whenever φi for 1 ≤ i ≤ n − 1 are close enough to
0, and choosing φ close to 0, we get that the space-like vector ζ = (− sinφ, ζ1, ζ2, · · · , ζn) is close
enough to ζ0 = (0, 0, 1, 0, · · · , 0) ∈ R1+n.
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Next choose θ0(φ) := cosφe1 + sinφe2 close to θ0 when φ is close to 0 and the perturbation of
θ0(φ) for a close to 0 by

θk(φ, a) = cos a cosφe1 + sinφe2 + sin a cosφek for k ≥ 3,

θkl(φ, a) = cos a cosφe1 + sinφe2 +
1√
2
sin a cosφek +

1√
2
sin a cosφel for 3 ≤ k < l ≤ n.

Let us consider the orthogonal matrix A such that Aζ ′ = e2. Let us denote the entries of this matrix
by A = (aij). Define Θ0(φ) and Θk(a, φ) and Θkl(φ, a) by

Θk(φ, a) = AT (θk(φ, a)) =

a11 cos a cosφ+ a21 sinφ+ ak1 sin a cosφ
...

a1n cos a cosφ+ a2n sinφ+ akn sin a cosφ

 =

A1(a)
...

An(a)

where k ≥ 3

and

Θkl(φ, a) = AT (θkl(φ, a)) =

a11 cos a cosφ+ a21 sinφ+ 1√
2
(ak1 + al1) sin a cosφ

...
a1n cos a cosφ+ a2n sinφ+ 1√

2
(akn + aln) sin a cosφ

 =

B1(a)
...

Bn(a)

 ,

where 3 ≤ k < l ≤ n. We first note that if a, φ, and φi for 1 ≤ i ≤ n − 1, are close enough
to 0, then Θk(φ, a) and Θkl(φ, a) are close enough to θ0. Denoting Θ̃k(φ, a) = (1,Θk(φ, a) and
Θ̃k,l(φ, a) = (1,Θk,l(φ, a), we have that LF (t, x, Θ̃k(φ, a)) = 0 for k ≥ 3 and LF (t, x, Θ̃kl(φ, a)) = 0
for 3 ≤ k < l ≤ n.

Next we show that for all φ, a and φi for 1 ≤ i ≤ n − 1 close enough to 0, (1, Θ̃k(φ, a)) · ζ = 0

and
(
1, Θ̃kl(φ, a)

)
· ζ = 0.

To see this, consider

(− sinφ, ζ ′) · (1,Θk(φ, a)) = − sinφ+ ⟨ζ ′,Θk(φ)⟩ = − sinφ+ ⟨ζ ′, AT (θk(φ, a))⟩
= − sinφ+ ⟨Aζ ′, θk(φ, a)⟩.

Note that the matrix A is chosen such that A (ζ ′) = (0, 1, 0, · · · , 0). Since θk(φ, a) = cos a cosφe1 +
sinφe2 + sin a cosφek, k ≥ 3, we now get that (1,Θk(φ, a)) · ζ = 0. Similarly we can check that
(1,Θkl(φ, a)) · ζ = 0.

Using this choice of Θ̃k(φ, a) in (2.3), we have

(
F̂00 + 2A1(a)F̂01 + 2A2(a)F̂02 + 2A3(a)F̂03 + · · ·+ 2An(a)F̂0n

+ (A1(a))
2F̂11 + 2A1(a)A2(a)F̂12 + 2A1(a)A3(a)F̂13 + · · ·+ 2A1(a)An(a)F̂1n

+ (A2(a))
2F̂22 + 2A2(a)A3(a)F̂23 + 2A2(a)A4(a)F̂24 + · · ·+ 2A2(a)An(a)F̂2n

...

+ (An−1(a))
2 F̂n−1,n−1 + 2An−1(a)An(a)F̂n−1,n + (An(a))

2 F̂nn

)
(ζ) = 0.

(2.47)
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Next using the choice Θ̃kl(φ, a) in (2.3), we get(
F̂00 + 2B1(a)F̂01 + 2B2(a)F̂02 + 2B3(a)F̂03 + · · ·+ 2Bn(a)F̂0n

+ (B1(a))
2F̂11 + 2B1(a)B2(a)F̂12 + 2B1(a)B3(a)F̂13 + · · ·+ 2B1(a)Bn(a)F̂1n

+ (B2(a))
2F̂22 + 2B2(a)B3(a)F̂23 + 2B2(a)B4(a)F̂24 + · · ·+ 2B2(a)Bn(a)F̂2n

...

