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MOMENTUM RAY TRANSFORMS, II: RANGE

CHARACTERIZATION IN THE SCHWARTZ SPACE

VENKATESWARAN P. KRISHNAN∗†, RAMESH MANNA†, SUMAN KUMAR SAHOO† AND
VLADIMIR A. SHARAFUTDINOV♯

Abstract. The momentum ray transform Ik integrates a rank m symmetric tensor
field f over lines of Rn with the weight tk: (Ikf)(x, ξ) =

∫∞

−∞
tk〈f(x + tξ), ξm〉 dt. We

give the range characterization for the operator f 7→ (I0f, I1f, . . . , Imf) on the Schwartz
space of rank m smooth fast decaying tensor fields. In dimensions n ≥ 3, the range
is characterized by certain differential equations of order 2(m+ 1) which generalize the
classical John equations. In the two-dimensional case, the range is characterized by
certain integral conditions which generalize the classical Gelfand – Helgason – Ludwig
conditions.

1. Introduction

Starting with the classical paper [4] by F. John, the range characterization for many
integral geometry operators is the traditional subject of Integral Geometry.

Let S(Rn) be the Schwartz space of smooth functions rapidly decaying at infinity to-
gether with all derivatives (we use the term smooth as the synonym of C∞-smooth). John
considers the operator

I : S(R3) → C∞(R4) (1.1)

that integrates a function f over non-horizontal lines

(If)(x1, x2, α1, α2) =

∞∫

−∞

f(x1 + α1t, x2 + α2t, t) dt.

The operator (1.1) and its different generalizations are called ray transforms (the name X-
ray transform is also widely used). John proves that a function ϕ ∈ C∞(R4), ϕ = ϕ(x, α)
belongs to the range of the operator (1.1) if and only if it fast decays in x and satisfies
the second order differential equation

∂2ϕ

∂x1∂α2
−

∂2ϕ

∂x2∂α1
= 0. (1.2)

It is convenient to parameterize the family of oriented lines in Rn by points of the
manifold

TSn−1 = {(x, ξ) ∈ R
n × R

n | |ξ| = 1, 〈x, ξ〉 = 0} ⊂ R
n × R

n,

that is, by the tangent bundle of the unit sphere Sn−1. Namely, a point (x, ξ) ∈ TSn−1

determines the line {x + tξ | t ∈ R}. Hereafter 〈·, ·〉 is the standard dot-product on Rn
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and | · | is the corresponding norm. Observe that the Schwartz space S(E) is well defined
for a smooth vector bundle E →M over a compact manifold M . In particular, the space
S(TSn−1) is well defined. The ray transform

I : S(Rn) → S(TSn−1) (1.3)

is the linear continuous operator defined by

(If)(x, ξ) =

∞∫

−∞

f(x+ tξ) dt.

John’s result was generalized to any dimension n ≥ 3 by S. Helgason [3]. Instead of (1.2),
a system of second order differential equations of the same structure appears in the range
characterization for the operator (1.3). We do not present the precise statement since it
is covered by Theorem 1.1 below.

Let SmRn be the complex vector space of rank m symmetric tensors on Rn. The dimen-
sion of SmRn is

(
n+m−1

m

)
. In particular, S0Rn = C and S1Rn = Cn. Let S(Rn;SmRn) be

the Schwartz space of SmRn-valued functions that are called rank m smooth fast decaying

symmetric tensor fields on Rn. The ray transform is the linear continuous operator

I : S(Rn;SmRn) → S(TSn−1) (1.4)

that is defined, for f = (fi1...im) ∈ S(Rn;SmRn), by

(If)(x, ξ) =

∞∫

−∞

fi1...im(x+ tξ) ξi1 . . . ξim dt =

∞∫

−∞

〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ TSn−1

)
.

(1.5)
We use the Einstein summation rule: the summation from 1 to n is assumed over every
index repeated in lower and upper positions in a monomial. To adopt our formulas to the
Einstein summation rule, we use either lower or upper indices for denoting coordinates of
vectors and tensors. For instance, ξi = ξi in (1.5). There is no difference between co- and
contravariant tensors since we use Cartesian coordinates only.

Observe that the integral (1.5) makes sense for arbitrary x ∈ Rn and 0 6= ξ ∈ Rn. We
define the operator

J : S(Rn;SmRn) → C∞
(
R
n × (Rn \ {0})

)
(1.6)

by the same formula

(Jf)(x, ξ) =

∞∫

−∞

〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ R

n × (Rn \ {0})
)
. (1.7)

For a tensor field f ∈ S(Rn;SmRn), the function ϕ = If is recovered from ψ = Jf by
ϕ = ψ|TSn−1. On the other hand, ψ can be recovered from ϕ. Indeed, as immediately
follows from (1.7), the function ψ = Jf possesses the following homogeneity in the second
argument

ψ(x, tξ) =
tm

|t|
ψ(x, ξ) (0 6= t ∈ R)

and has the following property in the first argument

ψ(x+ tξ, ξ) = ψ(x, ξ) (t ∈ R).
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This implies that

ψ(x, ξ) = |ξ|m−1ϕ
(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
. (1.8)

Thus the functions ϕ = If and ψ = Jf give the same information for a tensor field f .
Therefore the operator (1.6) is also called the ray transform. The function ψ = Jf is
sometimes more convenient since the partial derivatives ∂ψ

∂xi
and ∂ψ

∂ξi
are well defined.

The range characterization for the operator (1.4) was obtained by V. Sharafutdinov.
Let us cite Theorem 2.10.1 of [9].

Theorem 1.1. A function ϕ ∈ S(TSn−1) (n ≥ 3) belongs to the range of the operator

(1.4) if and only if the following two conditions hold:

(1) ϕ(x,−ξ) = (−1)mϕ(x, ξ);
(2) the function ψ ∈ C∞

(
R
n × (Rn \ {0})

)
, defined by (1.8), satisfies the equations

( ∂2

∂xi1∂ξj1
−

∂2

∂xj1∂ξi1

)
. . .
( ∂2

∂xim+1∂ξjm+1
−

∂2

∂xjm+1∂ξim+1

)
ψ = 0 (1.9)

for all indices 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n.

We call (1.9) the John equations and the differential operators

Jij =
∂2

∂xi∂ξj
−

∂2

∂xj∂ξi
: C∞(Rn × R

n) → C∞(Rn × R
n) (1.10)

the John operators. In the case of (m,n) = (0, 3), Theorem 1.1 is equivalent to John’s
result. In the case of m = 0, Theorem 1.1 was proved by Helgason [3]. Just the latter case
is used in the current paper. Nevertheless, we have presented the statement in the most
generality since it is interesting to compare Theorem 1.1 with our main result, Theorem
1.3 below.

The system (1.9) is worth studying by itself. How many linearly independent equations
are contained in the system? What is the geometric sense of the system? The present
paper does not discuss such questions. See recent papers [1] and [6] related to these
questions.

Theorem 1.1 is definitely false in the case of n = 2. More precisely, for a tensor field
f ∈ S(R2;SmR2), the John equations (1.9) are still satisfied by the function ψ = Jf ; but
the John equations are not sufficient for the existence of a tensor field f ∈ S(R2;SmR2)
such that ψ = Jf . Observe that, in the case of (m,n) = (0, 2), the operator (1.4),
which in this case is the same as operator (1.3) coincides, up to notation, with the Radon
transform on the plane. Unlike (1.9), the corresponding consistency conditions for the
Radon transform are of integral nature, see [3, Chapter 1, Theorem 2.4]. These conditions
are named the Helgason – Ludwig conditions. However, they were, in fact, first written
down by I. Gelfand et. al. [2, Section 1.6]. The situation is quite similar for tensor fields.
Let us cite the result belonging to E. Pantjukhina [7].

Theorem 1.2. Let n ≥ 2 and m ≥ 0. If a function ϕ ∈ S(TSn−1) belongs to the range

of the operator (1.4), then
(1) ϕ(x,−ξ) = (−1)mϕ(x, ξ);
(2) for every integer r ≥ 0, there exist homogeneous polynomials P r

i1...im
(x) of degree r

on Rn such that∫

ξ⊥

ϕ(x′, ξ)〈x, x′〉r dx′ = P r
i1...im

(x)ξi1 . . . ξim
(
(x, ξ) ∈ TSn−1

)
,
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where dx′ is the (n− 1)-dimensional Lebesgue measure on the hyperplane ξ⊥ = {x′ ∈ Rn |
〈ξ, x′〉 = 0}.

In the case of n = 2, the converse statement is true: If a function ϕ ∈ S(TS1) satisfies
(1) and (2) then there exists a tensor field f ∈ S(R2;SmR2) such that ϕ = If .

This statement will be used in our proof of Theorem 1.4 below.

Now we introduce the subject of the current paper and present our main results.
The momentum ray transforms

Ik : S(Rn;SmRn) → S(TSn−1)

are defined for k = 0, 1, . . . as follows:

(Ikf)(x, ξ) =

∞∫

−∞

tk〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ TSn−1

)
. (1.11)

In particular, I0 = I. A rank m symmetric tensor field f is uniquely determined by the
functions (I0f, I1f, . . . , Imf). The inversion algorithm is presented in [5].

Quite similarly to (1.6), we introduce the operators

Jk : S(Rn;SmRn) → C∞
(
R
n × (Rn \ {0})

)

by

(Jkf)(x, ξ) =

∞∫

−∞

tk 〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ R

n × (Rn \ {0})
)
. (1.12)

For a tensor field f ∈ S(Rn;SmRn), the function ϕk = Ikf is recovered from ψk =
Jkf by ϕk = ψk|TSn−1. On the other hand, ψk can be recovered from (ϕ0, . . . , ϕk).
Indeed, as immediately follows from (1.12), the functions ψk = Jkf possess the following
homogeneity in the second argument

ψk(x, tξ) =
tm−k

|t|
ψk(x, ξ) (0 6= t ∈ R) (1.13)

and have the following property in the first argument

ψk(x+ tξ, ξ) =
k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓψℓ(x, ξ) (t ∈ R). (1.14)

The two previous formulas imply

ψk(x, ξ) = |ξ|m−2k−1

k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)
|ξ|ℓ〈ξ, x〉k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
. (1.15)

Formulas (1.14) and (1.15) mean, in particular, that the operator Ik must always be
considered together with lower order momenta (I0, . . . , Ik−1), i.e., the data (I0f, . . . , Ikf)
must always be used instead of Ikf .

