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1.1 Introduction

In this chapter, we introduce a range of tomography problems, including X-
ray imaging, limited data problems, electron microscopy and radar imaging.
We are interested in the recovery of the singular features of the medium or
object rather than exact inversion formulas. Toward this end, we show how
microlocal analysis helps researchers understand the strengths and limitations
inherent in the reconstruction of these and several other tomography problems.
Microlocal analysis aids researchers in understanding those singular features
that can be stably recovered, which could be very important when only limited
or partial data is available. Furthermore, it helps explain the presence of
artifacts present in certain image reconstruction methods and in some cases
might help distinguish the true singularities from the false ones. We emphasize
these issues in this chapter.

In Section 1.2, we will introduce tomography problems including X-ray
tomography, electron microscope tomography, and radar imaging. We will
present reconstructions for each problem and examine how well they image
the original objects with the goal of finding strengths and limitations for each
method. In Section 1.3, we introduce some basic properties of some tomo-
graphic transforms and then introduce microlocal analysis in Section 1.4. Fi-
nally, we give several applications in tomography and radar imaging in Section
1.5 emphasizing the microlocal properties of these transforms. This powerful
tool allows us to understand the strengths and limitations that are really
intrinsic to the data, as is shown in Section 1.5.

1.2 Motivation

In this section, we provide an introduction to several modalities in tomog-
raphy, including X-ray tomography, limited data tomography, and electron
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microscope tomography. For each type of data, we first provide some history
and then examine strengths and weaknesses of reconstructions using such
data. The goal of this section is to observe, for each problem, object features
that are well reconstructed and features that are not. We provide these re-
constructions to motivate the study of microlocal analysis, which we will use
in Section 1.5 to explain these reconstructions.

1.2.1 X-ray tomography (CT) and limited data problems

In the 1970’s, X-ray tomography revolutionized diagnostic medicine. For the
first time, doctors were able to get clear and accurate pictures of the inside of
the body without doing exploratory surgery. One part of this story began in
the early 1960s. At that time, Allan Cormack consulted as a medical physicist
at the Groote Schuur hospital in Cape Town, South Africa, and he checked
whether X-ray machines were calibrated properly. He felt that there should
be more information in the X-ray data than just what is obtained from single
pictures, which project all organs onto the same plane, and he believed that
X-rays could be used to image the cross-sectional internal structure of objects.
He posited that, if one takes X-ray images from multiple directions, one should
be able to piece together the internal structure of the body. He then developed
two algorithms [10, 11] for the problem. To give a proof of concept, he built a
prototype scanner that showed his second algorithm was effective. Along with
Godfrey Hounsfield of EMI in England, he received the 1979 Nobel Prize in
Medicine. You can read more about him in the excellent biography [94].

X-ray CT is now used routinely in medicine and in industrial nondestruc-
tive testing, and it allows doctors to image the internal structure of the body
without exploratory surgery. Here is how we turn the physics of X-ray CT
into mathematics. Let ` be a line along which X-rays travel, and for x P `
let Ipxq be the intensity (number of photons) at the point x. Let fpxq be
the attenuation coefficient of the body at x. For monochromatic light, f is
proportional to the density at x and by using a scale factor they become the
same. Beer’s Law [65] states that the decrease in intensity at x is proportional
the intensity, Ipxq, and the proportionality constant is ´fpxq:

dI

dx
“ ´fpxqIpxq. (1.1)

This makes sense heuristically because the more dense the material at x, the
more the beam is attenuated and the greater the decrease of I at x. Equation
(1.1) is a simple differential equation for I that can be solved using separation
of variables. If I0 is the intensity at the X-ray emitter—the point x0 P `—and
I1 is the intensity at the detector, x1 P `, then we can integrate (1.1) to find

ln

ˆ

I0
I1

˙

“

ż x1

x0

fpxqdx “

ż

xP`

fpxqdx .

So, we define
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RLpfqp`q “
ż

xP`

fpxqdx

where in this case, dx is the arc length measure on `. The transform RL
was studied by the Austrian mathematician Johann Radon [81] in the early
twentieth century because it was intriguing pure mathematics. This transform
is called the Radon line transform (or X-ray transform).

To proceed mathematically, we now establish more notation. Let ω P S1

and let p P R. Then, the line

`pω, pq “ tx P R2 : x ¨ ω “ pu (1.2)

is perpendicular to ω and contains pω. Sometimes it will be useful to let ω be
a function of polar angle ϕ P R,

ωpϕq “ pcospϕq, sinpϕqq .

In this parameterization

RLfpω, pq “
ż

xP`pω,pq

fpxqdx “

ż

tPR
fppω ` tωKqdt (1.3)

where ωK is the unit vector π{2 radians counterclockwise from ω. This integral
is defined for f P CcpR2q and in fact RL is continuous on many spaces (see
Section 1.3.3). We will prove the basic properties of this transform in Section
1.3.

First, we consider the forward problem and a simple case that will show
in a naive sense how the X-ray transform detects object boundaries.

Example 1. Let f be the characteristic function of the unit disk in R2. Then,
using the Pythagorean Theorem,

RLfpω, pq “

#

2
a

1´ p2 |p| ď 1

0 |p| ą 1
. (1.4)

The functionRLfpω, pq in (1.4) is smooth except at p “ ˘1, that is, except for
lines `pω,˘1q as can be seen from Figure 1.1. The data are not smooth at those
lines and these lines are tangent to the boundary of the disk. This suggests
that lines tangent to boundaries give special information about the specimen.
In Section 1.4, we will discover what is mathematically special about those
lines and we will relate this back to limited data tomography in Section 1.5.

For complete data, that is data over all lines through the object, good
reconstruction methods such as Filtered backprojection (Theorem 9) are ef-
fective to reconstruct from X-ray CT data.

However one cannot obtain complete data in many important tomography
problems. These are called limited data tomography problems, and we will now
describe several important ones. Our goal at this point is to observe how the
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Fig. 1.1. This graph shows the calculation of the Radon transform in (1.4). The unit
disk is above the graph. For |p| ď 1, one can see that the length of the intersection
of `pω, pq and the disk is 2

a

1´ p2.

reconstructions look compared to the original objects. We will use this to help
understand these problems.

Here are some guidelines as you read this section. For each problem and
reconstruction, conjecture what is special about the object boundaries that
are well reconstructed in relation to the limited data set used. Also, think
about what is special about those boundaries that are not well reconstructed.

Exterior X-ray CT Data

Exterior CT data are data for lines that are outside an excluded region. Typ-
ically, that region is a circle of radius r ą 0, so lines `pω, pq for |p| ě r are
in the data set. Theorem 5 in the next section shows that compactly sup-
ported functions can be uniquely reconstructed outside the excluded region
from exterior data.

The exterior problem came about in the early days of tomography for CT
scans around the beating heart. In those days, a single scan of a planar cross
section could take several minutes, and movement of the heart would create
artifacts in the scan. If an excluded region were chosen to contain the heart
and be large enough so the outside of that region would not move, then data
exterior to that region would be usable. However, scanners soon began to use
fan beam data (see Section 1.3.6) and data could be acquired much more
quickly. If the data acquisition is timed (gated) then data are acquired while
the heart is in the same position over several heartbeats. Because more data
can be taken more quickly with fan beam data, the heart can now be imaged
using newer scanners, and movement of the heart is not as large a problem.

Exterior data are still important for imaging large objects such as rocket
shells. Even with an industrial CT scanner, the X-rays will not penetrate the
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thick center of the rocket [85]. However, they can penetrate the outer rocket
shell, and this gives exterior data.

One can recover functions of compact support from exterior data, at least
outside the excluded region (see Theorem 5). Effective inversion methods were
developed for exterior data by researchers including Bates and Lewitt [3],
Natterer [64], Quinto [74, 76] and a stability analysis using a singular value
decompositions was done in [57].

We now present a reconstruction from exterior data: integrals are given
over lines that do not meet the black central disk. The reconstruction method

Fig. 1.2. Phantom (left) and exterior reconstruction [74, c©IOP Publishing. Repro-
duced by permission of IOP Publishing. All rights reserved] from simulated data.
The outer diameter of the annulus is 1.5 times the inner diameter.

uses a singular value decomposition for the exterior Radon transform that
includes a null space; it recovers the component of the object in the orthogonal
complement of the null space and does an interpolation to recover the null
space component [74].

Note how some boundaries of the small circles are clearly reconstructed
and others are not. In this case, how can you describe the boundaries that are
well reconstructed in relation to the data set? Another question is whether
the fuzzy boundaries are fuzzy because the algorithm is bad or could there be
an additional explanation?

Allan Cormack’s first algorithm [10] solved the exterior problem, but the
algorithm did not work numerically. The integrals in his algorithm were dif-
ficult to evaluate numerically with any accuracy because the integrand grew
too rapidly. Other mathematicians tried to improve this method but it was
difficult. Because of this problem, Cormack developed a second method that
uses full data and that gave good reconstructions [11].

It would be useful to know if limitations of Quinto’s and Cormack’s al-
gorithms are problems with their algorithms or reflect something intrinsic to
this limited data problem.
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Limited Angle Data

Limited angle tomography is a classical problem from the early days of tomog-
raphy [3, 59, 60]. In this case, data are given over all lines in a limited range of
directions, or data for tpωpϕq, pq : ϕ P pa, bq, p P Ru where b´a ă π. It is used
in certain luggage scanners in which the X-ray source is on one side of the
luggage and the detectors are on the other and they move in opposite direc-
tions. One can uniquely recover compactly supported functions from limited
angle data but this is not true in general (see Theorem 3). Limited angle data
are used in important current problems including dental X-ray scanning [47],
tomosynthesis (a tomographic technique to image breasts using transmitter
and receiver that move on opposite sites of the breast) [70]. Other algorithms
were developed for this problem such as [50, 12, 47, 24].

The reconstruction in Fig. 1.3 is from limited angle data. Data are taken
over all lines `pωpϕq, pq for p P R and ϕ P r´π{4, π{4s. The algorithm used in

Fig. 1.3. Original image (left) and a truncated Filtered Backprojection (FBP) re-
construction algorithm (right) using data in the angular range, ϕ P r´π{4, π{4s.
Note the streak artifacts and the missing boundaries in the limited angle recon-
structions [24, c©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved].

this reconstruction is a truncated Filtered Backprojection (FBP) algorithm
which is given in (1.26). Some boundaries in this reconstruction are well-
reconstructed and others are not. How do these boundaries relate to lines
in the data set? There are streak artifacts along certain lines. How do these
streaks relate to the data set?

Region of Interest (ROI) Data

One chooses a subregion of the object, also called a region of interest (ROI),
to reconstruct. ROI data consist of all lines that meet this region, and the
ROI problem is to reconstruct the structure of the ROI from these data. This
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is also called interior data (and the interior problem). ROI CT is important
in the CT of small parts of objects, so called micro-CT [16, p. 460]. Other
algorithms in ROI CT include [98] (if one knows the value of a function in
part of the interior), [99] (if the density is piecewise constant in the ROI) and
others including [49]. A singular value decomposition was developed for this
problem in [62].

ROI CT is useful for medical CT and industrial nondestructive evaluation
in which one is interested only in a small region of interest in an object, not
the entire object. An advantage for medical applications is that ROI data
gives less radiation than with complete data.

Lambda tomography [15], [16] is one important algorithm for ROI-CT
which will be described in section 1.3.4, and our ROI reconstruction uses this
algorithm. In this case, note that all the singularities of this simple object are

Fig. 1.4. ROI reconstruction from simulated data for the characteristic function of
a circle using the operator Lx,µ given in (1.23) [4, c©Tufts University].

visible, even though the data are severely limited–they include only lines near
the disk. On the other hand, the ROI transform is not injective (see Theorem
6), so why do the reconstructions look so good?

Limited Angle Region of Interest Tomography

In this modality data are given over lines in a limited angular range and that
are restricted to pass through a given ROI. It comes up in single axis tilt
electron microscopy (ET) (see Öktem’s chapter in this book [69]). However,
in general, ET is better understood as a three-dimensional problem and we
will discuss it that way in the next paragraph.