+ (Bn−1(a))
2 F̂n−1,n−1 + 2Bn−1(a)Bn(a)F̂n−1,n + (Bn(a))

2 F̂nn

)
(ζ) = 0.

(2.48)

We differentiate each of Equations (2.47) and (2.48), 4 times and let a → 0. Arguing similarly to
the case of n = 3, we will arrive at the fact that F̂ij(ζ) = 0, and also F̂ij(λζ) = 0 for λ > 0.

□
Proof of Theorem 1.1. By Lemma 2.2, we have an open cone of space-like vectors ζ along which the
Fourier transform F̂ij(ζ) = 0. Since Fij for 1 ≤ i, j ≤ n are extended by zero outside Ω, therefore
using Paley-Wiener theorem, we have that Fij ≡ 0 for all 0 ≤ i, j ≤ n. □

Next we prove the decomposition result stated in Theorem 1.2.

Proof of Theorem 1.2. Assume the decomposition is true. Taking trace on both sides in (1.4), we
get,

trace(F ) = trace(F̃ ) + trace(λg) + trace(dv).
Now by assumption, trace(F̃ ) = 0 and trace(λg) = (n− 1)λ . Also trace(dv) = δv. Therefore

trace(F ) = (n− 1)λ+ δv. (2.49)

Let us take divergence on both sides of (1.4). Using the fact that F̃ is divergence free
δF = δ (λg) + δdv.

Writing the above equation in expanded form, we have
∂jF0j

∂jF1j

...
∂jFnj

 =


−∂0λ

∂1λ

...
∂nλ

+
1

2


∆v0 + ∂2

0jvj

∆v1 + ∂2
1jvj

...
∆vn + ∂2

njvj

 . (2.50)

Now using the expression for λ from (2.49) in (2.50), we get

1

2


∆v0 + ∂2

0jvj

∆v1 + ∂2
1jvj

...
∆vn + ∂2

njvj

+
1

n− 1


−∂0trace(F )

∂1trace(F )

...
∂ntrace(F )

− 1

n− 1


−∂2

0jvj

∂2
1jvj

...
∂2
njvj

 =


∂jF0j

∂jF1j

...
∂jFnj

 .
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Thus the equation for v is
∆v0 +

(
1 + 2

n−1

)
∂2
0jvj

∆v1 +
(
1− 2

n−1

)
∂2
1jvj

...
∆vn +

(
1− 2

n−1

)
∂2
njvj

 = 2


∂jF0j

∂jF1j

...
∂jFnj

− 2

n− 1


−∂0trace(F )

∂1trace(F )

...
∂ntrace(F )

 :=


u0

u1

...
un

 . (2.51)

This set of equations can be written as

∆v0 +

(
1 +

2

n− 1

)
∂2
0kvk = u0

∆vj +

(
1− 2

n− 1

)
∂2
jkvk = uj, for 1 ≤ j ≤ n.

(2.52)

We first note that for n = 3, the above system of equations becomes



3∂2
0v0 + ∂2

1v0 + ∂2
2v0 + ∂2

3v0 + 2 (∂2
01v1 + ∂2

02v2 + ∂2
03v3) = u0, in Ω

∆v1 = u1, in Ω

∆v2 = u2, in Ω

∆v3 = u3, in Ω

v0 = v1 = v2 = v3 = 0, on ∂Ω.

(2.53)

Equation (2.53) is a decoupled system of equations for v with zero Dirichlet boundary data and
hence it is uniquely solvable. Then we use (2.49) to solve for λ. This completes the proof of Theorem
1.2 for n = 3.