Theorem 1.3. Let n ≥ 3 and m ≥ 0. An (m+ 1)-tuple

(ϕ0, . . . , ϕm) ∈ S(TSn−1)× · · · × S(TSn−1)︸ ︷︷ ︸
m+1
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belongs to the range of the operator

S(Rn;SmRn) → S(TSn−1)× · · · × S(TSn−1)︸ ︷︷ ︸
m+1

, f 7→ (I0f, . . . , Imf)

if and only if the following two conditions are satisfied:

(1) the functions possess the following evenness in the second argument:

ϕk(x,−ξ) = (−1)m−kϕk(x, ξ) (0 ≤ k ≤ m); (1.16)

(2) the function ψm ∈ C∞
(
Rn × (Rn \ {0})

)
, defined by (1.15) for k = m, satisfies the

John conditions

Ji1j1 . . . Jim+1jm+1ψ
m = 0 for all 1 ≤ i1, j1, . . . im+1, jm+1 ≤ n, (1.17)

where the John operators Jij are defined by (1.10).

Observe that the differential equations (1.17) are imposed on the function ψm only.
Nevertheless, all the data (ϕ0, . . . , ϕm) indirectly appear in (1.17) in view of (1.15).

Let us now discuss the two-dimensional case. Fix Cartesian coordinates on R2. For
ξ = (ξ1, ξ2) ∈ R2, let ξ⊥ = (−ξ2, ξ1). As before, to adopt our formulas to the Einstein
summation rule, we use either lower or upper indices for coordinates of vectors.

Theorem 1.4. Let m ≥ 0. If an (m+ 1)-tuple

(ϕ0, . . . , ϕm) ∈ S(TS1)× · · · × S(TS1)︸ ︷︷ ︸
m+1

belongs to the range of the operator,

S(R2;SmR2) → S(TS1)× · · · × S(TS1)︸ ︷︷ ︸
m+1

, f 7→ (I0f, . . . , Imf),

then the following conditions are satisfied.

(1) ϕk(x,−ξ) = (−1)m−kϕk(x, ξ) (0 ≤ k ≤ m).
(2) For every r = 0, 1, 2, . . . and for every k = 0, 1, . . . , m

∞∫

−∞

pr ϕk(pξ⊥, ξ) dp = P rk(ξ) for ξ ∈ S
1,

where P rk(ξ) are homogeneous polynomials of degree r + k +m on R2.

(3) Polynomials P rk(ξ) are not independent. They are described by the following con-

struction. For every pair (α, β) of non-negative integers there exists a symmetric

m-tensor µαβ = (µαβi1...im) ∈ SmR2 such that

P rk(ξ) =
r∑

α=0

k∑

β=0

(
r

α

)(
k

β

)
µ
α+β,r+k−α−β
i1...im

(ξ⊥1 )
α(ξ⊥2 )

r−αξ
β
1 ξ

k−β
2 ξi1 . . . ξim.

Conversely, if functions ϕk ∈ S(TS1) (k = 0, . . .m) satisfy conditions (1)–(3) with

some tensors µαβ ∈ SmR2, then there exists a tensor field f ∈ S(R2;SmR2) such that

(ϕ0, . . . , ϕm) = (I0f, . . . , Imf).

Proofs of Theorems 1.3 and 1.4 are presented in Sections 2 and 3 respectively.
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2. Proof of Theorem 1.3

2.1. Preliminaries. In this section, we prove several preliminary lemmas required for
the proof of Theorem 1.3.

Lemma 2.1. If a function ψ ∈ C∞(Rn \ {0}) is positively homogeneous of degree λ, then

for any integer k ≥ 0

ξi1 . . . ξik
∂kψ

∂ξi1 . . . ∂ξik
(ξ) = λ(λ− 1) . . . (λ− k + 1)ψ(ξ).

We omit the proof which can be easily done by induction on k on the basis of Euler
equation for homogeneous functions.

We will use two first order differential operators:

〈ξ, ∂x〉 = ξp
∂

∂xp
, 〈ξ, ∂ξ〉 = ξp

∂

∂ξp
.

The symmetrization σ(j1 . . . jk) in the indices (j1, . . . , jk) is defined by

σ(j1 . . . jk)aj1...jk =
1

k!

∑

π∈Πk

ajπ(1)...jπ(k)
,

where Πk is the set of all permutations of the set {1, . . . , k}.

Lemma 2.2. For any non-negative integers k and ℓ and for all indices (j1, . . . , jk) satis-
fying 1 ≤ j1, . . . , jk ≤ n, the commutator formula

〈ξ, ∂x〉
ℓ ∂k

∂ξj1 . . . ∂ξjk
= σ(j1 . . . jk)

k∑

p=0

(−1)p
(
k

p

)
ℓ!

(ℓ−p)!

∂k

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
〈ξ, ∂x〉

ℓ−p

(2.1)
holds under the agreement: 〈ξ, ∂x〉

r = 0 for r < 0.

Proof. We prove the statement by induction on k. The statement trivially holds for k = 0.
Assuming (2.1) to be valid for some k, we apply ∂

∂ξ
jk+1

to (2.1) from the left

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
+ ℓ 〈ξ, ∂x〉

ℓ−1 ∂k+1

∂xjk+1∂ξj1 . . . ∂ξjk
=

= σ(j1 . . . jk)

k∑

p=0

(−1)p
(
k

p

)
ℓ!

(ℓ− p)!

∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p.

We write this in the form

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
= σ(j1 . . . jk)

k∑

p=0

(−1)pℓ!

(ℓ− p)!

(
k

p

)
∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p

− ℓ 〈ξ, ∂x〉
ℓ−1 ∂k+1

∂xjk+1∂ξj1 . . . ∂ξjk
.

(2.2)
By the same induction hypothesis (2.1),

〈ξ, ∂x〉
ℓ−1 ∂k

∂ξj1 . . . ∂ξjk
=

= σ(j1 . . . jk)
k∑

p=0

(−1)p
(
k

p

)
(ℓ− 1)!

(ℓ− p− 1)!

∂k

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
〈ξ, ∂x〉

ℓ−p−1.
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We apply ∂

∂x
jk+1

from the left to the above equality. Since the latter derivative commutes

with 〈ξ, ∂x〉, the result can be written as

〈ξ, ∂x〉
ℓ−1 ∂k+1

∂xjk+1∂ξj1 . . . ∂ξjk
=

= σ(j1 . . . jk)
k∑

p=0

(−1)p
(
k

p

)
(ℓ− 1)!

(ℓ− p− 1)!

∂k+1

∂xj1 . . . ∂xjp∂xjk+1∂ξjp+1 . . . ∂ξjk
〈ξ, ∂x〉

ℓ−p−1.

Substitute this expression into (2.2)

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
= σ(j1 . . . jk)

k∑

p=0

(−1)pℓ!

(ℓ− p)!

(
k

p

)
∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p

− ℓ σ(j1 . . . jk)
k∑

p=0

(−1)p
(
k

p

)
(ℓ− 1)!

(ℓ− p− 1)!

∂k+1

∂xj1 . . . ∂xjp∂xjk+1∂ξjp+1 . . . ∂ξjk
〈ξ, ∂x〉

ℓ−p−1.

The symmetrization σ(j1 . . . jk) can be replaced with σ(j1 . . . jk+1) since the left-hand side
is symmetric in indices (j1, . . . , jk+1). After the replacement, we can write these indices
in the lexicographic order. In this way the formula becomes

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
= σ(j1 . . . jk+1)

k∑

p=0

(−1)pℓ!

(ℓ− p)!

(
k

p

)
∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p

+ σ(j1 . . . jk+1)
k∑

p=0

(−1)p+1

(
k

p

)
ℓ!

(ℓ− p− 1)!

∂k+1

∂xj1 . . . ∂xjp+1∂ξjp+2 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p−1.

In the second sum, we change the summation index as p := p− 1

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
= σ(j1 . . . jk+1)

k∑

p=0

(−1)pℓ!

(ℓ− p)!

(
k

p

)
∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p

+ σ(j1 . . . jk+1)
k+1∑

p=1

(−1)p
(

k

p− 1

)
ℓ!

(ℓ− p)!

∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p.

Under the agreement
(
r

s

)
= 0 if either s < 0 or r < s, both summations can be extended

to the limits 0 ≤ p ≤ k + 1, and the formula becomes

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
=

= σ(j1 . . . jk+1)
k+1∑

p=0

(−1)p
[(k
p

)
+

(
k

p−1

)] ℓ!

(ℓ− p)!

∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p.

With the help of the Pascal relation
(
k

p

)
+
(
k

p−1

)
=
(
k+1
p

)
, the formula takes the final form

〈ξ, ∂x〉
ℓ ∂k+1

∂ξj1 . . . ∂ξjk+1
=

= σ(j1 . . . jk+1)

k+1∑

p=0

(−1)p
(
k + 1

p

)
ℓ!

(ℓ− p)!

∂k+1

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk+1
〈ξ, ∂x〉

ℓ−p.

This finishes the induction step. �
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Corollary 2.3. For integers 0 ≤ k ≤ m, the identity

σ(j1 . . . jm)

m∑

k=0

1

(m− k)!
〈ξ, ∂x〉

∂m

∂xj1 . . . ∂xjk∂ξjk+1 . . . ∂ξjm
〈ξ, ∂x〉

m−k =

=
1

m!

∂m

∂ξj1 . . . ∂ξjm
〈ξ, ∂x〉

m+1

(2.3)

holds for all 1 ≤ j1, . . . , jm ≤ n.

Proof. Denote the left-hand side of (2.3) by A. Indices can be written in an arbitrary
order because of the presence of the symmetrization σ(j1 . . . jm). In particular.

A = σ(j1 . . . jm)
m∑

k=0

1

(m− k)!
〈ξ, ∂x〉

∂m

∂xjm−k+1 . . . ∂xjm∂ξj1 . . . ∂ξjm−k
〈ξ, ∂x〉

m−k.

Since 〈ξ, ∂x〉 commutes with derivatives ∂
∂xj

, this can be written as

A = σ(j1 . . . jm)
m∑

k=0

1

(m− k)!

∂k

∂xjm−k+1 . . . ∂xjm
〈ξ, ∂x〉

∂m−k

∂ξj1 . . . ∂ξjm−k
〈ξ, ∂x〉

m−k. (2.4)

By Lemma 2.2,

〈ξ, ∂x〉
∂m−k

∂ξj1 . . . ∂ξjm−k
=

∂m−k

∂ξj1 . . . ∂ξjm−k
〈ξ, ∂x〉 − (m− k)σ(j1 . . . jm−k)

∂m−k

∂xj1∂ξj2 . . . ∂ξjm−k
.