1.2.2 Electron Microscope Tomography (ET) over arbitrary curves

Now we consider a full three dimensional problem, electron microscope tomog-
raphy (ET), and we follow the notation in Öktem’s chapter in this book [69],
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which has detailed information about the physics, biology, model and mathe-
matics of ET. We show a reconstruction from a simple 3D phantom, the union
of the following disks: with center p0, 0, 0q radius 1{2, center p0, 0, 1q radius 1{2
center p1,´1, 1q radius 1{4 center p´1, 1,´1{2q radius 1{4. The disks above
the x´ y-plane have density two and the others have density one.

We consider conical tilt ET data, which is described in Öktem’s chapter in
this book [69]. In our case, line integrals are given over all lines in space with
angle α “ π{4 with the z´axis. We will consider reconstructions from two
algorithms that are described in Section 1.2.2. The operators are L∆ (given
in equation (1.28)) and LS (given in equation (1.29)).
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Fig. 1.5. Cross-section with the x´y plane of the phantom described in this section
(left), L∆ reconstruction (center, see eq. (1.28)) and LS reconstruction (right, see
eq. (1.29)). The center of the cross-section is the origin and the range in x and y is
from ´2 to 2 [79, Reproduced with kind permission from Springer Science+Business
Media: c©Springer Verlag].

Artifacts are added in the L∆ reconstruction in Figure 1.5 and in Figure
1.6 which shows the plane containing the centers of the disks and the z´axis
(axis of rotation of the scanner). These figures are remarkable because the L∆
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Fig. 1.6. Cross-section of phantom in the plane x “ ´y (left) and L∆ reconstruction
in that plane(right). The x ´ y-plane cuts the picture in half with a horizontal
line. [79, Reproduced with kind permission from Springer Science+Business Media:
c©Springer Verlag]

reconstruction has so many added artifacts compared to the LS reconstruction
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although these operators are not very different (see Section 1.3.7. Why are the
reconstructions so different?

Reconstructions of real specimens from single axis tilt data show some of
the same strengths and limitations (see, e.g., [77, 80] and Öktem’s chapter in
this book [69]). However, the added artifacts have different properties, and
since the data are so noisy, other factors affect reconstructions.

1.2.3 Synthetic aperture radar Imaging

In synthetic aperture radar (SAR) imaging, a region of interest on the sur-
face of the earth is illuminated by electromagnetic waves from an airborne
platform such as a plane or satellite. For more detailed information on SAR
imaging, including several open problems in SAR imaging, we refer the reader
to [7, 8] and to the chapter in this handbook by Cheney and Borden [9]. The
backscattered waves are picked up at a receiver or receivers and the goal is
to reconstruct an image of the region based on such measurements. In mono-
static SAR, the transmitter and receiver are located on the same platform.
In bistatic SAR, the transmitter and receiver are on independently moving
trajectories. While monostatic SAR imaging is the one that is widely used,
bistatic SAR imaging offers several advantages in certain imaging situations.
The receivers in comparison to transmitters are not active sources of elec-
tromagnetic radiation and hence are more difficult to detect if flown in an
unsafe environment. Since the transmitter and receiver are at different points
in space, bistatic SAR systems are more resistant to electronic countermea-
sures such as target shaping to reduce scattering in the direction of incident
waves [46]. The reconstruction of the image based on the measurement of the
backscattered waves is in general a hard problem. However, ignoring contri-
butions of multiply backscattered waves linearizes the relation between the
image to be recovered and the backscattered waves and is easier to analyze.
Due to this reason, a linearizing approximation called the Born approxima-
tion that ignores contribution from multiply scattered waves is widely used in
SAR image reconstruction.

The linearized model in SAR imaging

Let γT psq and γRpsq for s P ps0, s1q be the trajectories of the transmitter
and receiver respectively. The propagation of electromagnetic waves can be
described by the scalar wave equation:

ˆ

∆´
1

c2
B2t

˙

Epx, tq “ ´P ptqδpx´ γT psqq, (1.5)

where c is the speed of electromagnetic waves in the medium, Epx, tq is each
component of the electric field and P ptq is the transmit waveform sent to the
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transmitter antenna. The wave speed c is spatially varying due to inhomo-
geneities present in the medium and we assume that it is a perturbation of
the constant background speed of propagation c0 of the form

1

c2pxq
“

1

c20
` rV pxq.

We assume that rV pxq only varies over a 2-dimensional surface; the surface of

the earth. Therefore, we represent rV as a function of the form

rV pxq “ V pxqδ0px3q

where we assume that the earth’s surface is represented by the x “ px1, x2q
plane. The background Green’s function g is the solution of the following
equation:

ˆ

∆´
1

c20
B2t

˙

gpx, tq “ ´δ0pxqδ0ptq.

This is given by

gpx, tq “
δpt´ }x} {c0q

4π }x}
. (1.6)

Now the incident field Ein due to the source spx, tq “ P ptqδpx´ γT psqq is

Einpx, tq “

ż

gpx´ y, t´ τqspy, τqdydτ

“
P pt´ }x´ γT psq} {c0q

4π }x´ γT psq}
.

Let E denote the total field of the medium, E “ Ein ` Esc, where Esc is the
scattered field. This can be written using the Lippman-Schwinger equation:

Escpz, tq “

ż

gpz ´ x, t´ τqB2tEpx, τqV pxqdxdτ. (1.7)

We linearize this equation by replacing the total field E on the right hand side
of the above equation by Ein. This is known as the Born approximation. The
linearized scattered wave-field Esc

linpγRpsq, tq at the receiver location γRpsq is
then

Esc
linpγRpsq, tq “

ż

gpx´ γRpsq, t´ τqB
2
tE

inpx, τqV pxqdxdτ

Substituting the expression for Ein into this equation and integrating, we
obtain the following expression for the linearized scattered wave-field:

Esc
linpγRpsq, tq “

ż

e´iωpt´ 1
c0
Rps,xqqAps, x, ωqV pxqdxdω, (1.8)

where
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Rps, xq “ }γT psq ´ x} ` }x´ γRpsq}

and
Aps, x, ωq “ ω2ppωqpp4πq2 }γT psq ´ x} }γRpsq ´ x}q

´1, (1.9)

where p is the Fourier transform of P . The function A includes terms that
take into account the transmitted waveform and geometric spreading factors.
The inverse of the norms appear in A due to the background Green’s function,
(1.6).

The following image reconstruction of a disc centered on the positive y-
axis from integrals of it over ellipses with foci moving along the x-axis offset
by a constant distance (which is simplified model of (1.8)) highlights some of
the features in SAR image reconstruction. Some part of the boundary is not
stably reconstructed and an artifact of the true image appears as a reflection
about the x-axis along with streak artifacts. Looking at the reconstructed
image, one sees that, at least visually, the created artifact is as strong as the
true image. Microlocal analysis of the operators appearing in SAR imaging
will make precise and justify all these observations. We will address them in
Section 1.5.4.

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 1.7. Reconstruction of a disk centered on the positive y´axis from integrals
over ellipses (with constant distance between the foci) centered on the x-axis and
with foci in [-3,3]. Notice that some boundaries of the disk are missing, and there
is a copy of the disk below the axis. This was originally from the Tufts University
Senior Honors Thesis of Howard Levinson and published in [54, Reproduced with
kind permission from Springer Science`Business Media: c© Springer Verlag].

1.2.4 General Observations

In each reconstruction for two dimensional X-ray CT in this section, some
object boundaries are visible and others are not. In fact, if one looks more
carefully at the reconstructions, one can notice that, in each case, the only
feature boundaries that are clear defined are those tangent to lines in the data
set for the problem. Example 1 illustrates this in a naive way: one sees sin-
gularities in the Radon data exactly when the lines of integration are tangent
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to the boundary of the object. The goal of this chapter is to make the idea
mathematically rigorous.

The conical tilt ET reconstructions in Section 1.2.2 have artifacts if one
uses a certain algorithm but not when one uses another similar one. The
reconstruction related to Radar in Figure 1.7 has an artifact that is a reflected
image of the disk.

In Section 1.4, we will introduce deep mathematical ideas from microlocal
analysis to classify singularities and understand what operators do to them. In
Section 1.5 we will use these microlocal ideas to explain the visible and invis-
ible singularities for limited data X-ray CT as well as the added singularities
in ET and Radar.

1.3 Properties of Tomographic Transforms

In this section, after introducing some functional analysis, we present the
basic properties of transforms in X-ray tomography and electron microscope
tomography. We will study the microlocal properties of Radar in Section 1.5.4.

1.3.1 Function Spaces

We start with some basic notation. The open disk in R2 centered at the origin
and of radius r ą 0 will be denoted Dprq.

The set C8pRnq, consists of all smooth functions on Rn, that is functions
that are continuous along with their derivatives of all orders, and DpRnqis
the set of smooth functions of compact support. Its dual space–the set of
all continuous linear functionals on DpRnq (given the weak-* topology)–is
denoted D1pRnq and is called the set of distributions. If u is a locally integrable
function then u is a distribution with the standard definition

xu, fy “ upfq “

ż

Rn
upxqfpxqdx

for f P DpRnq since upxqfpxq is an integrable function of compact support.
The Schwartz Space of rapidly decreasing functions is the set SpRnq of all

smooth functions that decrease (along with all their derivatives) faster than
any power of 1{ }x} at infinity. Its dual space, S 1pRnq is the set of all con-
tinuous linear functionals on SpRnq with the weak-* topology (convergence is
pointwise: uk Ñ u in S 1pRnq if, for each f P SpRnq, ukpfq Ñ upfq). They are
called tempered distributions. Any function that is measurable and polynomi-
ally increasing is in S 1pRnq since its product with any Schwartz function is
integrable.

A distribution u has support the closed set K if for all functions f P DpRnq
with support disjoint from K, upfq “ 0.
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Example 2. The Dirac Delta function at zero is an important distribution
that is not a function. It is defined xδ0, fy “ δ0pfq “ fp0q. Note that if f is
supported away from the origin then δ0pfq “ 0 since fp0q “ 0. Therefore, the
Dirac Delta function has support t0u.

We let E 1pRnq be the set of distributions that have compact support in Rn.
If Ω is an open set in Rn, then E 1pΩq is the set of distributions with compact
support contained in Ω. For example, on the real line, δ P E 1 pp´1, 1qq.

If f P L1pRnq then the Fourier transform and its inverse are

Ffpξq “ pfpξq “
1

p2πqn{2

ż

xPRn
e´ix¨ξfpxqdx

F´1fpxq “ qfpxq “
1

p2πqn{2

ż

ξPRn
eix¨ξfpξqdξ .

(1.10)

The Fourier transform is linear and continuous from L1pRnq to the space
of continuous functions that converge to zero at 8. Furthermore, F is an
isomorphism on L2pRnq and an isomorphism on SpRnq and, therefore, on
S 1pRnq. More information about these topics can be found in [83], for example.

1.3.2 Basic properties of the Radon Line Transform

In this section we derive fundamental properties of the Radon line transform
RL, and this will allow us to make a connection between the transforms and
the microlocal analysis in Section 1.4.

Theorem 1 (General Projection Slice Theorem). Let f P L1pR2q. Now
let h P L8pRq and ω P S1. Then,

ż

xPR2

fpxqhpx ¨ ωqdx “

ż 8

p“´8

RLfpω, pqhppqdp. (1.11)

Proof. Let ω P S1. First, note that the function x ÞÑ fpxqhpx ¨ωq is in L1pR2q

since h is bounded and measurable. For the same reason, the function

pp, tq ÞÑ fppω ` tωKqhppq

is in L1pR2q. We have that

ż

xPR2

fpxqhpx ¨ ωqdx “

ż 8

p“´8

ż 8

t“´8

fppω ` tωKqh ppq dtdp (1.12)

“

ż 8

p“´8

RLfpω, pqhppqdp (1.13)

where (1.12) holds by rotation invariance of the Lebesgue integral and then
Fubini’s theorem and since p “ ω ¨ ppω ` tωKq. The equality (1.13) holds by
the definition of RL. [\
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The partial Fourier transform is defined for g P L1pS1 ˆ Rq as

Fpgpω, τq “
1
?

2π

ż

pPR
e´ipτgpω, τqdτ . (1.14)

Because the Fourier transform is an isomorphism on SpRq, this transform and
its inverse are defined and continuous on S 1pS1 ˆ Rq.

The Fourier Slice Theorem is an important corollary of Theorem 1.

Theorem 2 (Fourier Slice Theorem). Let f P L1pR2q. Then for pω, τq P
S1 ˆ R,

Ffpτωq “ 1
?