Now in what follows, we assume that n ≥ 4.
For simplicity, we denote α = 1 + 2

n−1
, β = 1 − 2

n−1
and A(t, x;∇) the following operator (here

and below ∇ = (∂t, ∂x1 , · · · , ∂xn)):

A(t, x;∇) =


∆+ α∂2

0 α∂2
01 α∂2

02 · · · α∂2
0n

β∂2
10 ∆+ β∂2

1 β∂2
12 · · · β∂2

1n

β∂2
20 β∂2

21 ∆+ β∂2
2 · · · β∂2

2n... ... ... . . . ...
β∂2

n0 β∂2
n1 β∂2

n2 · · · ∆+ β∂2
n

 . (2.54)

Then we have (2.52) with the homogeneous boundary condition can be written as{
A(t, x;∇)v(t, x) = u(t, x) (t, x) ∈ Ω,

v(t, x) = 0 (t, x) ∈ ∂Ω
(2.55)

where v(t, x) = (v0(t, x), v1(t, x), · · · , vn(t, x))T and u(t, x) = (u0(t, x), u1(t, x), · · · , un(t, x))
T are

two column vectors. Our goal is to show that the boundary value problem (2.55) is uniquely
solvable. To this end, we show (see [15, 21]) that A(t, x;∇) is strongly elliptic with zero kernel and
zero co-kernel.
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We first prove strong ellipticity. The symbol A(t, x; ξ) of operator A(t, x;∇) is (up to a sign)
given by

A(t, x; ξ) =


|ξ|2 + αξ20 αξ0ξ1 αξ0ξ2 · · · αξ0ξn
βξ1ξ0 |ξ|2 + βξ21 βξ1ξ2 · · · βξ1ξn
βξ2ξ0 βξ2ξ1 |ξ|2 + βξ22 · · · βξ2ξn

... ... ... . . . ...
βξnξ0 βξnξ1 βξnξ2 · · · |ξ|2 + βξ2n,

 (2.56)

where ξ = (ξ0, ξ1, · · · , ξn). To prove strong ellipticity for A(t, x;∇) it is enough to show that

P (t, x; ξ) =
A(t, x; ξ) + AT (t, x; ξ)

2

is positive definite. Now

P (t, x; ξ) =


|ξ|2 + αξ20 ξ0ξ1 ξ0ξ2 · · · ξ0ξn

ξ1ξ0 |ξ|2 + βξ21 βξ1ξ2 · · · βξ1ξn
ξ2ξ0 βξ2ξ1 |ξ|2 + βξ22 · · · βξ2ξn

... ... ... . . . ...
ξnξ0 βξnξ1 βξnξ2 · · · |ξ|2 + βξ2n

 .

Let η ∈ R1+n \ {0}. Then ηTP (t, x; ξ)η is given by

ηTP (t, x; ξ)η = |ξ|2|η|2 + (α− 1) ξ20η
2
0 + ξ0η0 (ξ · η) + (1− β)ξ0η0 (ξ · η − ξ0η0) + βξ · η (ξ · η − ξ0η0)

= |ξ|2|η|2 + (α + β − 2) ξ20η
2
0 + β (ξ · η)2 + 2 (1− β) (ξ · η) ξ0η0.

Now using the value of α and β, we have

ηTP (t, x; ξ)η = |ξ|2|η|2 + n− 3

n− 1
(ξ · η)2 + 4

n− 1
(ξ0η0) (ξ · η)

=
|ξ|2|η|2

n− 1

(
n− 1 + (n− 3)

(
ξ · η
|ξ||η|

)2

+ 4

(
ξ0η0
|ξ||η|

)(
ξ · η
|ξ||η|

))
.

Let us write the vectors ξ and η as ξ = (ξ0, ξ
′) and η = (η0, η

′). Now, for simplicity, we define
A = ξ0η0

|ξ||η| and B = ξ′·η′
|ξ||η| , then clearly |A| ≤ 1, |B| ≤ 1 and |A + B| ≤ 1. Using these in the above

equation, we have

ηTP (t, x; ξ)η =
|ξ|2|η|2

n− 1

(
n− 1 + (n− 3) (A+B)2 + 4A (A+B)

)
=

|ξ|2|η|2

n− 1

(
n− 1 + (n+ 1)A2 + 2(n− 1)AB + (n− 3)B2

)
≥ |ξ|2|η|2

n− 1

(
n− 1 + (n+ 1)A2 − (n− 1)A2 − (n− 1)B2 + (n− 3)B2

)
≥ |ξ|2|η|2

n− 1

(
n− 1 + 2A2 − 2B2

)
≥ n− 3

n− 1
|ξ|2|η|2.