While substituting this expression into (2.4), we can omit the symmetrization σ(j1 . . . jm−k)
because of the presence of the stronger symmetrization σ(j1 . . . jm). In this way we obtain

A = σ(j1 . . . jm)

m∑

k=0

1

(m− k)!

∂m

∂xjm−k+1 . . . ∂xjm∂ξj1 . . . ∂ξjm−k
〈ξ, ∂x〉

m−k+1

− σ(j1 . . . jm)

m∑

k=0

m− k

(m− k)!

∂m

∂xjm−k+1 . . . ∂xjm∂xj1∂ξj2 . . . ∂ξjm−k
〈ξ, ∂x〉

m−k.

In the second sum, we can reduce summation limits to 0 ≤ k ≤ m − 1 because of the
presence of the factor m− k. Besides this, we can again write indices in the lexicographic
order. The formula becomes

A = σ(j1 . . . jm)
m∑

k=0

1

(m− k)!

∂m

∂xj1 . . . ∂xjk∂ξjk+1 . . . ∂ξjm
〈ξ, ∂x〉

m−k+1

− σ(j1 . . . jm)
m−1∑

k=0

1

(m− k − 1)!

∂m

∂xj1 . . . ∂xjk+1∂ξjk+2 . . . ∂ξjm
〈ξ, ∂x〉

m−k.

We distinguish the summand of the first sum corresponding to k = 0 and change the
summation variable in the second sum as k := k − 1. The formula takes the form

A =
1

m!

∂m

∂ξj1 . . . ∂ξjm
〈ξ, ∂x〉

m+1

+ σ(j1 . . . jm)

m∑

k=1

1

(m− k)!

∂m

∂xj1 . . . ∂xjk∂ξjk+1 . . . ∂ξjm
〈ξ, ∂x〉

m−k+1

− σ(j1 . . . jm)
m∑

k=1

1

(m− k)!

∂m

∂xj1 . . . ∂xjk∂ξjk+1 . . . ∂ξjm
〈ξ, ∂x〉

m−k+1.

Two sums on the right-hand side cancel each other and we arrive at (2.3). �
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Lemma 2.4. For a function f ∈ S(Rn), the equalities

∂ℓ(Jkf)

∂xj1 . . . ∂xjℓ
=

∂ℓ(Jk−ℓf)

∂ξj1 . . . ∂ξjℓ
(2.5)

hold for all 0 ≤ ℓ ≤ k and for all indices 1 ≤ j1, . . . , jℓ ≤ n.

Proof. Applying the operator ∂ℓ

∂xj1 ...∂xjℓ
to the equality

(Jkf)(x, ξ) =

∞∫

−∞

tk f(x+ tξ) dt,

we obtain

∂ℓ(Jkf)

∂xj1 . . . ∂xjℓ
(x, ξ) =

∞∫

−∞

tk
∂ℓf

∂xj1 . . . ∂xjℓ
(x+ tξ) dt. (2.6)

On the other hand, applying the operator ∂ℓ

∂ξj1 ...∂ξjℓ
to the equality

(Jk−ℓf)(x, ξ) =

∞∫

−∞

tk−ℓ f(x+ tξ) dt,

we obtain

∂ℓ(Jk−ℓf)

∂ξj1 . . . ∂ξjℓ
(x, ξ) =

∞∫

−∞

tk
∂ℓf

∂xj1 . . . ∂xjℓ
(x+ tξ) dt. (2.7)

Formulas (2.6) and (2.7) imply (2.5). �

Lemma 2.5. Given an integer m ≥ 0, define the operators

Jm,k : S(Rn;SkRn) → C∞
(
R
n × (Rn \ {0})

)
(k = 0, 1, . . . )

by

(Jm,kf)(x, ξ) =

∞∫

−∞

tm 〈f(x+ tξ), ξk〉 dt. (2.8)

Then for every k and every f ∈ S(Rn;SkRn),

Ji1j1 . . . Jik+1jk+1
(Jm,kf) = 0 for all 1 ≤ i1, j1, . . . ik+1, jk+1 ≤ n, (2.9)

where Jij =
∂2

∂xi∂ξj
− ∂2

∂xj∂ξi
is the John operator.

Remark. We hope the reader is not confused by using the letter J in two different
senses: Jij is the John operator while Jm,k is defined by (2.8). Both notations are standard.

Proof. In the case of k = 0, (2.8) reads

(Jm,0f)(x, ξ) =

∞∫

−∞

tm f(x+ tξ) dt.

Differentiating this equality, we obtain

∂2(Jm,0f)

∂xi∂ξj
(x, ξ) =

∞∫

−∞

tm+1 ∂2f

∂xi∂xj
(x+ tξ) dt.
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The right-hand side is symmetric in (i, j). Therefore

Jij(J
m,0f) =

(∂2(Jm,0f)
∂xi∂ξj

−
∂2(Jm,0f)

∂xj∂ξi

)
= 0.

This proves the statement of the lemma for k = 0. Then we proceed by induction in k.
Let k > 0. Differentiating (2.8), we obtain

∂2(Jm,kf)

∂xi∂ξj
(x, ξ) =

∞∫

−∞

tm+1
〈 ∂2f

∂xi∂xj
(x+ tξ), ξk

〉
dt+k

∞∫

−∞

tm
∂fi1...ik−1j

∂xi
(x+ tξ) ξi1 . . . ξik−1 dt.

The first summand on the right-hand side of this equality is symmetric in (i, j). Therefore

(
Jij(J

m,kf)
)
(x, ξ) = k

∞∫

−∞

tm
(∂fi1...ik−1j

∂xi
(x+tξ)−

∂fi1...ik−1i

∂xj
(x+tξ)

)
ξi1 . . . ξik−1 dt. (2.10)

Let us fix indices i and j and define the tensor field hij ∈ S(Rn;Sk−1Rn) by

(hij)i1...ik−1
= k

(∂fi1...ik−1j

∂xi
−
∂fi1...ik−1i

∂xj

)
.

Then (2.10) can be written as

Jij(J
m,kf) = Jm,k−1hij . (2.11)

By the induction hypothesis,

Ji1j1 . . . Jimjm(J
m,k−1hij) = 0 for all 1 ≤ i1, j1, . . . , im, jm ≤ n.

Together with (2.11), this gives

Ji1j1 . . . JimjmJij(J
m,kf) = 0 for all 1 ≤ i1, j1, . . . , im, jm, i, j ≤ n.

This coincides with (2.9). �

Lemma 2.6. Let a function ψ ∈ C∞
(
R
n × R

n \ {0})
)
be positively homogeneous in the

second argument

ψ(x, tξ) = tλψ(x, ξ) (t > 0). (2.12)

Assume the restriction ψ|TSn−1 to belong to S(TSn−1). Assume also that restrictions to

S(TSn−1) of the function 〈ξ, ∂x〉ψ and of all its derivatives belong to S(TSn−1), i.e.,

∂k+ℓ(〈ξ, ∂x〉ψ)

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

∈ S(TSn−1) for all 1 ≤ i1, . . . , ik, j1, . . . , jℓ ≤ n.

(2.13)
Then the restriction to S(TSn−1) of every derivative of ψ also belongs to S(TSn−1), i.e.,

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

∈ S(TSn−1) for all 1 ≤ i1, . . . , ik, j1, . . . , jℓ ≤ n.

(2.14)

Proof. For 1 ≤ i ≤ n, we define first order differential operators on Rn × (Rn \ {0})

X̃i =
∂

∂xi
− ξi〈ξ, ∂x〉, Ξ̃i =

∂

∂ξi
− xi〈ξ, ∂x〉 − ξi〈ξ, ∂ξ〉. (2.15)

Being considered as vector fields on Rn × (Rn \ {0}), X̃i and Ξ̃i are tangent to TSn−1 at
every point of the latter submanifold, see [5, Lemma 4.1]. Let Xi and Ξi be the restrictions
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to TSn−1 of X̃i and Ξ̃i respectively. Thus, Xi and Ξi are well defined first order differential
operators on TSn−1. Obviously,

Xi,Ξi : S(TS
n−1) → S(TSn−1) (1 ≤ i ≤ n).

Let ϕ = ψ|TSn−1 ∈ S(TSn−1). Then

X̃iψ|TSn−1 = Xiϕ, Ξ̃iψ|TSn−1 = Ξiϕ. (2.16)

By the Euler equation for homogeneous functions,

〈ξ, ∂ξ〉ψ = λψ.

With the help of the last formula, (2.15) gives

∂ψ

∂xi
= X̃iψ + ξi〈ξ, ∂x〉ψ,

∂ψ

∂ξi
= Ξ̃iψ + xi〈ξ, ∂x〉ψ + λξiψ.

Together with (2.16), this implies

∂ψ

∂xi

∣∣∣∣
TSn−1

= Xiϕ+ (ξi〈ξ, ∂x〉ψ)|TSn−1,

∂ψ

∂ξi

∣∣∣∣
TSn−1

= Ξiϕ+ (xi〈ξ, ∂x〉ψ)|TSn−1 + λξiϕ.

All terms on right-hand sides of these equalities belong to S(TSn−1). Thus,

∂ψ

∂xi

∣∣∣∣
TSn−1

∈ S(TSn−1),
∂ψ

∂ξi

∣∣∣∣
TSn−1

∈ S(TSn−1).

We have thus proved the statement of the lemma for first order derivatives. In the case
of ℓ = 0, (2.14) is proved actually in the same way. Indeed, since the operator 〈ξ, ∂x〉

commutes with the derivatives ∂
∂xi

, every derivative ∂kψ

∂xii ...∂xik
satisfy hypotheses (2.12) and

(2.13) of the lemma. On using this fact, we easily prove (2.14) for ℓ = 0 by induction in
k.