2π
FpRfpω, τq .

To prove this theorem, we apply the General Projection Slice Theorem 1
to the function hppq “ e´ipτ .

The Fourier Slice Theorem provides a quick proof that RL is invertible
on domain L1pR2q since Fp is invertible on domain L1pS1 ˆ Rq. Zalcman
constructed a nonzero function that is integrable on every line in the plane
and whose line transform is identically zero [101]. Of course, his function is
not in L1pR2q.

This theorem also provides a quick proof of invertibility for the limited
angle problem.

Theorem 3 (Limited Angle Theorem). Let f P E 1pR2q and let a ă b and
b´ a ă π. If RLfpωpϕq, pq “ 0 for ϕ P pa, bq and all p, then f “ 0.

However, there are nonzero functions f P SpR2q with RLfpωpϕq, pq “ 0
for ϕ P pa, bq and all p.

Proof. Let f P E 1pR2q and assume RLfpωpϕq, pq “ 0 for ϕ P pa, bq and all p.
By the Fourier Slice Theorem, which is true for E 1pR2q [42],

Ffpτωpϕqq “ 1
?

2π
FpRLfpωpϕq, τq “ 0 for ϕ P pa, bq, τ P R (1.15)

and this expression is zero because RLfpωpϕq, τq “ 0 for such pϕ, τq. This
shows that Ff is zero on the open cone

V “ tτωpϕq : τ ‰ 0, ϕ P pa, bqu.

Since f has compact support, Ff is real analytic, and so Ff must be zero
everywhere since it is zero on the open set V . This shows f “ 0.

To prove the second part of the theorem, let f̃ be any nonzero Schwartz

function supported in the cone V and let f “ F´1
´

f̃
¯

. Since f̃ is nonzero

and in SpR2q, so is f . Using (1.15) but starting with Ff “ 0 in V , we see
RLf is zero in the limited angular range. [\
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Another application of these theorems is the classical range theorem for
this transform. We let SpS1 ˆ Rq be the set of smooth functions on S1 ˆ R
that decrease (along with all their derivatives) faster than any power of 1{ |p|
at infinity uniformly in ω.

Theorem 4 (Range Theorem [38, 26]). Let g P SpS1 ˆ Rq. Then g is in
the range of RL on domain SpR2q if and only if

1. gpω, pq “ gp´ω,´pq

2. for each m P t0, 1, 2, . . .u,

ż

pPR
gpω, pqpm dp is a polynomial in ω P S1

that is homogeneous of degree m.

Proof (Proof Sketch). The necessary part of the theorem follows by applying
the General Projection Slice Theorem to hppq “ pm for m a nonnegative
integer:

ż

pPR
RLfpω, pqpm dp “

ż

xPR2

fpxqpx ¨ ωqm dx

and after multiplying out px ¨ ωqm in the coordinates of ω, one sees that the
right hand integral is a polynomial in these coordinates of order at most m.
The sufficiency part is much more difficult to prove. One uses the Fourier
Slice Theorem to construct a function f satisfying Ffpτωq “ 1?

2π
Fpgpω, τq.

Since Fpg is smooth and rapidly decreasing in p, Ff is smooth away from
the origin and rapidly decreasing in x. The subtle part of the proof in [38] is
to show Ff is smooth at the origin, and this is done using careful estimates
on derivatives using the moment conditions, 2. Once that is known, one can
conclude Ff P SpR2q and so f P SpR2q. [\

The support theorem for RL is elegant and has motivated a large range
of generalizations such as [39, 6, 5, 56, 52, 75].

Theorem 5 (Support Theorem [10, 26, 38]). Let f be a distribution of
compact support (or a function in SpR2q) and let r ą 0. Assume RLf is zero
for all lines that are disjoint from the disk Dprq. Then supppfq Ă Dprq.

There are null functions for the exterior transform and they do not decrease
rapidly at infinity [71, 73] and simple examples are given in [100, 40].

This theorem implies that the exterior problem has a unique solution; in
this case Dprq is the excluded region. The proof is tangential to the main
topics of this chapter, so we refer to [10, 26, 38, 40, 89] for proofs.

Counterexamples to the support theorem exist for functions that do not
decrease rapidly at 8, (e.g., [40] or the singular value decompositions in [71,
73]).

A corollary of these theorems shows that exact reconstruction is impossible
from ROI data where Dprq is the disk centered at the origin in R2 and of radius
r ą 0.
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Theorem 6. Consider the ROI problem with region of interest the unit disk
Dp1q. Let r P p1,8q. Then there is a function f P DpDprqq that is not identi-
cally zero in Dp1q but for which RLf is zero for all lines that intersect Dp1q.

Proof (Proof Sketch). Let hppq be a smooth nonzero nonnegative function
supported in p1, rq and let gpω, pq “ hp|p|q. Since g is independent of ω, the
moment conditions from the Range Theorem, 2, are trivially satisfied, so that
theorem shows that there is a function f P SpR2q with RLf “ g. By the
support theorem, f is supported in the disk Dprq. To show f is nonzero in the
ROI, Dp1q, one uses [10, p. 2725, equation (18)]. This is also proven in [65, p.
169, VI.4], and Natterer shows that such null functions do not oscillate much
in the ROI. We will show in Section 1.5 that null functions are smooth in the
ROI, too. [\

1.3.3 Continuity results for the X-ray Transform

In this section we present some basic continuity theorems for RL.
A simple proof shows that RL is continuous from CcpDpMqq to CcpSM q

where SM “ S1 ˆ r´M,M s. First, one uses uniform continuity of f to show
RLf is a continuous function. Then, the proof that RL is continuous is based
on the estimate

|RLfpω, pq| ď πM2 }f}8

where }f}8 is the (essential) supremum norm of f . A stronger theorem has
been proven by Helgason.

Theorem 7 ([38]). RL : SpR2q Ñ SpS1 ˆ Rq is continuous.

The proof of our next theorem follows from the calculations in the proof
of the General Projection Slice Theorem.

Theorem 8. RL : L1pR2q Ñ L1pS1 ˆ Rq is continuous.

Proof. By taking absolute values in (1.11) with h “ 1 and then integrating
with respect to ω, one sees that }f}L1pR2q ě p2πq }RLf}L1pS1ˆRq and so RL
is continuous on L1. [\

Continuity results for RL in Sobolev spaces were given in [58, 42, 37] for
functions of fixed compact support.

1.3.4 Filtered Backprojection (FBP) for the X-ray Transform

To state the most commonly used inversion formula, Filtered Back Projection,
we begin by defining the Dual Line Transform. For g P L1pS1ˆRq and x P R2,

R˚Lgpxq “
ż

ωPS1

gpω, x ¨ ωqdω. (1.16)
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For each ω P S1, x P `pω, x ¨ ωq, so R˚Lgpxq is the integral of g over all lines
through x. The transform R˚L is the formal dual to RL in the sense that, for
f P SpR2q and g P SpS1 ˆ Rq,

xRLf, gyL2pS1ˆRq “ xf,R
˚
LgyL2pR2q .

Because RL : SpR2q Ñ SpS1 ˆ Rq is continuous, R˚L : S 1pS1 ˆ Rq Ñ S 1pR2q

is weakly continuous.
The Lambda operator is defined on functions g P SpS1 ˆ Rq by

Λpgpω, pq “ F´1
p p|τ | pFpgpω, ¨qqq . (1.17)

Theorem 9 (Filtered Backprojection (FBP) [82, 84, 65]). Let f P

SpR2q. Then,

f “
1

4π
R˚LΛpRLf (1.18)

This formula is valid for f P E 1pR2q.

Filtered backprojection is an efficient, fast reconstruction method that is
easily implemented [66] by using an approximation to the operator Λp that
is convolution with a function (see, e.g., [65] or [84]). Note that FBP requires
data over all lines through the object—it is not local: in order to find fpxq,
one needs data RLf over all lines in order to evaluate ΛpRLf (which involves
a Fourier transform).

To see the how sensitive FBP is to the number of the angles used in the
reconstructions, we show reconstruction using 18, 36, and 180 angles. One can
see that using too few angles creates artifacts. An optimal choice of angles and
values of p can be determined using sampling theory [65, 14, 13].

Fig. 1.8. FBP reconstructions of phantom consisting of three ellipses. The left
reconstruction uses 18 angles, the middle 36 angles, and the right one 180 angles.

Proof (Proof of Theorem 9). Let f P SpR2q. We write the two-dimensional
Fourier inversion formula in polar coordinates.
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fpxq “
1

2p2πq

ż

ωPS1

ż

τPR
eix¨pτωq pfpτωq|τ |dτ dω (1.19)

“
1

4π

ż

ωPS1

ż

τPR

eiτpω¨xq?
2π

|τ | pFpRLfq pω, τqdτ dω (1.20)

“
1

4π

ż

ωPS1

pΛpRLfq pω, ω ¨ xqdω “
1

4π
R˚LΛpRLfpxq . (1.21)

The factor of 1{2 in front of the integral in (1.19) occurs because the integral is
over τ P R rather than τ P r0,8q. In (1.20), we use the Fourier Slice Theorem
(Theorem 2), and in (1.21) we use the definitions of Λp and of R˚L. All of the
integrals above exist because f , Ff , and RLf are all rapidly decreasing at
infinity.

We now explain why the FBP formula is valid for f P E 1pR2q.
If gpω, pq is a distribution of compact support, then we claim Λpg is a

tempered distribution. This is true since g has compact support. Therefore, its
Fourier transform is polynomially increasing and smooth [83]. So, |τ |Fpgpω, τq
is a polynomially increasing continuous function and therefore in S 1pS1 ˆRq.
Since the inverse Fourier transform maps S 1 to S 1, Λpg is a distribution in
S 1pS1 ˆ Rq.

Now, since f P E 1pR2q, RLf is a distribution of compact support on S1ˆR
and so ΛpRLf is a distribution in S 1pS1 ˆ Rq. By duality with S, R˚L :
S 1pS1 ˆ Rq Ñ S 1pR2q, so R˚LΛpRLf is defined for f P E 1pR2q. The Fourier
Slice Theorem holds for f [42] so the FBP formula can be proved for f as is
done above for S (see [24] more generally). [\

1.3.5 Limited Data Algorithms

In limited data problems some data are missing, and we now go through
several methods for limited data problems including ROI CT, limited angle
CT, and limited angle ROI CT.

ROI Tomography

Lambda Tomography [15, 16, 93] is an effective easy to implement algorithm
for ROI CT. The fundamental idea is to replace Λp by ´d2{dp2 in the FBP
formula. The relation between these two operators is that Λ2

p “ ´d2{dp2,
which will be justified in Example 9. This motivates the definition

Lxf :“
1

4π
R˚L

ˆ

´
d2

dp2
RLf

˙

. (1.22)

The advantage is that Lx is local in the following sense. To calculate Lxf , one
needs the values of

`

´d2{dp2
˘

RLf at all lines through x (since R˚L evaluated

at x integrates over all such lines). Furthermore,
`

´d2{dp2
˘

is a local operator

and to calculate
`

´d2{dp2
˘

RLf at a line through x, one needs only data RLf
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over lines close to x. Therefore, one needs only data over all lines near x to
calculate Lxf ; thus Lx can be used on ROI data. Although Lambda CT
reconstructs Lxf , not f itself, it shows boundaries very clearly [15].

Kennan Smith developed an improved local operator that shows contours
of objects, not just boundaries. His idea was to add a positive multiple of
R˚LRLf to the reconstruction to get

Lx,µf “
1

4π
R˚L

ˆˆ

´
d2

dp2
` µ

˙

RLf
˙

(1.23)

for some µ ą 0. Using (1.35) one sees that

R˚L pµRLfq pxq “
ˆ

2µ

}x}
˚ f

˙

pxq, (1.24)

so this factor adds contour to the reconstruction since the convolution with
2µ{ }x} emphasizes the values of f near x. Lambda reconstructions look much
like FBP reconstructions even though they are local. A discussion of how to
choose µ to counteract a natural cupping effect of Lx is given in [15]. This
operator is local for the same reasons as Lx is, and it was used in the ROI
reconstruction in Figure 1.4.

Lambda CT can be adapted to a range of limited data problems including
limited angle tomography(e.g., [55, 50]), exterior tomography [76], and three
dimensional problems such as cone beam CT [48, 2, 97, 23] and conical tilt
electron microscopy [21]. We now talk about one such application.