This proves that P (t, x, ξ) is positive definite and hence A(t, x;∇) is strongly elliptic for n ≥ 4.
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Next we show that (2.55) with u = 0 on the right hand side has only the zero solution. Multiplying
the first equation in (2.52) by v0 and second equation in (2.52) by vj and integrating over Ω, we get
the following set of equations∫

Ω

|∇v0(t, x)|2 dtdx+

(
1 +

2

n− 1

)∫
Ω

∇ · v(t, x)∂0v0(t, x) dtdx = 0 (2.57)

and for 1 ≤ j ≤ n∫
Ω

|∇vj(t, x)|2 dtdx+

(
1− 2

n− 1

)∫
Ω

∇ · v(t, x)∂jvj(t, x) dtdx = 0. (2.58)

Adding the set of equations in (2.57) and (2.58), we get∫
Ω

n∑
j=0

|∇vj(t, x)|2 dtdx+

(
1− 2

n− 1

)∫
Ω

|∇ · v(t, x)|2 dtdx+
4

n− 1

∫
Ω

∇ · v(t, x)∂0v0(t, x) dtdx = 0.

(2.59)
For simplicity, let us denote a = ∂0v0, b =

∑n
j=1 ∂jvj and c =

∑n
j=0|∇vj|2 − |∂0v0|2. Using these in

(2.59), we have ∫
Ω

(
c+ a2 +

n− 3

n− 1
(a+ b)2 +

4

n− 1

(
a2 + ab

))
dtdx = 0.

Rewriting this, we get,∫
Ω

(
2na2 + 2 (n− 1) ab+ (n− 3) b2 + (n− 1) c

)
dtdx = 0.

Now let us view the integrand in the above equation as a quadratic equation in a and its discriminant
D(t, x) is given by

D(t, x) = 4(n− 1)2b2 − 8n
(
(n− 3)b2 + (n− 1)c

)
= 4
( (

n2 − 2n+ 1
)
b2 − 2n(n− 3)b2 − 2n(n− 1)c

)
= 4
( (

−n2 + 4n+ 1
)
b2 − 2n(n− 1)c

)
.

Now

c =
n∑

j=0

|∇vj|2 − |∂0v0|2 =
n∑

i,j=0

|∂ivj|2 − |∂0v0|2 ≥
n∑

j=1

|∂jvj|2.

Also
b2 =

∣∣ n∑
j=1

∂jvj
∣∣2 = n∑

j=1

|∂jvj|2 + 2
∑

1≤j<k≤n

Re
(
∂jvj∂kvk

)
≤ n

n∑
j=1

|∂jvj|2 ≤ nc.

Thus we have that nc ≥ b2 and using this we get
D(t, x) ≤ 4

(
−n2 + 4n+ 1− 2n+ 2

)
b2 = 4

(
−n2 + 2n+ 3

)
b2 < 0 if b2 ̸= 0 and n ≥ 4.

However if D(t, x) < 0, we have the integrand in (2.59) is strictly positive which is not possible since
the integral in (2.59) is zero. Hence we have b = 0 and using this in (2.59), we have

∑n
j=0|∇vj|2 = 0

in Ω. This implies vj(t, x) = cj for 0 ≤ j ≤ n where cj is some constant. Now using the boundary
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condition we have that vj(t, x) = 0 in Ω. Hence Ker(A(t, x;∇)) = {0}.

Finally, we show that the co-kernel of A(t, x;∇) is 0 as well. We proceed as follows. Let w ∈
(Image(A(t, x;∇)))⊥. That is, consider w such that

⟨w,A(t, x;∇)v⟩ = 0 for all v ∈ C∞(Ω) with v = 0 on ∂Ω. (2.60)

This, in particular, gives

⟨A∗(t, x;∇)w, v⟩ = 0 for all v ∈ C∞
c (Ω), (2.61)

where

A∗(t, x; ∂) =


∆+ α∂2

0 β∂2
10 β∂2

20 · · · β∂2
n0

α∂2
01 ∆+ β∂2

1 β∂2
21 · · · β∂2

n1

α∂2
02 β∂2

12 ∆+ β∂2
2 · · · β∂2

n2... ... ... . . . ...
α∂2

0n β∂2
1n β∂2

2n · · · ∆+ β∂2
n

 . (2.62)