In the case of ℓ 6= 0, the proof is more complicated since the operator 〈ξ, ∂x〉 does not
commute with the derivatives ∂

∂ξj
. Nevertheless, we have the commutator formula

〈ξ, ∂x〉
∂ℓ

∂ξj1 . . . ∂ξjℓ
=

∂ℓ

∂ξj1 . . . ∂ξjℓ
〈ξ, ∂x〉 − ℓ σ(j1 . . . jℓ)

∂ℓ

∂xj1∂ξj2 . . . ∂ξjℓ
(2.17)

which is a partial case of Lemma 2.2.
Now we prove (2.14) by induction on ℓ. Assume that

∂k+sψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjs

∣∣∣∣
TSn−1

∈ S(TSn−1) for s ≤ ℓ

with some ℓ.
Let ℓ ≥ 1. From (2.15),

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1
= Ξ̃jℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

+ xjℓ+1
〈ξ, ∂x〉

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

+ ξjℓ+1
〈ξ, ∂ξ〉

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
.
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Since ∂k+ℓψ

∂xi1 ...∂xik∂ξj1 ...∂ξjℓ
is positively homogeneous of degree λ−ℓ in ξ, the formula becomes

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1
= Ξ̃jℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

+ xjℓ+1
〈ξ, ∂x〉

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

+ (λ− ℓ)ξjℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
.

(2.18)

We transform the second term on the right hand side of (2.18) with the help of (2.17)

xjℓ+1
〈ξ, ∂x〉

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
= xjℓ+1

∂k+ℓ(〈ξ, ∂x〉ψ)

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
+ χi1...ikj1...jℓ+1

,

where

χi1...ikj1...jℓ+1
= −ℓ xjℓ+1

σ(j1 . . . jℓ)
∂k+ℓψ

∂xi1 . . . ∂xik∂xj1∂ξj2 . . . ∂ξjℓ
.

By the induction hypothesis,

χi1...ikj1...jℓ+1
|TSn−1 ∈ S(TSn−1). (2.19)

Formula (2.18) becomes now

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1
= Ξ̃jℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

+ xjℓ+1

∂k+ℓ(〈ξ, ∂x〉ψ)

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
+ χi1...ikj1...jℓ+1

+ (λ− ℓ)ξjℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ
.

Taking the restriction to TSn−1, we have

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1

∣∣∣∣
TSn−1

=
(
Ξ̃jℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

)∣∣∣∣
TSn−1

+ xjℓ+1

∂k+ℓ(〈ξ, ∂x〉ψ)

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

+ χi1...ikj1...jℓ+1
|TSn−1

+ (λ− ℓ)ξjℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

.

(2.20)

By the induction hypothesis,

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

∈ S(TSn−1).

Therefore

(
Ξ̃jℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

)∣∣∣∣
TSn−1

= Ξjℓ+1

(
∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

)
.
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Formula (2.20) becomes

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1

∣∣∣∣
TSn−1

= Ξjℓ+1

(
∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

)

+ xjℓ+1

∂k+ℓ(〈ξ, ∂x〉ψ)

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

+ χi1...ikj1...jℓ+1
|TSn−1

+ (λ− ℓ)ξjℓ+1

∂k+ℓψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ

∣∣∣∣
TSn−1

.

The second and third terms on the right hand side belong to S(TSn−1) by (2.13) and
(2.19) respectively. The last term on the right-hand side belongs to S(TSn−1) by the
induction hypothesis. Finally, the first term on the right-hand side belongs to S(TSn−1)
since Ξjℓ+1

is an intrinsic operator on TSn−1. Thus

∂k+ℓ+1ψ

∂xi1 . . . ∂xik∂ξj1 . . . ∂ξjℓ+1

∣∣∣∣
TSn−1

∈ S(TSn−1).

This finishes the induction step. �

2.2. Necessity.

Proof of the necessity part in Theorem 1.3. Given a tensor field f ∈ S(Rn;SmRn), let
ϕk = Ikf ∈ S(TSn−1) (k = 0, 1, . . . , m). The definition (1.11) implies

ϕk(x,−ξ) = (−1)m
∞∫

−∞

tk 〈f(x− tξ), ξm〉 dt

Changing the integration variable as t := −t, we obtain

ϕk(x,−ξ) = (−1)m−k

∞∫

−∞

tk 〈f(x+ tξ), ξm〉 dt = (−1)m−kϕk(x, ξ).

This proves property (1) of Theorem 1.3.
Let the function ψm ∈ C∞

(
Rn × (Rn \ {0})

)
be defined by (1.15) with k = m. This

means

ψm = Jmf. (2.21)

Observe that Jm = Jm,m as is seen from (2.8) and (1.12). By Lemma 2.5,

Ji1j1 . . . Jim+1jm+1(J
mf) = 0 for all 1 ≤ i1, j1, . . . im+1, jm+1 ≤ n.

Together with (2.21), this gives (1.17). �

2.3. Main Lemma. The following statement is the most essential part of the proof of
Theorem 1.3.

Lemma 2.7. Given an integer m ≥ 0, let a function ψm ∈ C∞
(
R
n × (Rn \ {0})

)
satisfy

(1.17) and

ψm(x, tξ) =
1

|t|
ψm(x, ξ) for 0 6= t ∈ R. (2.22)



14 V. P. KRISHNAN, R. MANNA, S. K. SAHOO AND V. A. SHARAFUTDINOV

Define the functions ψi1...im ∈ C∞
(
Rn × (Rn \ {0})

)
for all indices 1 ≤ i1, . . . , im ≤ n by

ψi1...im =
(−1)m

m!
σ(i1 . . . im)

( m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k
)
ψm.

(2.23)
Then

Jijψi1...im = 0 for all 1 ≤ i, j ≤ n. (2.24)

Proof. The John operator Jij commutes with partial derivatives (as any differential oper-
ator with constant coefficients). Therefore (2.24) is equivalent to the equation

σ(i1 . . . im)
( m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
Jij〈ξ, ∂x〉

m−k
)
ψm = 0.

Moreover, the operators 〈ξ, ∂x〉 and Jij commute as one can easily check. Therefore our
equation takes the form

σ(i1 . . . im)
( m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k
)
Jijψ

m = 0. (2.25)

Thus we have to prove that (2.22) and (1.17) imply (2.25). This is trivially true form = 0.
We proceed by induction in m. Assume Lemma 2.7 to be valid for some m ≥ 0. Now, let
a function ψm+1 ∈ C∞

(
Rn × (Rn \ {0})

)
satisfy

ψm+1(x, tξ) =
1

|t|
ψm+1(x, ξ) (0 6= t ∈ R) (2.26)

and

JijJi1j1 . . . Jim+1jm+1ψ
m+1 = 0 for all 1 ≤ i, j, i1, j1, . . . , im+1, jm+1 ≤ n. (2.27)

We have to prove that ψm+1 satisfies equation (2.25) with m increased by 1, i.e.,

σ(i1 . . . im+1)
( m∑

k=0

1

(m− k + 1)!

∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1
〈ξ, ∂x〉

m−k+1
)
Jijψ

m+1 = 0

(2.28)
for all 1 ≤ i, j, i1, . . . im+1 ≤ n.

Let us temporary fix values of indices (i1, j1, . . . , im+1, jm+1) and set J̃ = Ji1j1 . . . Jim+1jm+1.

Equation (2.27) is now written as JijJ̃ψ
m+1 = 0 or

∂2(J̃ψm+1)

∂xi∂ξj
−
∂2(J̃ψm+1)

∂xj∂ξi
= 0.

Multiplying this equation by ξj and taking sum over j, we have

ξj
∂2(J̃ψm+1)

∂xi∂ξj
− ξj

∂2(J̃ψm+1)

∂xj∂ξi
= 0.

This can be written in the form
∂

∂xi
〈ξ, ∂ξ〉J̃ψ

m+1 −
∂

∂ξi
〈ξ, ∂x〉J̃ψ

m+1 +
∂

∂xi
J̃ψm+1 = 0. (2.29)

Note that J̃ψm+1(x, ξ) is positively homogeneous of degree −(m + 2) in its second argu-
ment. By the Euler equation for homogeneous functions,

〈ξ, ∂ξ〉J̃ψ
m+1 = −(m+ 2)J̃ψm+1.
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Substituting this expression into (2.29), we get

(m+ 1)
∂

∂xi
J̃ψm+1 +

∂

∂ξi
〈ξ, ∂x〉J̃ψ

m+1 = 0.

Since 〈ξ, ∂x〉 commutes with J̃ , the last equation can be written as

J̃

(
1

m+ 1

∂

∂ξi
〈ξ, ∂x〉+

∂

∂xi

)
ψm+1 = 0.

Substituting the value J̃ = Ji1j1 . . . Jim+1jm+1, we write this in the final form

Ji1j1 . . . Jim+1jm+1

(
1

m+ 1

∂

∂ξi
〈ξ, ∂x〉+

∂

∂xi

)
ψm+1 = 0. (2.30)

From now on, the indices (i1, j1, . . . , im+1, jm+1) take again arbitrary values. Thus (2.30)
holds for all 1 ≤ i, i1, j1, . . . , im+1, jm+1 ≤ n.

For every index im+1 satisfying 1 ≤ im+1 ≤ n, we define the function ψmim+1
by

ψmim+1
(x, ξ) =

(
1

m+ 1

∂

∂ξim+1
〈ξ, ∂x〉+

∂

∂xim+1

)
ψm+1(x, ξ). (2.31)

As easily follows from (2.26) and (2.31), this function satisfies

ψmim+1
(x, tξ) =

1

|t|
ψmim+1

(x, ξ) (0 6= t ∈ R). (2.32)

Equations (2.30) and (2.32) mean that, for every im+1, the function ψ
m
im+1

satisfies hypothe-
ses of Lemma 2.7. By the induction hypothesis (2.25), for all 1 ≤ i, j, im+1, i1, . . . , im ≤ n,

σ(i1 . . . im)
( m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k
)
Jijψ

m
im+1

= 0. (2.33)

Let us denote

χmi1...im+1
= σ(i1 . . . im)

( m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k
)
ψmim+1

. (2.34)

Equation (2.33) is written in terms of functions χmi1...im+1
as follows:

Jijχ
m
i1...im+1

= 0. (2.35)

We will show the following equality, which would complete the induction step and hence
the proof of Lemma 2.7:

χmi1...im+1
= σ(i1. . . im+1)

(m+1∑

k=0

1

(m−k+1)!

∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim∂ξim+1
〈ξ, ∂x〉

m−k+1
)
ψm+1.

(2.36)
Indeed, substitution of (2.36) into (2.35) gives (2.28). By the way, formula (2.36) shows
that χmi1...im+1

is symmetric in the indices (i1, . . . , im+1). The latter fact is not obvious
from definition (2.34).
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It remains to prove (2.36). To this end we substitute expression (2.31) for ψmim+1
into

(2.34)

χmi1...im+1
= σ(i1 . . . im)

(
m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k

)
×

×

(
1

m+ 1

∂

∂ξim+1
〈ξ, ∂x〉+

∂

∂xim+1

)
ψm+1.