Limited Angle CT

There are several algorithms for limited angle tomography (e.g., [3, 12, 60,
50, 98]), and we will discuss ones that are simple generalizations of FBP
and Lambda CT. The key to each is to use the limited angle backprojection
operator that uses angles in an interval pa, bq with b´ a ă π

R˚L,limgpxq “
ż b

ϕ“a

gpωpϕq, x ¨ ωpϕqqdϕ . (1.25)

The limited angle FBP and limited angle Lambda algorithms are

RL,limΛpRLf and RL,lim
ˆ

´
d2

dp2

˙

RLf (1.26)

respectively. The objects in Figure 1.3 are reconstructed using this limited
angle FBP algorithm. Limited angle Lambda CT is local so it can be used for
the limited angle ROI data in electron microscope tomography [77, 80].
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1.3.6 Fan Beam and Cone Beam CT

The parallel beam parameterization we use of lines in the plane is more con-
venient mathematically, but modern CT scanners use a single X-ray source
that emits X-rays in a fan or cone beam. The source and detectors (on the
other side of the body) move around the body and quickly acquire data. This
requires a different parameterization of lines, the so-called fan beam param-
eterization, if the X-rays are collimated to one reconstruction plane. Let C
be the curve of sources (typically a circle or helix surrounding the specimen),
and let pω, θq P C ˆ S1. Then,

Lpω, θq “ tω ` tθ : t ą 0u

is the ray starting at ω in direction θ, and the cone beam line transform is

Cfpω, θq “
ż 8

t“0

fpω ` tθqdt.

In this case the analogues of the formulas we proved are a little more com-
plicated. For example, the Lambda operator can be calculated by taking the
negative second derivative in θ P S1. The other formulas are similar and one
can find them in [87, 65].

In cone beam tomography, the source is collimated to illuminate a cone
in space. This images a volume in the body, rather than a planar region as
RL and the fan beam transform do. However, the reconstruction formulas are
more subtle [51, 23].

These data acquisition methods have several advantages over parallel beam
data acquisition. First, the scanners are simpler and acquire data more quickly
than old style parallel beam scanners since the fan beam X-ray source and
detector array move in a circle around the object. The original CT scanners
took data using the parallel geometry, and so a single X-ray source and de-
tector were translated to get data over parallel lines in one direction and then
the source and detector were rotated to get lines for other angles.

This is all discussed in Herman’s Chapter in this book [41].

1.3.7 Algorithms in Conical Tilt ET

Conical tilt ET [102] is a new data acquisition geometry in ET that has
the potential to provide faster data acquisition as well as clearer reconstruc-
tions. We will briefly review the algorithms we used for the conical tilt ET
reconstructions in Section 1.2.2. This will lay the groundwork to understand
why the reconstructions in that section from two very similar algorithms are
so dramatically different. The model and mathematics are fully discussed in
Öktem’s chapter in this book [69].

First we provide notation. For ω P S2, we denote the plane through the
origin perpendicular to ω by
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ωP “ tx P R3 : x ¨ ω “ 0u. (1.27)

The tangent space to the sphere S2 is

T pS2q “ tpω, xq : ω P S2, x P ωP u

since the plane ωP is the tangent plane to S2 at ω. This gives the parallel
beam parameterization of lines in space: for pω, xq P T pS2q, the line

Lpω, xq “ tx` tω : t P Ru.

If ω is fixed, then the lines Lpω, xq for x P ωP are all parallel. As noted in
Öktem’s chapter in this book [69], ET data are typically taken on a curve
S Ă S2. This means the lines in the data set are parameterized by

MS “ tpω, xq : ω P S, x P ωP u .

So, for f P L1pR3q, the ET data of f for lines parallel S can be modeled as
the parallel beam transform

PSfpω, xq “
ż

tPR
fpx` tωqdt for pω, xq PMS .

Its dual transform is defined for functions g on MS as

P˚Sgpxq “
ż

ωPS

gpω, x´ px ¨ ωqωqdω,

where dω is the arc length measure on S. This represents the integral of g
over all lines through x.

In this section, we consider conical tilt ET in which an angle α P p0, π{2q
is chosen and data are taken for angles on the latitude circle

Sα “ tpsinpαq cospϕq, sinpαq sinpϕq, cospαqqu : ϕ P r0, 2πsu.

Let Cα be the vertical cone with vertex at the origin and opening angle α:

Cα “ ttω : ω P Sαu.

Note that Cα is the cone generated by Sα.
We describe the two algorithms for which reconstructions were given in

Section 1.2.2. The first algorithm is a generalization of one developed for cone
beam CT by Louis and Maaß [61]:

L∆f “ P˚S p´∆SqPSf, (1.28)

where ∆S is the Laplacian on the detector plane, ωP . We also define the
operator

LSf “ P˚S p´DSqPSf, (1.29)

where DS is the second derivative on the detector plane ωP in the tangent
direction to the curve S at ω (see Öktem’s chapter in this book [69]). To better
understand these operators, we will write them as convolution operators.
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Theorem 10. Let PS be the conical tilt ET transform with angle α P p0, π{2q.
Let f P E 1pR3q. Then

P˚SPSf “ f ˚ I “

ż

yPCα

fpx` yq

}y}
dy (1.30)

L∆f “ p´∆q pf ˚ Iq (1.31)

LSf “
ˆ

´∆` csc2pαq
B2

Bz3

˙

f ˚ I (1.32)

where I is the distribution defined, for f P DpR2q by

Ipfq “

ż

yPCα

fpyq
1

}y}
dy

and dy is the surface area measure on the cone Cα.

Equation (1.30) makes sense since P˚S integrates PSf over all lines in
the data set through x, and these are exactly the lines in the shifted cone
x`Cα. The theorem shows that each of the operators are related to a simple
convolution with a singular weighted integration over the cone Cα.

Proof. We first prove the theorem for f P DpR3q, and we calculate (1.30):

P˚SPSfpxq “
ż

ωPS

ż

tPR
fpx´ px ¨ ωqω ` tωqdtdω

“

ż

ωPS

ż

tPR
fpx` sωqdsdω

where we made the substitution s “ t ´ px ¨ ωq. Now, we convert this to an
integral over Cα:

P˚SPSfpxq “
ż

ωPS

ż

sPR
fpx` sωq

1

|s|
|s|dsdω

“

ż

yPCα

fpx` yq

}y}
dy

since the measure on the cone Cα is dy “ |s| dsdω where y “ sω.
To prove (1.31), one moves ∆ inside the integral. Then one uses rotation

invariance of ∆ (to write ∆ in coordinates

ps, t, pq ÞÑ psω ` tω1 ` pω ˆ ω1q

where ω1 is the unit vector in the tangent to S at ω and in direction of increas-
ing ϕ). Finally, one uses an integration by parts to show that P˚S intertwines
∆ and ∆S . To prove (1.32), one uses (1.31) and a calculation to show that
´

´∆` csc2pαq B
2

Bz2

¯

and DS are intertwined by P˚S .

Finally, let f P E 1pR3q. Since f has compact support, the convolution f ˚ I
is defined by [83, 6.37 Theorem]. Then, the rest of the proof uses the fact that
the equalities are true for f P DpR3q and continuity of the operators (since PS
is a Fourier integral operator, which will be discussed in Section 1.5.3). [\
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1.4 Microlocal Analysis

Now that we have seen some differences in reconstructions we will develop
deep mathematics to understand those differences. The key is that we were
evaluating each reconstruction depending on which singularities or boundaries
of objects they imaged properly and when artifacts were added in some cases.

1.4.1 Singular support and Wavefront Set

Definition 1. Let u P D1pΩq. The singular support of u, denoted by ssupppuq
is the complement in Ω of the largest open set on which u is C8 smooth.

In other words, we say a point x0 P Ω is not in the singular support of u if u
is smooth in a neighborhood of x0. Let us consider some examples.

Example 3. Consider the square S “ r0, 1s2 in R2. Let f be the characteristic
function,

upx, yq “

#

1 if px, yq P S;

0 otherwise.
(1.33)

Then ssupppuq is the boundary of the square because that is where u is
not smooth; see Figure 1.9.

f = 1

f = 0

Fig. 1.9. The function f “ 1 in the interior of the square and f “ 0 in the
complement. The singular support, ssupppfq, is the boundary of the rectangle, and
the wavefront set directions are shown in the figure.

Smoothness of a distribution u (we will assume u P E 1pΩq) is related to the
rapid decay of the Fourier transform of u. We recall the following definition:

Definition 2. We say a function f : Rn Ñ C is rapidly decaying at infinity
if for every N ě 0, there is a CN such that |fpxq| ď CN p1 ` }x}q

´N for all
x P Rn.
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Theorem 11 ([83]). A distribution u P E 1pΩq is in C8c pΩq if and only if its
Fourier transform is rapidly decaying at infinity.

This theorem implies that if a distribution u is not C8 smooth, then there
are non-zero frequency directions ξ such that the Fourier transform pu does not
satisfy the estimate of Theorem 11 in any conic neighborhood Γ containing ξ.
However, this is global information; it does not yet relate to singular support—
the points where u is not smooth. To make this connection, we need to consider
directions near which a localized Fourier transform of u does not satisfy these
estimates. This leads us to the concept of C8 wavefront set.

Definition 3. Let u be a distribution defined on an open set Ω Ă Rn. We
say that px0, ξ0q P Ω ˆ Rnz0 is not in the wavefront set of u, if there is a
ψ P C8c pXq identically 1 near x0 and an open cone Γ containing ξ0 such that
given any N , there is a CN such that

ˇ

ˇ

ˇ

xψupξq
ˇ

ˇ

ˇ
ď CN p1` }ξ}q

´N for ξ P Γ.

The C8 wavefront set of a distribution u will be denoted by WFpuq.

Remark 1. To be more precise, we view elements of the wavefront set to be
elements of the cotangent bundle T˚Ωz0 using the notation

ξdx “ ξ1dx1 ` ¨ ¨ ¨ ` ξndxn for ξ P Rnz0.

Through this, one can make sense of wavefront sets for distributions on man-
ifolds.

Note that the cutoff function, ψ, in this definition is somewhat more restric-
tive than what is sometimes given (just that ψpx0q ‰ 0) but it is equivalent
[45].

Theorem 12 ([45]). Let u be a distribution defined on an open set Ω Ă Rn
and πx denote the x-projection WFpuq. Then πx pWFpuqq “ ssupppuq.

Example 4. Consider the Dirac delta distribution δ0 in Rn. Then ssupppδ0q “
t0u because δ0 is zero away from the origin and supported at the origin. So,
by Theorem 12, x “ 0 is the only point above which there can be wavefront
set. Furthermore, if ψ is a cutoff function at x0 “ 0, then Fpψδ0q “ 1{p2πqn{2,
so WFpδ0q “ tp0, ξdxq, ξ ‰ 0u.

Example 5. We will now show for the f given in Example 3 that WFpfq con-
sists of the non-zero normal directions at all the singular support points except
the four corner points. At these corner points all non-zero directions are in
the wavefront set, as illustrated in Figure 1.9.

Consider first a non-corner point x0 in the singular support We can assume
that this point is on the x-axis, x0 “ pa, 0q where a P p0, 1q. Fix a direction
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ξ0 “ pξ01 , ξ
0
2q with ξ01 ‰ 0. We will show that the localized Fourier transform

is rapidly decaying in a conic neighborhood of ξ0. We can find a narrow conic
neighborhood Γ containing ξ0 such |ξ1| ě c }ξ} for some c ą 0 and all ξ P Γ
(here ξ “ pξ1, ξ2qq. Let ϕ P C8c pR2q be a function of the form ϕpx1, x2q “
ϕ1px1qϕ2px2q that is identically 1 near x0. Without loss of generality, we may
assume ϕ1 is even about a and ϕ2 is even about 0. Consider

xϕfpξq “
1
?

2π

8
ż

´8

e´ix1¨ξ1ϕ1px1qdx1
1
?

2π

8
ż

0

e´ix2ξ2ϕ2px2qdx2 .