By integration by parts in (2.60), combined with (2.54) and the fact that v|∂Ω = 0, we have

0 = ⟨w,A(t, x,∇)v⟩L2(Ω) = ⟨A∗(t, x,∇)w, v⟩L2(Ω) + ⟨w,B(t, x, ∂ν)v⟩L2(∂Ω) (2.63)

where B(t, x, ∂ν) is the boundary operator we arrive at after integration by parts. The first term on
the right hand side of (2.63) is 0 by (2.61). Next we show that w = 0 on ∂Ω. Let u be an arbitrary
vector field on ∂Ω with C∞(∂Ω) coefficients. We show that there exists a vector field v in Ω with
C∞ coefficients such that

B(t, x, ∂ν)v = u, on ∂Ω, and v|∂Ω = 0. (2.64)

The boundary operator B has a smooth extension to a small enough neighbourhood of the boundary.
With this extension, we can consider (2.64) as an initial value problem for a system of first order
ODEs with smooth coefficients, the solution of which exists in a small enough neighborhood of the
boundary. This solution can now be extended smoothly to all of Ω which we denote by v. Using
this in (2.63), we get that w|∂Ω = 0. Thus, finally to show that the co-kernel of A(t, x; ∂) is 0, we
have to show that the following BVP{

A∗(t, x; ∂)w = 0 for (t, x) ∈ Ω

w(t, x) = 0 for (t, x) ∈ ∂Ω
(2.65)

has only the zero solution where A∗(t, x; ∂) is the adjoint for operator A(t, x; ∂). Using the expression
for A∗(t, x; ∂) from (2.62) in (2.65), we have the following set of equations for wj for 0 ≤ j ≤ n with
zero Dirichlet boundary condition.

∆w0 + (α− β)∂2
0w0 + β∂2

k0wk = 0

∆wj + (α− β)∂0jw0 + β∂2
kjwk = 0, 1 ≤ j ≤ n.

(2.66)
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Now multiplying the first equation in (2.66) by w0 and second equation by wj and integrating over
Ω, we have∫
Ω

|∇w0(t, x)|2dtdx+ (α− β)

∫
∂0w0(t, x)∂0w0(t, x)dtdx+ β

n∑
k=0

∫
Ω

∂0w0(t, x)∂kwk(t, x)dtdx = 0;

∫
Ω

|∇wj(t, x)|2dtdx+ (α− β)

∫
Ω

∂0w0(t, x)∂jwj(t, x)dtdx+ β

n∑
k=0

∂jwj(t, x)∂kwk(t, x)dtdx; 1 ≤ j ≤ n.

Adding the above set of equations and substituting the expressions for α and β, we get
n∑

j=0

∫
Ω

|∇wj(t, x)|2dtdx+
4

n− 1

∫
Ω

∇ · w(t, x)∂0w0(t, x)dtdx+

(
1− 2

n− 1

)∫
Ω

|∇ · w(t, x)|2dtdx = 0.

This equation is exactly the same as that of (2.59). Hence repeating the same arguments as before,
we conclude that w(t, x) = 0. Thus we have co-kernel(A) = {0} for n ≥ 4. This completes the
proof of the decomposition theorem for n ≥ 4. □
Proof of Theorem 1.3. Now combining the results of Theorems 1.1 and 1.2, we conclude Theorem
1.3. For, given F ∈ C∞(Ω, S2R1+n), by Theorem 1.3, we can decompose F = F̃ + λg + dv, with
F̃ , λ, v ∈ C∞(Ω) satisfying δ(F̃ ) = trace(F̃ ) = 0 and v|∂Ω = 0, and g is the Minkowski metric.
It is straightforward to see that λg and dv above are in the kernel of the light ray transform; see
[10] as well. The fact that dv with v|∂Ω = 0 lies in the kernel of the light ray transform follows by
fundamental theorem of calculus and λg lies in the kernel because g has signature (−1, 1, · · · , 1),
and light ray transform integrates F along lines in the direction θ̃ = (1, θ) with |θ| = 1. Therefore,
we conclude that LF (t, x, θ̃) = LF̃ (t, x, θ̃) = 0. Finally, to conclude, we apply Theorem 1.1 for F̃ ,
after extending F̃ = 0 outside Ω.

□
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