(2.37)

The commutator formula

〈ξ, ∂x〉
m−k ∂

∂ξim+1
=

∂

∂ξim+1
〈ξ, ∂x〉

m−k − (m− k)〈ξ, ∂x〉
m−k−1 ∂

∂xim+1

is a partial case of Lemma 2.2. With the help of the latter formula, (2.37) becomes

χmi1...im+1
= σ(i1 . . . im)

[
m∑

k=0

1

(m− k)!

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim

(
1

m+ 1

∂

∂ξim+1
〈ξ, ∂x〉

m−k+1

+ 〈ξ, ∂x〉
m−k

(
1−

m− k

m+ 1

)
∂

∂xim+1

)]
ψm+1.

This is easily transformed to the form

χmi1...im+1
=
σ(i1 . . . im)

m+ 1

[
m∑

k=0

m− k + 1

(m− k + 1)!

∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1
〈ξ, ∂x〉

m−k+1

+

m∑

k=0

k + 1

(m− k)!

∂m+1

∂xi1 . . . ∂xik∂xim+1∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k

]
ψm+1.

Replacing the summation variable k with k − 1 in the second sum, we get

χmi1...im+1
=
σ(i1 . . . im)

m+ 1

[
m∑

k=0

m− k + 1

(m− k + 1)!

∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1
〈ξ, ∂x〉

m−k+1

+

m+1∑

k=1

k

(m− k + 1)!

∂m+1

∂xi1 . . . ∂xik−1∂xim+1∂ξik . . . ∂ξim
〈ξ, ∂x〉

m−k+1

]
ψm+1.

Both summations can be extended to the limits 0 ≤ k ≤ m + 1 because of the presence
of the factors m− k + 1 and k in the first and second sum respectively. In this way, our
formula becomes

χmi1...im+1
=

1

m+ 1

m+1∑

k=0

[
σ(i1 . . . im)

(m− k + 1)!

(
(m− k + 1)

∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1

+ k
∂m+1

∂xi1 . . . ∂xik−1∂xim+1∂ξik . . . ∂ξim

)]
〈ξ, ∂x〉

m−k+1ψm+1.

(2.38)
Let us recall an easy statement of tensor algebra. If a tensor (yi1...im+1) is symmetric in

first k indices and in last m− k + 1 indices, then

σ(i1 . . . im+1)yi1...im+1 =
1

m+ 1
σ(i1 . . . im)[(m− k + 1)yi1...im+1 + kyim+1i1...im].
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The proof is given in [9, Lemma 2.4.1] although the reader can easily prove this by
themselves. We apply the statement to the operator-valued tensor

yi1...im+1 =
∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1

to obtain

σ(i1 . . . im)
(
(m−k+1)

∂m+1

∂xi1 . . . ∂xik∂ξik+1. . . ∂ξim+1
+ k

∂m+1

∂xi1 . . . ∂xik−1∂xim+1∂ξik . . . ∂ξim

)
=

= (m+ 1)σ(i1 . . . im+1)
∂m+1

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim+1
.

Substituting this value into (2.38), we arrive at (2.36). �

2.4. Sufficiency. We start the proof of the sufficiency part in Theorem 1.3. The proof
consists of several steps that are called statements. Hypotheses of statements coincide
with that of Theorem 1.3.

Given functions ϕk ∈ S(TSn−1) (k = 0, . . . , m) satisfying (1.16), let the function
ψm ∈ C∞

(
Rn × (Rn \ {0})

)
be defined by (1.15) with k = m. Assume the function to

satisfy (1.17). We also define the functions ψk ∈ C∞
(
Rn× (Rn \ {0})

)
(k = 0, . . . , m− 1)

by (1.15). Thus, (1.15) is valid for all k = 0, 1, . . . , m. It implies

ψk|TSn−1 = ϕk for 0 ≤ k ≤ m. (2.39)

In Section 1, properties (1.13)–(1.15) were easily derived from (1.12). Now we have no
tensor field f (we are, in fact, proving the existence of such a tensor field) and we cannot
use Formula (1.12). Nevertheless, the functions ψk possess the same properties as the
following statement shoes.

Statement 2.8. For every k = 0, . . . , m,

ψk(x, tξ) =
tm−k

|t|
ψk(x, ξ) for 0 6= t ∈ R (2.40)

and

ψk(x+ tξ, ξ) =

k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓ ψℓ(x, ξ) for t ∈ R. (2.41)

Proof. For t 6= 0 by (1.15),

ψk(x, tξ) = |t|m−2k−1|ξ|m−2k−1
k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)
|t|ℓ|ξ|ℓtk−ℓ〈ξ, x〉k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ, sgn(t)

ξ

|ξ|

)
.

(2.42)
In the case of t > 0, this reads

ψk(x, tξ) = tm−k−1|ξ|m−2k−1

k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)
|ξ|ℓ〈ξ, x〉k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

Together with (1.15), this gives

ψk(x, tξ) = tm−k−1ψk(x, ξ).

This coincides with (2.40) for t > 0.
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In the case of t < 0, (2.42) reads

ψk(x, tξ) = (−t)m−k−1|ξ|m−2k−1

k∑

ℓ=0

(
k

ℓ

)
|ξ|ℓ〈ξ, x〉k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,−

ξ

|ξ|

)
.

On using (1.16), this takes the form

ψk(x, tξ) = −tm−k−1|ξ|m−2k−1
k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)
|ξ|ℓ〈ξ, x〉k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

Together with (1.15), this gives

ψk(x, tξ) = −tm−k−1ψk(x, ξ).

This coincides with (2.40) for t < 0.
By (1.15),

ψk(x+ tξ, ξ) = |ξ|m−2k−1

k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)
|ξ|ℓ(〈ξ, x〉+ t|ξ|2)k−ℓ ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

Expanding (〈ξ, x〉+ t|ξ|2)k−ℓ in powers of t, we write this in the form

ψk(x+tξ, ξ) = |ξ|m−2k−1
k∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

) k−ℓ∑

s=0

(
k − ℓ

s

)
|ξ|ℓ+2s〈ξ, x〉k−ℓ−s ts ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

After changing the order of summations, this becomes

ψk(x+tξ, ξ) =

k∑

s=0

ts
k−s∑

ℓ=0

(−1)k−ℓ
(
k

ℓ

)(
k−ℓ

s

)
|ξ|m−2k+ℓ+2s+1〈ξ, x〉k−ℓ−s ϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

(2.43)
Let us transform the right hand side of (2.43). Obviously,

k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓ ψℓ(x, ξ) =

k∑

s=0

(−1)s
(
k

s

)
ts ψk−s(x, ξ)

(we just changed the summation variable as ℓ = k − s). Substituting value (1.15) for
ψk−s(x, ξ) into the right-hand side of the last formula, we obtain

k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓ ψℓ(x, ξ) =

=

k∑

s=0

(−1)s
(
k

s

)
ts|ξ|m−2(k−s)−1

k−s∑

ℓ=0

(−1)k−s−ℓ
(
k − s

ℓ

)
|ξ|ℓ 〈ξ, x〉k−s−ℓϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

This can be written as

k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓ ψℓ(x, ξ) =

=
k∑

s=0

ts
k−s∑

ℓ=0

(−1)k−ℓ
(
k

s

)(
k − s

ℓ

)
|ξ|m−2k+2s+ℓ−1 〈ξ, x〉k−s−ℓϕℓ

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
.

(2.44)
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In virtue of the obvious equality
(
k

ℓ

)(
k − ℓ

s

)
=

(
k

s

)(
k − s

ℓ

)
,

right hand sides of formulas (2.43) and (2.44) coincide. Equating left hand sides of these
formulas, we obtain (2.41). �

Equations (1.17) and (2.40) mean that the function ψm satisfies hypotheses of Lemma
2.7. Applying the lemma, we can state that the functions ψi1...im ∈ C∞

(
Rn× (Rn \ {0})

)
,

defined by (2.23) for all indices 1 ≤ i1, . . . , im ≤ n, satisfy (2.24). To study properties of
functions ψi1...im, it is convenient to look at an alternate formulation of the formula (2.23)
which we now show.

Statement 2.9. For all indices (i1, . . . , im),

ψi1...im =
1

m!
σ(i1 . . . im)

m∑

k=0

(−1)k
(
m

k

)
∂mψk

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
. (2.45)

Compare (2.45) with the inversion formula [5, Formula (3.1)].

Proof. We first show that for every k = 0, 1, . . . , m and for every integer ℓ ≥ 0,

〈ξ, ∂x〉
ℓψk =





(−1)ℓ

(
k

ℓ

)
ℓ!ψk−ℓ if ℓ ≤ k,

0 if ℓ > k.

(2.46)

To see (2.46), we first change the summation variable in equation (2.41) as ℓ = k− p. We
get,

ψk(x+ tξ, ξ) =

k∑

p=0

(−1)p
(
k

p

)
tp ψk−p(x, ξ).

Apply the operator 〈ξ, ∂x〉
ℓ to this equation

(〈ξ, ∂x〉
ℓψk)(x+tξ, ξ) =

∂ℓ
(
ψk(x+ tξ, ξ)

)

∂tℓ
=






k∑

p=ℓ

(−1)ℓ
(
k

p

)
p!

(p−ℓ)!
tp−ℓ ψk−p(x, ξ) if ℓ ≤ k,

0 if ℓ > k.

Setting t = 0, we obtain (2.46).
Now from (2.46), we have

〈ξ, ∂x〉
m−kψm = (−1)m−k

(
m

k

)
(m− k)!ψk.

Substituting this into (2.23), we obtain (2.45). Also from (2.46),

ψk = (−1)m−k

(
m

k

)−1
1

(m− k)!
〈ξ, ∂x〉

m−kψm (0 ≤ k ≤ m).

Substituting this value into (2.45), we obtain (2.23). Thus formulas (2.23) and (2.45) are
equivalent. �

Statement 2.10. For every k = 0, . . . , m,

∂r+sψk

∂xi1 . . . ∂xir∂ξji . . . ∂ξjs

∣∣∣∣
TSn−1

∈ S(TSn−1) for all 1 ≤ i1, . . . , ir, j1, . . . , js ≤ n.

(2.47)



20 V. P. KRISHNAN, R. MANNA, S. K. SAHOO AND V. A. SHARAFUTDINOV

Proof. By Statement 2.8, every function ψk(x, ξ) is positively homogeneous in ξ. By
(2.39), ψk|TSn−1 = ϕk ∈ S(TSn−1).