Denote the left-hand integral in this expression by Lpξ1q and the right-hand
integral by Rpξ2q. Note that the R is bounded in ξ2 because the integrand is
uniformly bounded and of compact support. Because ϕ1 is in SpRq, Lpξ1q is
also in SpRq, since it is the one-dimensional Fourier transform of ϕ1. Therefore
Lpξ1q is rapidly decaying at infinity as a function of ξ1. Since |ξ1| ą c }ξ} in
Γ , the function ξ ÞÑ Lpξ1q decays rapidly at infinity for ξ in Γ . Since R is

bounded, we see that xϕfpξq decays rapidly in Γ . This shows that the only
possible vectors in WFpfq above x0 “ pa, 0q are vertical ones.

Since f is not smooth at x0, at least one vertical vector at x0 must be
in WFpfq by Theorem 11. Therefore, Rpξ2q must not rapidly decay in either
the positive direction pξ2 ą 0q or the negative direction. Since ϕ2 is an even
function in SpRq, Fpϕ2qpξ2q “ Rpξ2q ` Rp´ξ2q is rapidly decreasing at ˘8,
so Rpξ2q must not be rapidly decaying for ξ2 ą 0 and for ξ2 ă 0 (since
Rpξ2q is not rapidly decaying in at least one direction and the sum is rapidly
decaying in both positive and negative directions). Therefore, both vertical
vectors are in WFpfq at x0. (In another proof, one shows Rpξ2q “ Op1{ |ξ2|q
by performing two integrations by parts on that integral.)

We now show all directions are in WFpfq above p0, 0q. We use symmetric
cutoffs in x1 and x2 at 0. Then

xϕfpξq “
1
?

2π

8
ż

0

e´ix2ξ2ϕ2px2qdx2
1
?

2π

8
ż

0

e´ix1¨ξ1ϕ1px1qdx1.

The proof for Rpξ2q above can be used to show that neither integral decays
rapidly at infinity in this case. This shows that WFpϕfq consists of all direc-
tions at x0 “ 0. The proofs at the other corners are similar.

Example 6. If f is the characteristic function of a set, Ω with a smooth bound-
ary, then WFpfq is the conormal bundle

N˚pΩq “ tpx, ξdxq : x P bdpΩq, ξ is normal to bdpΩq at xu

This is suggested by Example 5 and it follows from results in [45].
If f is a linear combination of characteristic functions of sets with smooth

boundary, then WFpfq is the union of the normal sets of the individual sets
unless cancellation occurs along shared boundaries.
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1.4.2 Pseudodifferential Operators

To motivate the definition of these operators, we start with an example.

Theorem 13. For f P SpR2q,

R˚LRLupxq “
ż

eix¨ξ
2

}ξ}
pupξqdξ “

1

π

ż

eipx´yq¨ξ
1

}ξ}
upyqdydξ . (1.34)

Proof. Using a polar integration about x one shows that

R˚LRLf “ f ˚
2

}x}
. (1.35)

Then, since F p1{ }x}q “ 1{ }ξ} [40, Lemma 6.2, p. 238], we see that

R˚LRLu “ F´1F
ˆ

u ˚
2

}x}

˙

“ F´1

ˆ

2π
2

}ξ}
pu

˙

using the fact that the Fourier transform of a convolution in R2 (with our
normalization) is the product of the Fourier transforms times 2π. Writing
F´1 as an integral in the right-hand expression proves the theorem. [\

We should point out that the left-hand integral in (1.34) converges for
f P SpR2q, but the right-hand integral in (1.34) does not converge. However,
one can do integrations by parts at infinity to make it converge for f P SpR2q

or f P E 1pR2q for pseudodifferential operators (e.g., [72]).
With this as model, we consider operators with integral representation

Pupxq “
ż

eipx´yq¨ξppx, y, ξqupyqdydξ (1.36)

The study of the operator P is important in imaging for the following
reasons:

1. Assuming p satisfies certain estimates (see Definition 4), we can describe
precisely the action of P on the singularities or the sharp changes of u.

2. If we have a procedure to invert or approximately invert the operator P
by another operator Q having a similar integral representation as that of
P, then by (a), we would have that the singularities of QPu are identical
to those of u. We see that through this approximate inversion process, we
have a procedure to recover the singularities or the sharp changes of u.

An operator P of the form (1.36) with p satisfying certain estimates is
called a pseudodifferential operator (ΨDO) [31, 91, 45, 86, 90]. We define this
below (see Definition 5).

In order to motivate the appropriate conditions and estimates that p should
satisfy, let us look at the following simple example:

Consider a linear partial differential operator of the form,
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Ppx,Dq “
ÿ

|ν|ďm

aνpxqD
ν
x. (1.37)

Here ν “ pν1, ¨ ¨ ¨ , νnq is a multi-index and

Dν
x “ p´iq

pν1`¨¨¨`νnq
Bν1

Bxν11
¨ ¨ ¨

Bνn

Bxνnn
.

For simplicity let u be a compactly supported function. Applying the
Fourier transform,

zDν
xupξq “

1

p2πqn{2

ż

e´ix¨ξDν
xupxqdx. (1.38)

Integrating by parts |ν| times, we obtain,

zDν
xupξq “ ξνpupξq. (1.39)

With this we have

Ppx,Dqupxq “ 1

p2πqn{2

ż

eipx´yq¨ξppx, ξqupyqdydξ (1.40)

where
ppx, ξq “

ÿ

ν

aνpxqξ
ν .

The function ppx, ξq is called the symbol of the partial differential operator
(PDO), Ppx,Dq.

The function ppx, ξq satisfies the following property: Differentiating p with
respect to ξα lowers the degree with respect to ξ of the resulting function by
|α|, whereas differentiating with respect to xβ for any multi-index β does not
alter the degree of homogeneity with respect to ξ of the resulting function.

More precisely we have the following estimate:
Let α and β be any multi-index. For x in a bounded subset of Rn, there

is a constant C such that

ˇ

ˇBαξ B
β
xppx, ξq

ˇ

ˇ ď Cp1` }ξ}qm´|α|. (1.41)

Here m is the order of the PDO, Ppx,Dq. In order to get this inequality, we
first rewrite the terms of ppx, ξq by combining terms of the same homogeneous
degree with respect to the ξ variable.

Differentiate ξν α times with respect to ξ1, ¨ ¨ ¨ , ξn, where the number of
times we differentiate ξν with respect to a particular ξl depends on αl. We
see that this reduces the degree of homogeneity of ξν by |α| and the highest
order terms dominate. On a bounded subset of Rn, all derivatives of the aν
are bounded. This gives the estimate (1.41).

Now we can generalize the class of operators that have Fourier integral
representations of the form (1.40) by admitting a larger class of functions



28 Venkateswaran P. Krishnan and Eric Todd Quinto

ppx, ξq to be symbols. We consider those functions p that satisfy the estimate
as in (1.41) and that behave like polynomials or the inverse of polynomials in
ξ as }ξ} Ñ 8. In other words, we want ppx, ξq to grow or decay in powers of
}ξ} and differentiation with respect to ξ lowers the order of growth or raises
the order of decay. Furthermore, in order to include R˚LRL in our class of
operators (see Example 13), we allow some latitude at ξ “ 0.

In the interest of flexibility, we will also let the function p depend on x, y
and ξ. We will denote such functions as amplitudes [31, 91, 45, 86, 90].

Definition 4. Let X Ă Rn be an open subset. An amplitude of order m is a
function that satisfies the following properties:

1. ppx, y, ξq P C8pX ˆX ˆ Rnzt0uq,
2. For every compact set K and for multi-index α, β, γ,

a) there is a constant C “ CpK,α, β, γq such that

ˇ

ˇDα
ξD

β
xD

γ
yppx, y, ξq

ˇ

ˇ ď Cp1` }ξ}qm´|α| for }ξ} ą 1, and

b) ppx, y, ξq is locally integrable for x and y in K and }ξ} ď 1.

It is important to note that in Definition 4, p need not be a polynomial in
ξ and m can be any real number. The local integrability condition can be
relaxed if p is a sum of homogeneous terms in ξ [72].

Now let us define pseudodifferential operators.

Definition 5. Let X Ă Rn be an open subset. A pseudodifferential operator
(ΨDO) is an operator of the form,

Pupxq “ 1

p2πqn

ż

eipx´yq¨ξppx, y, ξqupxqdydξ,

where ppx, y, ξq is a function that satisfies the properties of Definition 4.
The operator P has order m if its symbol is of order m, and P is elliptic

of order m if for each compact set K Ă Ω, there is a constant CK ą 0 such
that for x and y in K and }ξ} ě CK

|ppx, y, ξq| ě CKp1` }ξ}q
m . (1.42)

The next theorem highlights two fundamental properties of ΨDOs.

Theorem 14 (Pseudolocal Property [91]). If P is a ΨDO, then P satis-
fies the pseudolocal property:

ssupppPuq Ă ssupppuq and WFpPuq Ă WFpuq .

If, in addition, P is elliptic, then

ssupppPuq “ ssupppuq and WFpPuq “ WFpuq .
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Note that, although ΨDOs can spread out the support of the function u,
they do not spread out its singular support. Elliptic ΨDOs preserve singular
support and wavefront set.

Equation (1.34) shows that the composition R˚LRL is a pseudodifferential
operator since its symbol p4πq{ }ξ} satisfies the conditions in Definition 4. Fur-
thermore, because the symbol satisfies the ellipticity estimate (1.42), R˚LRL
is an elliptic ΨDO of order ´1.

Example 7. We now express powers of d{dp and ∆ as ΨDOs.

According to (1.40), the symbol of ´d2{dp2 is |τ |
2

where τ is the dual
variable to p. So, the symbol of

a

´d2{dp2 should be |τ |. The rationale is
that, if one calculates

´
d2

dp2
f “ F´1 |τ |

2 Ff “ F´1 |τ |F
`

F´1 |τ |Ff
˘

“

d

´
d2

dp2
˝

d

´
d2

dp2
f .

(1.43)

This justifies why
Λp “

a

´d2{dp2 . (1.44)

Since
´∆ “ D2

x1
` ¨ ¨ ¨ `D2

xn ,

its symbol is }ξ}
2
. Using the symbol for ∆ in (1.40), we can easily define

powers of the Laplacian. For example,
?
´∆ will have symbol }ξ} and Fourier

representation

?
´∆u “

1

p2πqn

ż

eipx´yq¨ξ }ξ}upyqdydξ

and p´∆q
´1{2

has symbol 1{ }ξ}

p´∆q
´1{2

u “
1

p2πqn

ż

eipx´yq¨ξ
1

}ξ}
upyqdydξ.

Now, as a calculation in distributions using Fourier transforms (similar to

(1.43)), one sees that p´∆q
´1{2

˝
?
´∆ is the identity map.

Note that
a

´d2{dp2,
?
´∆, p´∆q

´1{2
are all elliptic ΨDOs.

Example 8. The last example justified why the operator Λp is really
a

´d2{dp2.
So, the FBP inversion formula (1.18) can be written

f “
1

4π
R˚L

´

a

´d2{dp2RLf
¯

. (1.45)

Equation (1.34) shows that R˚LRL “ 4π p´∆q
´1{2

. Using the observation
at the end of the last example, one obtains a different version of the Filtered
Backprojection inversion formula for RL,



30 Venkateswaran P. Krishnan and Eric Todd Quinto

f “
1

4π

?
´∆R˚LRLf . (1.46)

These calculations can be justified for distributions of compact support [42,
40].

Example 9. We now explore the Lambda operators given in (1.22) and (1.23).
To get the Lambda operator, Lx, from the FBP operator, one replaces the
a

´d2{dp2 in (1.45) by its square, ´d2{dp2.
Here is another way to understand Lambda tomography. By evaluating

another
?
´∆ in (1.46), we see that

?
´∆f “ ´

1

4π
∆R˚LRLf “

1

4π
R˚L

ˆ

´
d2

dp2
RLf

˙

where the second equality holds because R˚L intertwines ´∆ and ´d2{dp2

(this is proven using an argument similar to the intertwining argument in the
proof of Theorem 10). Because R˚LRL is an elliptic ΨDO with symbol 4π{ }ξ},
the symbol of Lx,µ is

}ξ} `
µ

}ξ}

and it is elliptic of order one. Therefore, Lx,µ and Lx (corresponding to µ “ 0)
are both elliptic ΨDOs.

Lambda tomography does not reconstruct f but
´

p´∆q
1{2
` µ

¯

f . The

natural question then is, how different is this from f . We have just established
that Lx and Lx,µ are elliptic ΨDOs. Therefore, by Theorem 14 this means that
these operators recover ssupppfq and WFpfq.