By (2.46), 〈ξ, ∂x〉ψ
0 = 0. Thus the function ψ0 satisfies hypotheses of Lemma 2.6.

Applying this Lemma, we obtain (2.47) for k = 0.
We proceed by induction in k. Assume (2.47) to be valid for some k. By (2.46) again,

〈ξ, ∂x〉ψ
k+1 = −(k + 1)ψk. Together with the induction hypothesis, this implies that

ψk+1 satisfies hypotheses of Lemma 2.6. Applying this Lemma, we obtain (2.47) for
k := k + 1. �

Statement 2.11. For every m-tuple (i1, . . . , im), the function ψi1...im satisfies

ψi1...im(x, tξ) =
1

|t|
ψi1...im(x, ξ) for 0 6= t ∈ R (2.48)

and

ψi1...im(x+ tξ, ξ) = ψi1...im(x, ξ) for t ∈ R. (2.49)

Proof. We say χ ∈ C∞
(
Rn × (Rn \ {0})

)
is a superhomogeneous function of degree λ if

χ(tξ) = tλ+1

|t|
χ(ξ) for 0 6= t ∈ R. By (2.40), ψk(x, ξ) is a superhomogeneous function of

degree m − k − 1 in ξ. Every derivative ∂
∂ξi

decreases the degree of superhomogeneity

by one. Therefore all summands on the right-hand side of (2.45) are superhomogeneous
functions of degree −1 in ξ. This proves (2.48).

The property (2.49) is equivalent to ∂
∂t

(
ψi1...im(x+ tξ, ξ)

)
= 0. Since

∂

∂t

(
ψi1...im(x+ tξ, ξ)

)
= (〈ξ, ∂x〉ψi1...im)(x+ tξ, ξ),

(2.49) is equivalent to
〈ξ, ∂x〉ψi1...im = 0. (2.50)

Applying the operator 〈ξ, ∂x〉 to the equation (2.23), we obtain

〈ξ, ∂x〉ψi1...im =

=
(−1)m

m!

[
σ(i1 . . . im)

m∑

k=0

1

(m− k)!
〈ξ, ∂x〉

∂m

∂xi1 . . . ∂xik∂ξik+1 . . . ∂ξim
〈ξ, ∂x〉

m−k
]
ψm.

By Corollary 2.3, the operator in the brackets coincides with 1
m!

∂m

∂ξj1 ...∂ξjm
〈ξ, ∂x〉

m+1. Thus,

〈ξ, ∂x〉ψi1...im =
(−1)m

(m!)2
∂m

∂ξj1 . . . ∂ξjm
〈ξ, ∂x〉

m+1ψm.

The right-hand side is equal to zero by (2.46). This proves (2.49). �

Together with Statement 2.10, (2.23), or equivalently, (2.45) implies that

ϕi1...im(x, ξ) = ψi1...im |TSn−1 ∈ S(TSn−1). (2.51)

As easily follows from (2.48)–(2.49), the functions ψi1...im can be recovered from ϕi1...im
by

ψi1...im(x, ξ) =
1

|ξ|
ϕi1...im

(
x−

〈ξ, x〉

|ξ|2
ξ,

ξ

|ξ|

)
. (2.52)

Formulas (2.24), (2.51) and (2.52) mean that, for every m-tuple (i1, . . . , im) of integers
satisfying 1 ≤ i1, . . . , im ≤ n, the function ϕi1...im ∈ S(TSn−1) satisfies the hypotheses of
Theorem 1.1 with m = 0. Applying this theorem, we obtain the function fi1...im ∈ S(Rn)
such that

I0fi1...im = ϕi1...im. (2.53)
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We emphasize that the hypothesis n ≥ 3 of Theorem 1.3 is essentially used on this step;
Theorem 1.1 is not true in the case of n = 2. Together with (2.52), (2.53) implies

J0fi1...im = ψi1...im. (2.54)

Let f ∈ S(Rn;SmRn) be the symmetric tensor field whose coordinates are fi1...im.

Statement 2.12. For every k = 0, 1, . . . , m,

Jkf = ψk. (2.55)

Proof. We will prove that

∂k(Jkf − ψk)

∂xj1 . . . ∂xjk
= 0 (2.56)

for all integers (j1, . . . , jk) satisfying 1 ≤ j1, . . . , jk ≤ n. This will imply (2.55). Indeed,
for a fixed 0 6= ξ ∈ Rn, the restriction of the function (Jkf − ψk)(·, ξ) to the hyperplane
ξ⊥ = {x ∈ Rn | 〈ξ, x〉 = 0} belongs to the Schwartz space S(ξ⊥). Equation (2.56) means
that all kth order derivatives of the latter function are identically equal to zero. This
implies that the restriction itself must be identically equal to zero. Since ξ is arbitrary,
this proves (2.55).

By Lemma 2.4 with ℓ = k,

∂k(Jkfi1...im)

∂xj1 . . . ∂xjk
=
∂k(J0fi1...im)

∂ξj1 . . . ∂ξjk
.

Together with (2.54), this gives

∂k(Jkfi1...im)

∂xj1 . . . ∂xjk
=

∂kψi1...im
∂ξj1 . . . ∂ξjk

. (2.57)

By the definition of the operator Jk,

Jkf = ξi1 . . . ξimJkfi1...im .

Applying the operator ∂k

∂xj1 ...∂xjk
to this equality, we obtain

∂k(Jkf)

∂xj1 . . . ∂xjk
= ξi1 . . . ξim

∂k(Jkfi1...im)

∂xj1 . . . ∂xjk
.

Together with (2.57), this gives

∂k(Jkf)

∂xj1 . . . ∂xjk
= ξi1 . . . ξim

∂kψi1...im
∂ξj1 . . . ∂ξjk

. (2.58)

To compute the right-hand side of (2.58), we consider the expression for ψi1···im from
(2.45):

ψi1...im =
1

m!
σ(i1 . . . im)

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)
∂mψℓ

∂xi1 . . . ∂xiℓ∂ξiℓ+1 . . . ∂ξim

and apply the operator ∂k

∂ξj1 ...∂ξjk
to this equality

∂kψi1...im
∂ξj1 . . . ∂ξjk

=
1

m!
σ(i1 . . . im)

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)
∂m+kψℓ

∂xi1 . . . ∂xiℓ∂ξiℓ+1 . . . ∂ξim∂ξj1 . . . ∂ξjk
.
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Wemultiply this equality by ξi1 . . . ξim and perform the summation over indices (i1, . . . , im).
While doing this, we can omit the symmetrization σ(i1 . . . im) since the factor ξi1 . . . ξim

is symmetric in these indices. In this way we obtain

ξi1. . . ξim
∂kψi1...im
∂ξj1 . . . ∂ξjk

=
1

m!

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)
ξi1. . . ξim

∂m+kψℓ

∂xi1 . . . ∂xiℓ∂ξiℓ+1 . . . ∂ξim∂ξj1 . . . ∂ξjk
.

This can be written in the form

ξi1. . . ξim
∂kψi1...im

∂ξj1 . . . ∂ξjk
=

1

m!

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)
〈ξ, ∂x〉

ℓ
(
ξiℓ+1 . . . ξim

∂m+k−ℓψℓ

∂ξiℓ+1. . . ∂ξim∂ξj1 . . . ∂ξjk

)
.

(2.59)

By (2.40), the function ∂kψℓ

∂ξj1 ...∂ξjk
is positively homogeneous of degree m− k − ℓ− 1 in

ξ. By Lemma 2.1,

ξiℓ+1 . . . ξim
∂m+k−ℓψℓ

∂ξiℓ+1 . . . ∂ξim∂ξj1 . . . ∂ξjk
= ξiℓ+1 . . . ξim

∂m−ℓ

∂ξiℓ+1 . . . ∂ξim

( ∂kψℓ

∂ξj1 . . . ∂ξjk

)

= (m− k − ℓ− 1)(m− k − ℓ− 2) . . . (−k)
∂kψℓ

∂ξj1 . . . ∂ξjk
.

If m− k − ℓ− 1 ≥ 0, then the product (m− k − ℓ− 1)(m− k − ℓ− 2) . . . (−k) contains
the zero factor. Otherwise, if ℓ ≥ m− k,

(m− k − ℓ− 1)(m− k − ℓ− 2) . . . (−k) = (−1)m−ℓ k!

(k + ℓ−m)!
.

Thus,

ξiℓ+1 . . . ξim
∂m+k−ℓψℓ

∂ξiℓ+1 . . . ∂ξim∂ξj1 . . . ∂ξjk
=





0 if ℓ ≤ m− k − 1,

(−1)m−ℓ k!

(k + ℓ−m)!

∂kψℓ

∂ξj1 . . . ∂ξjk
if ℓ ≥ m− k.

Substitute this value into (2.59) to obtain

ξi1. . . ξim
∂kψi1...im
∂ξj1 . . . ∂ξjk

=
(−1)m

m!

m∑

ℓ=m−k

k!

(k + ℓ−m)!

(
m

ℓ

)
〈ξ, ∂x〉

ℓ
( ∂kψℓ

∂ξj1 . . . ∂ξjk

)
.

Together with (2.58), this gives

∂k(Jkf)

∂xj1 . . . ∂xjk
=

(−1)m

m!

m∑

ℓ=m−k

k!

(k + ℓ−m)!

(
m

ℓ

)
〈ξ, ∂x〉

ℓ
( ∂kψℓ

∂ξj1 . . . ∂ξjk

)
. (2.60)

By Lemma 2.2,

〈ξ, ∂x〉
ℓ
( ∂kψℓ

∂ξj1 . . . ∂ξjk

)
= σ(j1 . . . jk)

min(k,ℓ)∑

p=0

(−1)p
(
k

p

)
ℓ!

(ℓ− p)!

∂k(〈ξ, ∂x〉
ℓ−pψℓ)

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
.

(2.61)
By (2.46),

〈ξ, ∂x〉
ℓ−pψℓ = (−1)ℓ−p

(
ℓ

p

)
(ℓ− p)!ψp.

Substituting this value into (2.61), we get,

〈ξ, ∂x〉
ℓ
( ∂kψℓ

∂ξj1 . . . ∂ξjk

)
= (−1)ℓσ(j1 . . . jk)

min(k,ℓ)∑

p=0

ℓ!

(
k

p

)(
ℓ

p

)
∂kψp

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
.
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Then substituting the latter expression into (2.60), we have

∂k(Jkf)

∂xj1 . . . ∂xjk
=

(−1)m

m!
σ(j1 . . . jk)

m∑

ℓ=m−k

(−1)ℓ
k!ℓ!