1.4.3 Fourier Integral Operators

In our analysis thus far, we studied the composition of a generalized Radon
transform with its adjoint. This composed operator, as we learned, is a pseu-
dodifferential operator. Theorem 14 shows us how ΨDOs act on singularities
and wavefront sets. In this section, we will study more general operators and
learn how they change wavefront sets.

Example 10. Now we write RL in a special Fourier representation.

RLfpω, pq “
1

p2πq1{2

ż

τPR
eipτFp pRLfq pω, τq dτ

“

ż

τPR
eipτ pfpτωqdτ

“

ż

τPR

ż

xPR2

eipp´px¨ωqqτ
1

2π
fpxqdxdτ .

(1.47)

The last expression in (1.47) looks like a ΨDO except that the τ and x integral
are over different sets and the exponent is not the one for ΨDOs.
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In many applications, it might be necessary to understand the properties
of the Radon transform directly, rather than the composition with its adjoint.
In our last example we saw that the Radon transform RL had an integral
representation of the form,

Pupyq “
ż

eiφpy,x,ξqppy, x, ξqupxqdxdξ. (1.48)

The important differences between the operator P in (1.48) and a ΨDO are
the following:

• The functions Pu and u, in general, are functions on different sets Y and
X, respectively. The spaces Y and X can be of different dimensions as
well.

• The phase function is more general than that of a ΨDO, but is shares
similar features. See Definition 6.

• The dimension of the frequency variable ξ can be different from that of
the spaces Y and X, unlike as in the case of a ΨDO.

A simple example where an integral representation of (1.48) arises is when
we use Fourier transform techniques to determine the solution to a constant
coefficient wave equation:

`

B2t ´∆x

˘

u “ 0, upx, 0q “ 0, Btupx, 0q “ g. (1.49)

Now by taking Fourier transform in the space variable, we have the following
integral representation for the solution to the wave equation,

upx, tq “
1

2ip2πqn

´

ż

eipx´yq¨ξ`t}ξ}
1

}ξ}
gpyqdydξ

´

ż

eipx´yq¨ξ´t}ξ}
1

}ξ}
gpyqdydξ

¯

.

Note that the phase functions in the above solution are φ˘px, y, ξq “ px´ yq ¨
ξ ˘ t }ξ}.

If f : Rn Ñ R, then we will use the notation

Bxfpxq “
Bf

Bx1
dx1 ` ¨ ¨ ¨ `

Bf

Bx1
dxn

for the differential of f with respect to x. If g is a function of pϕ, pq then

Bϕ,pgpϕ, pq “
Bg

Bϕ
dϕ`

Bg

Bp
dp

will denote the differential of g with respect to the variables pϕ, pq.

Definition 6. Let Y Ă Rm and X Ă Rn be open subsets. A real valued func-
tion φ P C8pY ˆX ˆ RNzt0uq is called a phase function if
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1. φ is positive homogeneous of degree 1 in ξ. That is φpy, x, rξq “ rφpx, y, ξq
for all r ą 0.

2. pByφ, Bξφq and pBxφ, Bξφq do not vanish for all py, x, ξq P Y ˆXˆRnzt0u.

Definition 7. A Fourier integral operator (FIO) P is defined as

Pupyq “
ż

eiφpy,x,ξqppy, x, ξqupxqdxdξ,

where the amplitude ppy, x, ξq P C8pY ˆXˆRnq and it satisfies the following
estimate: For every compact set K Ă Y ˆX and for every multi-index α, β, γ,
there is a constant C “ CpK,α, β, γq such that

ˇ

ˇDα
ξD

β
xD

γ
yppy, x, ξq

ˇ

ˇ ď Cp1` }ξ}qm´|α| for all x, y P K and for all ξ P Rn.

Finally, we define two important sets associated with this FIO.

Σφ “ tpy, x, ξq P Y ˆX ˆ pRnz0q : Bξφpy, x, ξq “ 0u .

and the canonical relation

C :“ tpy, Byφpy, x, ξq;x,´Bxφpy, x, ξqq : py, x, ξq P Σφu . (1.50)

One can also include the local integrability condition 2b of Definition 4 for
the amplitude of FIOs.

Note that RL satisfies these conditions with phase function φpω, p, x, τq “
pp ´ x ¨ ωqτ and amplitude ppy, x, τq “ 1{p2πq so RL is an FIO. Guillemin
originally proved that a broad range of Radon transforms are FIOs [32, 33, 35].
We will study RL more carefully in the next section.

Every ΨDO is an FIO with phase function φpy, x, ξq “ py´xq ¨ξ. However,
RL is a FIO that is not a ΨDO since its phase function is not of that form.

Definition 8. Let C Ă T˚Y ˆT˚X, and rCsubsetT˚XˆT˚Y and A Ă T˚X.
We define

C ˝A “tpy, ηdyq : D px, ξdxq P A with py, ηdy;x, ξdxq P Cu

rC ˝ C “
!

prx, rξdx;x, ξdxq : D py, ηdyq with prx, rξdx; y, ηdyq P rC,

and py, ηdy;x, ξdxq P C
)

.

Theorem 15 ([45]). Let P be an FIO and let C be the associated canonical
relation. Then

WFpPuq Ă C ˝WFpuq.

Example 11. In this example, we calculate the canonical relation of any ΨDO.
First note that

Bxφ “ ξdx Byφ “ ´ξdy Bξφ “ px´ yqdξ.
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Therefore, Σφ “ tpx, y, ξq : x´ y “ 0u. Now, we use (1.50) and these calcu-
lations to see that the canonical relation for ΨDOs is

C “ tpx, ξdx;x, ξdxq : ξ ‰ 0u

which is the diagonal in pT˚pRnqz0q and which we denote by ∆. Using The-
orem 15, we have that if P is a ΨDO, WFpPuq Ă WFpuq.

We end this section with an important result on the wavefront set of the
composition of two FIOs known as Hörmander-Sato Lemma.

Theorem 16 (Hörmander-Sato Lemma [45]). Let P1 and P2 be two FIOs
with canonical relations C1 and C2 respectively. Assume P1 ˝ P2 is defined
for distributions of compact support, and let u be a distribution of compact
support. Then

WFpP1 ˝ P2q Ă C1 ˝ C2

WFppP1 ˝ P2quq Ă pC1 ˝ C2q ˝WFpuq.

From an imaging point of view the operator that is studied is the image
reconstruction operator P˚P where P˚ is the adjoint of the FIO P. Using
Hörmander-Sato Lemma, one can study the wavefront set of the image re-
construction operator. For this we require the canonical relation [44] of the
adjoint P˚ which is given by

Ct “ tpy, ηdy;x, ξdxq : px, ξdx; y, ηdyq P Cu .

Now from Hörmander-Sato Lemma, we have,

WFpP˚Pq Ă Ct ˝ C

so, when the composition is defined, WFpP˚Pfq Ă pCt ˝ Cq ˝WFpfq.

1.5 Applications to Tomography

In this section we apply what we’ve presented about wavefront sets to ex-
plain strengths and limitations of the reconstruction methods we presented in
Section 1.2.

1.5.1 Microlocal Analysis in X-ray CT

In section 1.2.1, we saw reconstructions from different limited data prob-
lems had different strengths and weaknesses. To understand why, we use
the information in the last chapter to understand the microlocal analysis
of RL. To make the tangent coordinates simpler, we will use coordinates
on S1 ˆ R pϕ, pq ÞÑ pωpϕq, pq where we recall ωpϕq “ pcospϕq, sinpϕqq and
ωKpϕq “ ωpϕ ` π{2q. Thus, functions on S1 ˆ R will be written in terms of
pϕ, pq.
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Theorem 17. The Radon transform RL is an elliptic FIO associated to the
canonical relation

CL “ t
`

ϕ, p, αp´x ¨ ωKpϕqdϕ` dpq;x, αωpϕqdx
˘

: pϕ, pq P r0, 2πs ˆ R, x P R2, α ‰ 0, x ¨ ωpϕq “ pu
(1.51)

Furthermore, CtL ˝ CL “ ∆ is the diagonal in
`

T˚pR2qz0
˘2

.

Proof. In Example 10, we showed that RL is a FIO associated to phase func-
tion

φpϕ, p, x, τq “ τpp´ x ¨ ωpϕqq .

To calculate the canonical relation for RL, we follow the general methods
outlined in Section 1.4.3 (see also [45, p. 165] or [92, (6.1) p. 462]). We first
calculate the differentials of φ,

Bxφ “ ´τωpϕqdx, Bpϕ,pqφ “ τ
`

´x ¨ ωKpϕqdϕ` dp
˘

Bτφ “ pp´ x ¨ ωpϕqqdτ.
(1.52)

Note that the conditions for φ to be a nondegenerate phase function [92,
(2.2)-(2.4), p. 315] hold because Bxφ and Bpϕ,pqφ are not zero for τ ‰ 0.
Therefore RL is a Fourier integral operator. RL has order ´1{2 because its
symbol 1{2π is homogeneous of degree zero, 2 “ dimR2 “ dimY , and σ
is one dimensional (see [92, p. 462 under (6.3)]). Since the symbol, 1{2π, is
homogeneous and nowhere zero, RL is elliptic (see [44]).

The auxiliary manifold Σφ is

Σφ “ tpϕ, p, x, τq P pr0, 2πs ˆ Rq ˆ R2 ˆ pRz0q : p´ x ¨ ωpϕq “ 0u . (1.53)

The canonical relation, CL associated to RL is defined by the map

Σφ Q px, ϕ, p, τq ÞÑ
`

ϕ, px ¨ ωpϕqq ; Bpϕ,pqφ;x,´Bxφ
˘

.

One uses this and a calculation to justify the expression (1.51).
To show CtL ˝ CL “ ∆ we let px, ξdxq P T˚pR2q and follow it through the

calculation of CtL ˝ CL using (1.51). Choose ϕ P r0, 2πs such that ξ “ aωpϕq
for some a ą 0. Then, there are two vectors associated to px, ξdxq in CL,

λ1 “ ϕ, x ¨ ωpϕq; ap´x ¨ ωKpϕqdϕ,dpqq,

λ2 “ pϕ` π, x ¨ ωpϕ` πq;´ap´x ¨ ω
Kpϕ` πqdϕ` dpq.

Under CtL, λ1 is associated with px ¨ωpϕqqωpϕq`x ¨ωKpϕq, aωpϕqdxq and this
is exactly px, ξdxq, and there is no other vector in T˚pR2q associated with λ1
(i.e., px, ξ, λ1q P C

t
L). In a similar way, one shows the only vector in T˚pR2q

associated with λ2 is px, ξdxq. Therefore

CtL ˝ CL “
 

px, ξdx;x, ξdxq : px, ξdxq P T˚pR2qz0
(

“ ∆.

[\



1 Microlocal Analysis in Tomography 35

Note that the fact CtL˝CL “ ∆ implies that WF pR˚LRLpfqq Ă WFpfq, by
the Hörmander-Sato Lemma (Theorem 16), and this and the theorem about
composition of FIO [44, Theorem 4.2.2] provides another proof that R˚LRL is
a ΨDO.

This theorem has the following important corollaries.

Corollary 1 (Propagation of Singularities for RL). Let f P E 1pR2q.

a. Let px0, ξ0dxq P T˚pR2qz0 and let ϕ0 be chosen so that ξ0 “ αωpϕ0q for
some α ‰ 0. If px0, ξ0dxq P WFpfq, then pϕ0, x0 ¨ωpϕ0q;αp´x0 ¨ω

Kpϕ0qdϕ`
dpq P WFpRLfq.

b. Let pϕ0, p0q P r0, 2πs ˆR and assume pϕ0, p0;αp´Adϕ` dpqq P WFpRLfq.
Then, px0, ξ0dxq P WFpfq where x0 “ p0ωpϕ0q`Aω

Kpϕ0q and ξ0 “ αωpϕ0q.

This provides the paradigm:

RL detects singularities of f perpendicular to the line of in-
tegration (“visible” directions) but not in other (“invisible”)
directions.

Remark 2. The paradigm has implications for limited data tomography. A
wavefront direction px0, ξ0dxq P WFpfq will be visible from limited Radon
data if and only if the line through x0 perpendicular to ξ0 is in the data set.

Proof. Because RL is elliptic,

px0, ξ0dxq P WFpfq if and only if CL ˝ tpx0, ξ0dxqu P WFpRLfq.

Here we use a stronger version of the Hörmander-Sato Lemma for elliptic
operators [92]. Part a. follows from the ñ implication of this equivalence and
part b. follows from the ð implication using the expression for CL, (1.51).

Part a. implies thatRL detects singularities perpendicular to the line being
integrated over, since ωpϕ0q is perpendicular to the line Lpωpϕ0q, x0 ¨ ωpϕ0qq,
and Part b. implies that if a singularity is visible in RLf at pϕ0, p0q, it must
come from a point on Lpωpϕ0q, p0q and in a direction perpendicular to this
line. This explains the paradigm in the theorem. [\

Corollary 2 (Propagation of Singularities for Reconstruction Oper-
ators). Let f P E 1pR2q.

a. Let L be either the FBP (see (1.18)), Lambda (Lx, (1.22)), or Lambda +
contour (Lx,µ, (1.23)) operators. Let f P E 1pR2q. Then, WFpfq “ WFpLfq.

b. Let RL,lim be the limited angle backprojection operator in (1.25) for angles
a ă ϕ ă b (where b´ a ă π). Let V “ tpx, ξdxq : ξ “ αωpϕq, ϕ P pa, bqu. If
Llim is any of the operators

RL,limΛpRL, RL,lim
ˆ

´
d2

dp2
RL

˙

, RL,lim
ˆˆ

´
d2

dp2
` µ

˙

RL
˙

,

then
WFpLlimfq X V “ WFpfq X V .
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Proof. Part a follows from the fact that both Lx and Lx,µ are elliptic, as noted
in Example 9 and the strong pseudolocal property in Theorem 14.

Part b follows from the fact that, when one cuts off angles, one can see
only wavefront parallel the angles in the data set, that is, the visible directions
in V. A complete proof of this result is given in [24]. [\

Remark 3. The paradigms in Corollaries 1 and 2 have especially simple in-
terpretations if f is the sum of characteristic functions of sets with smooth
boundaries. The tangent line to any point on the boundary of a region is nor-
mal to the wavefront direction of f at that point (since in the wavefront set
at that point is normal the boundary, see Example 6).

So, a boundary at x (with conormal px, ξdxq) will be visible from the data
RLf near pωpϕq, pq if px, ξq is normal to the line of integration (equivalently:.
the boundary at x is tangent to a line in the data set).

Finally, note that Example 1 provided an simple case for which RLf is
not smooth when the line Lpϕ, pq is tangent to the boundary of supppfq. The
paradigm show this principle is true generally.

1.5.2 Limited data X-ray CT

Now we examine each of the limited data problems we discussed in Section
1.2 in light of the corollaries and paradigm of the last section.

Exterior X-ray CT data

In the reconstruction in Figure 1.2 the boundaries tangent to lines in the data
set are clearer and less fuzzy than the one not tangent to lines in the data
set. The paradigm in Corollary 1 and Remarks 2 and 3 explain this perfectly.
When a line in the data set is tangent to a boundary, then the boundary is
visible in the reconstruction. For our exterior reconstruction in Figure 1.2,
this is true even for the inside boundary of the disk at about eight o’clock
on the circle (lower left); that boundary is imaged by only a few lines in the
exterior data set. If the line tangent to the boundary at x is not in the data
set, then the boundary is fuzzier, as is true in that figure for the “invisible”
boundaries.

This is reflected in Quinto’s algorithm [74] in the following way. That
algorithm expands the reconstruction in a polar Fourier series

fprωpϕqq “
ÿ

`PZ
f`prqe

i`ϕ ,

where f`prq is approximated by a polynomial which is calculated using quadra-
ture. The calculation of f` can be done stably only up to about |`| “ 25 and
so the reconstruction is not terribly good in polar direction. However, for each
` for which this can be done, the recovery of f`prq is very accurate and can
be done up to a polynomial of order about 100. Thus the algorithm has good
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radial resolution but bad resolution in the polar direction. However, this is,
at least in part, a limitation of the problem, not just the algorithm. The sin-
gularities in Figure 1.2 that are smoothed by the algorithm are intrinsically
difficult to reconstruct.

Limited Angle Data

In Figure 1.3, data are given over lines Lpωpϕq, pq for ϕ P r´π{4, π{4s and the
only boundaries that are visible are exactly those normal to such lines. This
reflects Corollary 1 and Remarks 2 and 3. The algorithm used is FBP but
with a limited angle backprojection (see (1.25), in that reconstruction only
between a “ ´π{4 and b “ π{4, which was described in Section 1.3.5, below
1.25. In this case, Corollary 2 shows that the only singularities of f that will
be visible in Llimf (where Llim is given in that corollary) are those in the cone
trωpϕq : ϕ P p´π{4, π{4q, r ‰ 0u.

However, there is also a marked streak along the lines with angle ϕ “ ˘π{4
that are tangent to the boundary of the region. Frikel and Quinto have re-
cently explained it using microlocal analysis [24]. They also explained why, to
decrease those streaks, one needs to make the backprojection operator a stan-
dard FIO by including a smooth cutoff function ψ supported in r´π{4, π{4s
that is equal to 1 on most of that interval.

RL˚ψgpxq “
ż π{4

ϕ“´π{4

gpωpϕq, x ¨ ωpϕqqψpϕqdϕ .

Region of Interest (ROI) Data

The reconstruction in Figure 1.4 is from Lambda CT and all singularities of the
circle are visible. This is true because R˚LRL is an elliptic pseudodifferential
operator as is

Lx “ p´∆qR˚LRL
as explained in Example 9. Therefore, WFpLxpfqq “ WFpfq for any distribu-
tion f of compact support. Recall that Lxpfqpxq determined by data RLf for
lines near x. This means that the wavefront of f above x is the same as the
wavefront set of Lxpfq above x, which can be determined by local data for lines
near x. This is why all singularities are visible in the Lambda reconstruction
in that figure.

This also means that any null function for the interior problem must be
smooth in the ROI since its Radon data are zero (e.g., smooth) for lines
meeting the ROI.

1.5.3 Microlocal Analysis of conical tilt Electron Microscope
Tomography (ET)

We will use the notation of Section 1.3.7. We let
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Sα “ tpsinpαq cospϕq, sinpαq sinpϕq, cospαqq : ϕ P r0, 2πsu

Cα “ RSα .

In Theorem 10, we showed that the operators L∆ (see (1.28)) and LS (see
(1.29)) can be expressed using the convolution

f ˚ Ipxq “

ż

yPCα

fpx` yq
1

}y}
dy

where dy is the surface area measure on the cone Cα. In particular we proved

P˚SPSf “ f ˚ I

L∆f “ p´∆q pf ˚ Iq

LSf “
ˆ

´∆` csc2pαq
B2

Bz3

˙

f ˚ I .

As one can see from the cross-section in the x´ y-plane of the reconstruc-
tion, Figure 1.5, there are circular artifacts. In the cross-section in the vertical
plane x “ ´y, Figure 1.6, there are streak artifacts coming off each of the balls
at a 45˝ angle.

These artifacts can be understood intuitively. Let f be the characteristic
function of a ball B. Then, f ˚ Ipxq integrates f over the cone x`Cπ{4. When
this cone is tangent to B at a point besides x, it is normal to a singularity of f
at this point. We claim that this singularity will cause a singularity of f ˚ I at
x. The reason is, when x is perturbed, the cone moves in and out of B, so the
integral changes from 0 (when the cone is disjoint from B) to nonzero values
as the cone intersects B. A calculation will convince one that the singularity is
a discontinuity in the first derivative. Because L∆ is a derivative of f ˚ I, that
singularity is accentuated in L∆f at x. One can see this phenomenon from the
artifacts in L∆ reconstructions in Section 1.2.2. In the x´y-plane, the artifacts
are circular shadows from the disks outside of the plane; in the y “ ´x plane,
the artifacts follow along the generating lines of the cone. However, this is not
a rigorous explanation since it does not apply to arbitrary functions. It also
does not explain why the L∆ reconstruction has apparent singularities but
the LS reconstruction seems not to.

Our next theorem explains this using microlocal analysis. To state the
theorem, we recall the definition of conormal bundle of a submanifold B Ă R3

as
N˚pBq “ tpy, ξdxq : y P B, ξ is normal to B at yu .

Theorem 18 ([21]). The conical Tilt ET operator PS is an elliptic Fourier
integral operator. Let f P E 1pR3q and let α P p0, π{2q. Let L be either L∆ or
LS. Then,

WFpLpfqq Ă pWFpfq X Vq YApfq

where
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V “ R3 ˆ
 

η P R3z0 : Dω P Sα, η ¨ ω “ 0
(

represents the set of possible visible singularities and the added artifacts come
from

Apfq “ tpx, ξdxq : D py, ξdxq P N˚px` Cαq XWFpfqu .

Furthermore, the added artifacts in Apfq are stronger in Sobolev scale in
L∆f than in LSf .

Here V is the set of visible singularities, those from f that should appear
in Lf . The set Apfq consists of added artifacts, those caused by wavefront of
f normal to x` Cα at points besides x. In Figure 1.5, the added artifacts in
the L∆ reconstruction are exactly those that come from cones x`Cα that are
tangent to boundaries of disks in supppfq, and this gives the same conclusions
as the heuristic description given above Theorem 18.

The final statement in the theorem follows from the fact that L∆ is a class
of singular FIO (so called Ip,l classes) and LS is in a better behaved class.
These classes of singular FIOs will be discussed at the end of the next section.

The set of visible singularities V is larger for conical tilt ET than for the
standard data acquisition geometry, single axis tilt ET and this is one reason
to use it, even though acquiring data can be more difficult.

The proof of this theorem uses the Hörmander-Sato Lemma (Theorem 16).
One first calculates the canonical relation, C, and then one calculates Ct ˝C
and shows Ct ˝ C has two parts, One is V, the set of visible singularities,
singularities of f that will be visible in L∆f . The second part generates the
set of added artifacts, Apfq. Then, deep results in [29] are used to explain
why LS is better than L∆.

This conical tilt transform is a so called admissible Radon transform [25].
The microlocal analysis of admissibility was first studied in [33]. A thorough,
deep analysis of the microlocal properties of these transforms in a very general
setting is given in [28] including general results for backprojection that are
related to Theorem 18.

Quinto and Rullg̊ard have proven similar results for a curvilinear Radon
transform for which the more effective differential operator (analogous to DS)
decreases the strength of artifacts only locally [78].

1.5.4 SAR Imaging

In this section, we will describe some recent results on SAR imaging. The
results described here emphasize a microlocal analysis point of view. The
notation we follow is from Section 1.2.3. We recall that the forward operator
under consideration is

PV ps, tq “
ż

e´iωpt´p}x´γT psq}`}x´γRpsq}q{c0qAps, t, x, ωqV pxqdxdω. (1.54)

The canonical relation wherever it is well-defined is given by
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C “

#

s, t,´ω

˜

ˆ

x´ γT psq

}x´ γT psq}
¨ γ1T psq `

x´ γRpsq

}x´ γRpsq}
¨ γ1Rpsq

˙

ds` dt

¸

;

x1, x2,´ω

ˆ

x´ γT psq

}x´ γT psq}
`

x´ γRpsq

}x´ γRpsq}

˙

dx (1.55)

: c0t “ }x´ γT psq} ` }x´ γRpsq} , ω ‰ 0

+

.

Note that ps, x, ωq is a global parametrization for C. Let us denote

Y “ tps, tq P p0,8q ˆ p0,8qu

and tx1, x2u space as X. One is interested in studying the imaging operator
F˚P. Standard composition calculus of FIOs, the so-called transverse inter-
section calculus of Hörmander and the clean intersection calculus of Duis-
termaat and Guillemin, and Weinstein do not apply in general in these sit-
uations. Therefore one approach to understanding the imaging operator is
to study the canonical left and right projections from the canonical relation
C Ă T˚Y ˆ T˚X to T˚Y and T˚X respectively.

C

T˚Y
�

πL

T˚X

π
R

-
(1.56)

In order to motivate the results that follow, let us consider the following
example.

Example 12. Let us consider a simple example from SAR imaging . This exam-
ple will help us explain via microlocal analysis, some of the artifacts introduced
by image reconstruction operator in 1.7.