(k + ℓ−m)!

(
m

ℓ

)min(k,ℓ)∑

p=0

(
k

p

)(
ℓ

p

)
×

×
∂kψp

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
.

After changing the order of summations, this can be written as

∂k(Jkf)

∂xj1 . . . ∂xjk
= σ(j1 . . . jk)

k∑

p=0

a(m, k, p)
∂kψp

∂xj1 . . . ∂xjp∂ξjp+1 . . . ∂ξjk
, (2.62)

where

a(m, k, p) =
(−1)m

m!

(
k

p

) m∑

ℓ=max(m−k,p)

(−1)ℓ
k!ℓ!

(k + ℓ−m)!

(
m

ℓ

)(
ℓ

p

)
. (2.63)

As we will show

a(m, k, p) =

{
0 for p < k ≤ m,

1 for p = k ≤ m.
(2.64)

Substituting this value into (2.62), we obtain

∂k(Jkf)

∂xj1 . . . ∂xjk
=

∂kψk

∂xj1 . . . ∂xjk
.

This coincides with (2.56).
It remains to prove (2.64). As is seen from (2.63), a(m, 0, 0) = 1; this agrees with

(2.64). Therefore we assume k > 0 in what follows.
First of all we change the summation variable in (2.63) as ℓ = r +m− k

a(m, k, p) =
(−1)k

m!

(
k

p

) k∑

r=max(0,k+p−m)

(−1)r
k!(r +m− k)!

r!

(
m

k − r

)(
r +m− k

p

)
.

Simplifying this, we obtain

a(m, k, p) = (−1)k
(
k

p

)
c(m, k, p),

where

c(m, k, p) =
k∑

r=0

(−1)r
(
k

r

)(
r +m− k

p

)
.

This expression for c(k,m, p) is well-known; see [8, Formula 47, Section 4.2.5]. Namely,

c(m, k, p) =

{
0 if p < k ≤ m,

(−1)k if p = k ≤ m.

Substituting this value into the previous formula, we obtain (2.64). �

Statement 2.12 establishes that Ikf = ϕk for all 0 ≤ k ≤ m. Indeed, comparing (2.39)
and (2.55), we see that

(ϕ0, . . . , ϕm) = (I0f, . . . , Imf).

We have completed the proof of the sufficiency part of Theorem 1.3.
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3. Proof of Theorem 1.4

A symmetric rank m tensor field f on the plane R2 = {(x1, x2)} is uniquely written as

f =
m∑

j=0

(
m

j

)
f1 . . . 1︸ ︷︷ ︸

m−j

2 . . . 2︸ ︷︷ ︸
j

(x1, x2) dx
m−j
1 dx

j
2.

Introducing the functions

f̌j(x1, x2) =

(
m

j

)
f1 . . . 1︸ ︷︷ ︸

m−j

2 . . . 2︸ ︷︷ ︸
j

(x1, x2) (j = 0, 1, . . . , m),

we write this in the form

f =

m∑

j=0

f̌j(x1, x2) dx
m−j
1 dx

j
2.

We refer to f̌j as real coordinates of the tensor field f (although they are complex-valued
functions in the general case).

We identify R2 with the complex plane C = {z = x1+ i x2} (hereafter i is the imaginary
unit). The covectors dz = dx1 + i dx2 and dz̄ = dx1 − i dx2 generate the algebra of
symmetric tensor fields, i.e., every symmetric rankm tensor field f is uniquely represented
in the form

f =

m∑

j=0

f̃j(z) dz
m−jdz̄j .

We refer to f̃j as complex coordinates of the tensor field f

Two bases {dxm−j
1 dx

j
2 | 0 ≤ j ≤ m} and {dzm−jdz̄j | 0 ≤ j ≤ m} of the space SmR2

are related by

dzm−jdz̄j =
m∑

q=0

ajq dx
m−q
1 dx

q
2, (3.1)

with some nondegenerate (m + 1) × (m + 1)-matrix Am = (ajq)
m
j,q=0. The components of

a tensor field are transformed by

f̃j(z) =

m∑

q=0

b
q
j f̌q(x1, x2) (z = x1 + ix2), (3.2)

where Bm = (bqj)
m
j,q=0 is the inverse matrix of Am.

We write a point (x, ξ) ∈ R2 × (R2 \ {0}) as (z, ζ) ∈ C× (C \ {0}), where z = x1 + i x2
and ζ = ξ1 + i ξ2. The momentum ray transform

Jk : S(R2;SmR2) → C∞
(
C× (C \ {0})

)

is written as

(Jkf)(z, ζ) =

∞∫

−∞

tk
m∑

j=0

f̌j(z + tζ) ξm−j
1 ξ

j
2 dt (ζ = ξ1 + i ξ2). (3.3)

This is written in terms of complex coordinates of f as follows:

(Jkf)(z, ζ) =

∞∫

−∞

tk
m∑

j=0

f̃j(z + tζ) ζm−j ζ̄j dt. (3.4)

Indeed, the integrands in (3.3) and (3.4) coincide as is seen from (3.1)–(3.2).
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Points of TS1 are uniquely written as (i pζ, ζ), where ζ ∈ C, |ζ | = 1 and p ∈ R. In
complex variables, Theorem 1.4 is as follows.

Theorem 3.1. Let m ≥ 0. If an (m+ 1)-tuple

(ϕ0, . . . , ϕm) ∈ S(TS1)× · · · × S(TS1)︸ ︷︷ ︸
m+1

belongs to the range of the operator

S(R2;SmR2) → S(TS1)× · · · × S(TS1)︸ ︷︷ ︸
m+1

, f 7→ (I0f, . . . , Imf),

then the following conditions are satisfied.

(1) ϕk(i pζ,−ζ) = (−1)m−kϕk(i pζ, ζ) (0 ≤ k ≤ m).
(2) For every r = 0, 1, 2, . . . and for every k = 0, 1, . . . , m

∞∫

−∞

pr ϕk(i pζ, ζ) dp = P rk(ζ) for |ζ | = 1, (3.5)

where P rk(ζ) are homogeneous polynomials of degree r + k +m in (ζ, ζ̄).
(3) Polynomials P rk(ζ) are not independent. They are described by the following con-

struction. For every pair (α, β) of non-negative integers there exists a symmetric m-tensor

µαβ = (µ̃αβj ) ∈ SmR2 such that

P rk(ζ) =
i
r

2r+k

m∑

j=0

r∑

α=0

k∑

β=0

(−1)α
(
r

α

)(
k

β

)
µ̃
α+β,r+k−α−β
j ζm+r+k−j−α−βζ̄j+α+β. (3.6)

Conversely, if functions ϕk ∈ S(TS1) (k = 0, . . .m) satisfy conditions (1)–(3) with

some tensors µαβ ∈ SmR2, then there exists a tensor field f ∈ S(R2;SmR2) such that

(ϕ0, . . . , ϕm) = (I0f, . . . , Imf).

The equivalence of Theorems 1.4 and 3.1 is easily proved with the help of (3.1)–(3.2);
we omit the details.

Proof of the necessity in Theorem 3.1. For a tensor field f ∈ S(R2;SmR2), we introduce
the complex integral momenta

µ̃
αβ
j = µ̃

αβ
j (f) =

∫

C

zαz̄β f̃j(z) dσ(z). (3.7)

Here dσ(z) = dx1 ∧ dx2 =
i

2
dz ∧ dz̄ is the area form. We write (3.4) in the form

ϕk(i pζ, ζ) = (Ikf)(i pζ, ζ) =

∞∫

−∞

tk
m∑

j=0

f̃j(i pζ + tζ) ζm−jζ̄j dt (|ζ | = 1).

Multiply this equality by pr and integrate with respect to p
∞∫

−∞

pr ϕk(i pζ, ζ) dp =

∞∫

−∞

∞∫

−∞

prtk
m∑

j=0

f̃j(i pζ + tζ) ζm−j ζ̄j dtdp. (3.8)

For a fixed ζ satisfying |ζ | = 1, we change integration variables in (3.8) as z = i pζ + tζ .
Then

t = ℜ(zζ̄) =
1

2
(zζ̄ + z̄ζ), p = ℑ(zζ̄) =

i

2
(z̄ζ − zζ̄), dt ∧ dp =

i

2
dz ∧ dz̄ = dσ.
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After the change, formula (3.8) becomes

∞∫

−∞

pr ϕk(i pζ, ζ) dp =
i
r

2r+k

∫

C

(z̄ζ − zζ̄)r(zζ̄ + z̄ζ)k
m∑

j=0

f̃j(z) ζ
m−j ζ̄j dσ(z).

Expanding (z̄ζ − zζ̄)r and (zζ̄ + z̄ζ)k by Newton’s binomial formula, we obtain

∞∫

−∞

pr ϕk(i pζ, ζ) dp =

=
i
r

2r+k

m∑

j=0

r∑

α=0

k∑

β=0

(−1)α
(
r

α

)(
k

β

)
ζm+r+k−j−α−βζ̄j+α+β

∫

C

zα+β z̄r+k−α−β f̃j(z) dσ(z).

On using (3.7), this becomes

∞∫

−∞

pr ϕk(i pζ, ζ) dp =
i
r

2r+k

m∑

j=0

r∑

α=0

k∑

β=0

(−1)α
(
r

α

)(
k

β

)
µ̃
α+β,r+k−α−β
j ζm+r+k−j−α−βζ̄j+α+β.

We write the result in the form
∞∫

−∞

pr ϕk(ipζ, ζ) dp = P rk(ζ) (|ζ | = 1),

where the polynomials P rk(ζ) are given in (3.6). �

Proof of the sufficiency in Theorem 3.1. The proof is by induction on m. In the case of
m = 0, Theorem 3.1 actually coincides with Theorem 1.2 (also for m = 0).

Let functions ϕk ∈ S(TS1) (k = 0, . . . , m) satisfy conditions (1)–(3) of Theorem 3.1 with
some tensors µαβ ∈ SmR2. In particular, the function ϕ0 ∈ S(TS1) satisfies ϕ0(i pζ,−ζ) =
(−1)mϕ0(i pζ, ζ) and

∞∫

−∞

pr ϕ0(i pζ, ζ) dp = P r0(ζ) (|ζ | = 1; r = 0, 1, . . . ), (3.9)

where P r0(ζ) is a homogeneous polynomial of degree r +m in (ζ, ζ̄). These are just the
hypotheses of Theorem 1.2. Applying the theorem, we can state the existence of a tensor
field g ∈ S(R2;SmR2) such that

ϕ0 = I0g. (3.10)

We emphasize that such a tensor field is not unique, it is determined by (3.10) up to an
arbitrary potential field (the definition of a potential tensor field is presented in [5], as
well as the the definition of the inner derivative d which is used in the next paragraph).
Let us fix some tensor field g ∈ S(R2;SmR2) satisfying (3.10).