Assume that a colocated transmitter/receiver traverses the straight tra-
jectory γpsq “ ps, 0, hq with h fixed. The forward operator in this case is

Pfps, tq “
ż

e
´iω

´

t´ 2
c0

?
px´sq2`y2`h2

¯

Aps, t, x, y, ωqfpx, yqdxdydω.

The canonical relation of this operator is easily computed to be

C “

#

s,
2

c0

a

px´ sq2 ` y2 ` h2,´ω

˜

2

c0

x´ s
a

px´ sq2 ` y2 ` h2
ds` dt

¸

;

x, y,´
2ω

c0

˜

x´ s
a

px´ sq2 ` y2 ` h2
dx`

y
a

px´ sq2 ` y2 ` h2
dy

¸+

.

Now using Hörmander-Sato Lemma, we have,
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WFpP˚Pq Ă

#

x, y,
2ω

c0

˜

x´ s
a

px´ sq2 ` y2 ` h2
dx`

y
a

px´ sq2 ` y2 ` h2
dy

¸

;

z, w,
2ω

c0

˜

z ´ s
a

pz ´ sq2 ` w2 ` h2
dz `

w
a

pz ´ sq2 ` w2 ` h2
dw

¸

:

a

px´ sq2 ` y2 ` h2 “
a

pz ´ sq2 ` w2 ` h2 and

x´ s
a

px´ sq2 ` y2 ` h2
“

z ´ s
a

pz ´ sq2 ` w2 ` h2
, ω ‰ 0

+

.

We then have that pz, wq “ px, yq or pz, wq “ px,´yq. The first equality
contributes to the diagonal relation of the wavefront set of P˚P while the
second contributes to the relation formed by reflection about the x-axis. In
other words, we have that

WFpP˚Pq Ă 4YG, where 4 “ tpx, y, ξdx` ηdy : x, y, ξdx` ηdyqu

and G “ tpx, y, ξdx` ηdy;x,´y, ξdx´ ηdyqu.

The presence of the set G as in the above example (the non-diagonal
part) indicates that the imaging operator introduces artifacts in the recon-
structed image. A detailed study of the class of distributions as in the ex-
ample above, called Ip,l classes, was introduced in [63, 36, 30, 29]. These
class of distributions have come up in the study of several imaging problems
[28, 30, 29, 43, 67, 19, 20, 21, 22, 53, 1]. In instances where the imaging op-
erator introduces artifacts, it is of interest to determine whether the artifacts
are of the same strength in a suitable sense as that of the true singularities
and whether the artifacts can be suppressed or displaced from the true sin-
gularities. These questions are answered in the references mentioned in the
previous paragraph.

Monostatic SAR imaging

In monostatic SAR imaging, the transmitter and receiver are located at the
same point. In other words, γT psq “ γRpsq. Nolan and Cheney in [68] investi-
gated the microlocal properties of the forward operator P and the associated
image reconstruction operator P˚P. Using microlocal tools, synthetic aper-
ture inversion in the presence of noise and clutter was done in [96]. This
operator was further investigated by Felea in [17] and she made a detailed
analysis of the image reconstruction operator for various flight trajectories.
Felea in [17] showed that for γpsq “ ps, 0, hq with h ą 0 fixed, the opera-
tor P˚P belongs to I2m,0p∆,Gq where ∆ “ tpx, ξ, x, ξqu P T˚X ˆ T˚zt0u
and G is the graph of the function χpx1, x2, ξ1, ξ2q “ px1,´x2, ξ1,´ξ2q. If
γpsq “ pcos s, sin s, hq, it was shown in [18] that P˚P P I2m,0p∆,Gq, where
G is a 2-sided fold. For mappings with singularities (such as folds and blow-
downs) we refer to [27, 34]. Furthermore, in [18], Felea showed that in some
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instances such as the flight trajectory being circular, the artifact singularities
of the same strength as the true singularities can be displaced far away from
the true singularities and those that are not displaced are of lesser strength
compared to the true singularities. In [88], the authors show that cancellation
of singularities, that is only certain singularities are recoverable, can occur
even in curved flight paths.

Bistatic SAR imaging

We now discuss some recent results by the authors and their collaborators
investigating the microlocal properties of transforms that appear in bistatic
SAR imaging. For related work, we refer the reader to [95].

Common offset bistatic SAR imaging

In common offset SAR imaging, the transmitter and receiver travel in a
straight line offset by a constant distance at all times. More precisely, let

γT psq “ ps` α, 0, hq and γRpsq “ ps´ α, 0, hq

be the trajectories of the transmitter and receiver respectively with α and h
fixed positive quantities. A detailed microlocal analysis of associated forward
operator P and the imaging operator P˚P was done in [53]. The authors
obtained the following results analogous to the ones obtained by Nolan and
Cheney in [68] and Raluca Felea in [17].

Theorem 19 ([53]). Let γT psq “ ps`α, 0, hq and γRpsq “ ps´α, 0, hq where
α ą 0, h ą 0 are fixed. The operator P defined in (1.54) is an FIO. The canon-
ical relation C associated to P defined in (1.55) satisfies the following: The
projections πL and πR defined in (1.56) are a fold and blowdown respectively.

Theorem 20 ([53]). Let P be defined with γT and γR given in Theorem 19.
Then P˚P P I3,0p∆,Gq, where ∆ is the diagonal relation and G is the graph
of the map χpx1, x2, ξ1, ξ2q “ px1,´x2, ξ1,´ξ2q.

Common midpoint SAR imaging

In common midpoint SAR imaging, the transmitter and receiver travel in a
straight line at a constant height above the ground at equal speeds away from
a common midpoint. The trajectories of the transmitter and receiver for the
common midpoint geometry we consider are

γtpsq “ ps, 0, hq and γrpsq “ p´s, 0, hq. (1.57)

A detailed microlocal analysis of the forward operator (1.55) associated to
γt and γr and the imaging operator P˚P was done in [1]. In contrast to the
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results in [68, 17, 53], here the canonical relation C associated to P is a 4-1
relation and this is reflected in the fact the canonical left and right projections
πL and πR drop rank on a union of two disjoint sets. More precisely, we
obtain the following results for the forward operator and the imaging operator,
respectively.

Theorem 21 ([1]). Let P be as in (1.54) with the trajectories given by (1.57).
Then P is an FIO and the canonical relation associated to P defined in (1.55)
has global parametrization

p0,8q ˆ
`

R2z0
˘

ˆ pRz0q Q ps, x1, x2, ωq ÞÑ C,

and it satisfies the following: the left and right projections πL and πR drop rank
simply by one on a set Σ “ Σ1 YΣ2 where in the coordinates ps, x, ωq, Σ1 “

tps, x1, 0, ωq : s ą 0, |x1| ą ε1, ω ‰ 0u and Σ2 “ tps, 0, x2, ωq : s ą 0, |x2| ą
ε1, ω ‰ 0u for 0 ă ε1 small enough. The canonical relation C associated to P
satisfies the following: The projections πL and πR defined in (1.56) are a fold
and blowdown respectively along Σ.

Theorem 22 ([1]). Let P be as in (1.54) with the trajectories given by
(1.57). Then P˚P can be decomposed into a sum belonging to I2m,0p∆,G1q `

I2m,0p∆,G2q` I
2m,0pG1, G3q` I

2m,0pG2, G3q, where Gi for i “ 1, 2, 3 are the
graphs of the following functions χi for i “ 1, 2, 3 on T˚X:

χ1px, ξq “ px1,´x2, ξ1,´ξ2q, χ2px, ξq “ p´x1, x2,´ξ1, ξ2q and χ3 “ χ1 ˝ χ2.

1.5.5 Summary

Finally, we would like to point out some important themes of this chapter.
Microlocal analysis can help understand strengths and limitations of tomo-

graphic reconstruction methods. For limited data X-ray tomography, we used
microlocal analysis to show shows which singularities of functions will be vis-
ible depending on the data, and our reconstructions illustrated the paradigm.

Each of the reconstruction methods we described is of the form

L “ P˚DP

where the forward operator (operator modeling the tomography problem) P
is a Fourier integral operator and P˚ is an adjoint and D is a pseudodiffer-
ential operator. In SAR imaging, D “ Id is the identity operator and the
reconstruction method is P˚P–the normal operator. Since the operator D is
a differential or pseudodifferential operator, it does not add to the wavefront
set of Pf , WFpDPfq Ă WFpPfq. If D is elliptic (on the range of P, which
is true in the cases we consider), WFpDPfq “ WFpPfq. Then, one needs to
understand what P˚ does, and this is determined by the structure of Ct ˝ C
by the Hörmander Sato Lemma (Theorem 16):
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WF pP˚ pDPfqq Ă
`

Ct ˝ C
˘

˝WFpfq .

However, in limited angle tomography, because RL,lim is not a standard
FIO, RL,limDRL adds singularities along lines at the ends of the limited
angular range.

In the case of SAR and conical tilt ET, Ct ˝ C is more complicated; it
includes ∆ and another set. In conical tilt ET, this extra set generates the
set Apfq of extra artifacts given in Theorem 18. Also, for conical tilt ET,
we noted that a well-chosen differential operator (p´DSq rather than p´∆Sq)
decreases the strength of the added singularities: they are visible if one looks
carefully at the reconstructions, but they are smoother than when p´∆Sq is
used.

The only exact reconstruction method we presented is FBP (Theorem
9). The other algorithms, such as Lambda CT, involve differential operators
and backprojection. We demonstrated, using microlocal analysis, that they do
recover many (or all) singularities of the object.

Recovering singularities does not recover the object. So, these algorithms
are not useful when one needs density values, such as in distinguishing tumor
cells from benign cells in diagnostic radiology. However, in many cases, one is
interested in the shapes of regions, not actual density values, so knowing the
location of singularities is useful. The algorithm must be designed so that it
clearly shows singularities in the reconstruction. For example, an algorithm
that turns jump discontinuities in the object into discontinuities of a derivative
in the reconstruction might not provide a clear picture of the object. Lambda
CT and our algorithms for conical tilt ET actually accentuate singularities;
they make the singularities more apparent since they are operators of order
one (like a first derivative). The implementation smooths out the derivative
since it uses numerical differentiation.

In conical tilt ET and SAR the reconstruction methods, that included a
backprojection (adjoint, P˚) produced added artifacts (as shown in Figures
1.6 and 1.7), and we explained them using microlocal analysis.

Microlocal analysis will not make a bad algorithm good, but it can show
that some limitations in reconstruction quality are intrinsic to the underly-
ing tomographic problem. It can point to where reconstruction methods need
to be regularized more strongly because of intrinsic instability in the spe-
cific tomography problem. In summary, microlocal analysis can be used to
understand practical and theoretical issues in tomography.
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tegralwerte längs gewisser Mannigfaltigkeiten. In: 75 years of Radon
transform (Vienna, 1992), Conf. Proc. Lecture Notes Math. Phys., IV,
Int. Press, Cambridge, MA, pp 324–339

[82] Ramachandran G, Lakshminarayanan A (1971) Three dimensional re-
construction from radiographs and electron micrographs: applications
of convolutions instead of Fourier Transforms. Proc Natl Acad Sci USA
68:262–277

[83] Rudin W (1973) Functional analysis. McGraw-Hill Book Co., New York,
mcGraw-Hill Series in Higher Mathematics

[84] Shepp LA, Kruskal JB (1978) Computerized Tomography: The new
medical X-ray technology. Amer Mathematical Monthly 85:420–439

[85] Shepp LA, Srivastava S (1986) Computed tomography of PKM and
AKM exit cones. A T & T Technical J 65:78–88

[86] Shubin MA (2001) Pseudodifferential operators and spectral theory, 2nd
edn. Springer-Verlag, Berlin, translated from the 1978 Russian original
by Stig I. Andersson

[87] Smith KT, Solmon DC, Wagner SL (1977) Practical and mathematical
aspects of the problem of reconstructing objects from radiographs. Bull
Amer Math Soc 83:1227–1270

[88] Stefanov P, Uhlmann G (2013) Is a curved flight path in SAR better
than a straight one? SIAM J Appl Math 73(4):1596–1612

[89] Strichartz RS (1982) Radon Inversion–Variations on a Theme. American
Mathematical Monthly 89:377–384

[90] Taylor ME (1981) Pseudodifferential operators, Princeton Mathematical
Series, vol 34. Princeton University Press, Princeton, N.J.



1 Microlocal Analysis in Tomography 51
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