Now we look for a tensor field f ∈ S(R2;SmR2) of the form

f = g + dv, (3.11)

where v ∈ S(R2;Sm−1R2). We are looking for a tensor field v ∈ S(R2;Sm−1R2) such that
the tensor field f defined by (3.11) satisfies

Ikf = ϕk (k = 0, . . . , m). (3.12)
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Recall the relation of the inner derivative d to momentum ray transforms [5]:

Ik(dv) = −kIk−1v.

Together with (3.11)–(3.12), this gives

Ikv = −
1

k + 1
(ϕk+1 − Ik+1g) (k = 0, . . . , m− 1). (3.13)

Introducing the functions

χk = −
1

k + 1
(ϕk+1 − Ik+1g) (k = 0, . . . , m− 1), (3.14)

we write (3.13) in the form

Ikv = χk (k = 0, . . . , m− 1). (3.15)

Observe that formula (3.14) can be taken as the definition of the functions χk ∈
S(TS1) (k = 0, . . . , m − 1); we do not need to know the tensor field f for the defini-
tion. We are going to prove that the functions (χ0, . . . , χm−1) defined by (3.14) satisfy all
hypotheses of Theorem 3.1 with m replaced with m− 1. Then by the induction hypoth-
esis, there exists a tensor field v ∈ S(R2;Sm−1R2) satisfying (3.15). Given g and v, we
define the tensor field f by (3.11). Inverting the above elementary arguments, we obtain
(3.12). This would finish the induction step.

By the necessity part of Theorem 3.1,
∞∫

−∞

pr(Ikg)(i pζ, ζ) dp = Qrk(ζ) (|ζ | = 1; r = 0, 1, . . . ), (3.16)

where Qrk(ζ) are homogeneous polynomials of degree r+k+m in (ζ, ζ̄). These polynomials
are expressed through the integral momenta of the field g

ν̃
αβ
j = ν̃

αβ
j (g) =

∫

C

zαz̄β g̃j(z) dσ(z) (j = 0, . . . , m)

by

Qrk(ζ) =
i
r

2r+k

m∑

j=0

r∑

α=0

k∑

β=0

(−1)α
(
r

α

)(
k

β

)
ν̃
α+β,r+k−α−β
j ζm+r+k−j−α−βζ̄j+α+β. (3.17)

Equations (3.5), (3.14) and (3.16) imply
∞∫

−∞

pr χk(i pζ, ζ) dp = Rrk(ζ) for |ζ | = 1, k = 0, . . . , m− 1, (3.18)

where

Rrk(ζ) = −
1

k + 1

(
P r,k+1(ζ)−Qr,k+1(ζ)

)
.

According to this equality, Rrk(ζ) is a homogeneous polynomial of degree r+m+k+1 in
(ζ, ζ̄). But we need to represent the left-hand side of (3.18) by a homogeneous polynomial
of degree r +m+ k − 1 for |ζ | = 1. In other words, we have to prove that the difference
P r,k+1(ζ)−Qr,k+1(ζ) is actually of the form

P r,k+1(ζ)−Qr,k+1(ζ) = ζζ̄ Srk(ζ)

with some homogeneous polynomial Srk(ζ) of degree r + m + k − 1. This is the most
difficult part of the proof. To prove this fact, we have equations (3.9)–(3.10) only.
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From (3.9)–(3.10), we see that

P r0(ζ) =

∞∫

−∞

pr ϕ0(i pζ, ζ) dp =

∞∫

−∞

pr (I0g)(i pζ, ζ) dp.

Together with (3.16), this gives

P r0(ζ)−Qr0(ζ) = 0 (|ζ | = 1; r = 0, 1, . . . ). (3.19)

By (3.6) and (3.17),

P rk(ζ)−Qrk(ζ) =

=
i
r

2r+k

m∑

j=0

r∑

α=0

k∑

β=0

(−1)α
(
r

α

)(
k

β

)
(µ̃α+β,r+k−α−βj − ν̃

α+β,r+k−α−β
j )ζm+r+k−j−α−βζ̄j+α+β.

(3.20)
From (3.19) and (3.20),

m∑

j=0

r∑

α=0

(−1)α
(
r

α

)
(µ̃α,r−αj − ν̃

α,r−α
j )ζm+r−j−αζ̄j+α = 0.

Change the summation variable in the inner sum as s = j + α

m∑

j=0

r+j∑

s=j

(−1)s−j
(

r

s− j

)
(µ̃s−j,r+j−sj − ν̃

s−j,r+j−s
j )ζm+r−sζ̄s = 0.

After changing the order of summations, this becomes

r+m∑

s=0

(−1)s
[ min(s,m)∑

j=max(0,s−r)

(−1)j
(

r

s− j

)
(µ̃s−j,r+j−sj − ν̃

s−j,r+j−s
j )

]
ζm+r−sζ̄s = 0.

This equality holds identically in ζ ∈ S1. Since the left-hand side is a homogeneous
polynomial, all its coefficients must be equal to zero. We have thus obtained

min(s,m)∑

j=max(0,s−r)

(−1)j
(

r

s− j

)
(µ̃s−j,r+j−sj − ν̃

s−j,r+j−s
j ) = 0 (r = 0, 1, . . . ; 0 ≤ s ≤ r +m).

(3.21)
In particular, setting s = 0 in (3.21), we have

µ̃0r
0 − ν̃0r0 = 0 (r = 0, 1, . . . ). (3.22)

On the other hand, setting s = m+ k + 1 and r = k + 1 in (3.21), we obtain

µ̃k+1,0
m − ν̃k+1,0

m = 0 (k = 0, 1, . . . ). (3.23)

In what follows, we will use (3.22) and (3.23) only.
Increase k by 1 in (3.20)

P r,k+1(ζ)−Qr,k+1(ζ) =

=
i
r

2r+k+1

m∑

j=0

r∑

α=0

k+1∑

β=0

(−1)α
(
r

α

)(
k+1

β

)
(µ̃α+β,r+k−α−β+1j − ν̃

α+β,r+k−α−β+1
j )ζm+r+k−j−α−β+1ζ̄j+α+β.

(3.24)
For two polynomials P (ζ) and Q(ζ), let us denote

P ≡ Q (modPm+r+k−1)
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if the difference P (ζ)−Q(ζ) can be represented by a homogeneous polynomial of degree
m+ r + k − 1 on the unit circle |ζ | = 1. Observe that

ζaζ̄b ≡ 0 (modPm+r+k−1) if a > 0, b > 0, a + b = m+ r + k + 1. (3.25)

We are going to prove that P r,k+1 − Qr,k+1 ≡ 0 (modPm+r+k−1). Thus, we can delete
all monomials on the right-hand side of (3.24) which are of the form (3.25).

First of all, all summands on the right-hand side of (3.24) which correspond to 0 < β <

k + 1 are of the form (3.25). Deleting such summands, we obtain

i
−r2r+k+1(P r,k+1 −Qr,k+1) ≡

m∑

j=0

r∑

α=0

(−1)α
(
r

α

)
(µ̃α,r+k−α+1j − ν̃

α,r+k−α+1
j )ζm+r+k−j−α+1ζ̄j+α

+

m∑

j=0

r∑

α=0

(−1)α
(
r

α

)
(µ̃α+k+1,r−αj − ν̃

α+k+1,r−α
j )ζm+r−j−αζ̄j+α+k+1 (modPm+r+k−1).

(3.26)
On the right-hand side of (3.26), the first line contains terms from (3.24) which correspond
to β = 0, and the second line contains terms from (3.24) which correspond to β = k + 1.

Second, all summands on the right-hand side of (3.26) which correspond to 0 < α < r

are of the form (3.25). Deleting such summands, we obtain

i
−r2r+k+1(P r,k+1 −Qr,k+1) ≡

m∑

j=0

(µ̃0,r+k+1
j − ν̃

0,r+k+1
j )ζm+r+k−j+1ζ̄j

+ (−1)r
m∑

j=0

(µ̃r,k+1j − ν̃
r,k+1
j )ζm+k−j+1ζ̄j+r

+
m∑

j=0

(µ̃k+1,rj − ν̃
k+1,r
j )ζm+r−j ζ̄j+k+1

+ (−1)r
m∑

j=0

(µ̃r+k+1,0j − ν̃
r+k+1,0
j )ζm−j ζ̄r+k+j+1 (modPm+r+k−1).

(3.27)
On the right-hand side of (3.27), all summands of the first and second sums which

correspond to j > 0 are of the form (3.25). All summands of the third and fourth sums
which correspond to j < m are of the form (3.25). Deleting such summands, we obtain

i
−r2r+k+1(P r,k+1 −Qr,k+1) ≡ (µ̃0,r+k+1

0 − ν̃
0,r+k+1
0 )ζm+r+k+1 + (−1)r(µr,k+10 − ν

r,k+1
0 )ζm+k+1ζ̄r

+ (µ̃k+1,rm − ν̃k+1,rm )ζrζ̄m+k+1 + (−1)r(µ̃r+k+1,0m − ν̃r+k+1,0m )ζ̄m+r+k+1 (modPm+r+k−1).
(3.28)

In the case of r = 0, (3.28) looks as follows:

2k(P 0,k+1−Q0,k+1) ≡ (µ̃0,k+1
0 − ν̃0,k+10 )ζm+k+1+(µ̃k+1,0m − ν̃k+1,0m )ζ̄m+k+1 (modPm+k−1). (3.29)

In the case of r > 0, we can delete the second and third terms on the right-hand side of
(3.28) since they are of the form (3.25). We thus obtain

i
−r2r+k+1(P r,k+1 −Qr,k+1) ≡ (µ̃0,r+k+1

0 − ν̃
0,r+k+1
0 )ζm+r+k+1

+ (−1)r(µ̃r+k+1,0m − ν̃r+k+1,0m )ζ̄m+r+k+1 (modPm+r+k−1)

}
(r > 0). (3.30)

By (3.22)–(3.23), right-hand sides of (3.29) and (3.30) are equal to zero. Thus

P r,k+1 −Qr,k+1 ≡ 0 (modPm+r+k−1) (r = 0, 1, . . . ).
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This finishes the induction step. �
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