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MOMENTUM RAY TRANSFORMS, II: RANGE
CHARACTERIZATION IN THE SCHWARTZ SPACE

VENKATESWARAN P. KRISHNAN*", RAMESH MANNAT, SUMAN KUMAR SAHOO! AND
VLADIMIR A. SHARAFUTDINOV?

ABSTRACT. The momentum ray transform I* integrates a rank m symmetric tensor
field f over lines of R™ with the weight t*: (I"f)(z,&) = [T t*(f(z + t£), &™) dt. We
give the range characterization for the operator f ~ (I°f, I'f,..., I"™f) on the Schwartz
space of rank m smooth fast decaying tensor fields. In dimensions n > 3, the range
is characterized by certain differential equations of order 2(m + 1) which generalize the
classical John equations. In the two-dimensional case, the range is characterized by
certain integral conditions which generalize the classical Gelfand — Helgason — Ludwig
conditions.

1. INTRODUCTION

Starting with the classical paper [4] by F. John, the range characterization for many
integral geometry operators is the traditional subject of Integral Geometry.

Let S(R™) be the Schwartz space of smooth functions rapidly decaying at infinity to-
gether with all derivatives (we use the term smooth as the synonym of C*°-smooth). John
considers the operator

I:S(R?*) — C®(R?) (1.1)

that integrates a function f over non-horizontal lines

([f)(!L’l, Lo, O, Oég) = / f(l’l + Oélt, To + Oégt, t) dt.

The operator (1.1) and its different generalizations are called ray transforms (the name X-
ray transform is also widely used). John proves that a function ¢ € C®(R?), ¢ = p(z, a)
belongs to the range of the operator (1.1) if and only if it fast decays in x and satisfies
the second order differential equation

0? 0?
r %7 . (1.2)
8!17180&2 811728041
It is convenient to parameterize the family of oriented lines in R™ by points of the
manifold

TS" ' = {(z,6) e R* x R" | |¢| = 1, (z,£) =0} CR" x R”,
that is, by the tangent bundle of the unit sphere S"~!. Namely, a point (z,£) € TS" !
determines the line {x + ¢£ | ¢t € R}. Hereafter (-,-) is the standard dot-product on R"
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and | - | is the corresponding norm. Observe that the Schwartz space S(E) is well defined
for a smooth vector bundle £ — M over a compact manifold M. In particular, the space
S(TS™ 1) is well defined. The ray transform

I:S[R") — S(TS"™) (1.3)

is the linear continuous operator defined by
1) €)= [ fa+ 1)

John’s result was generalized to any dimension n > 3 by S. Helgason [3]. Instead of (1.2),
a system of second order differential equations of the same structure appears in the range
characterization for the operator (1.3). We do not present the precise statement since it
is covered by Theorem 1.1 below.

Let S™R™ be the complex vector space of rank m symmetric tensors on R". The dimen-
sion of S™R™ is ("*”~!). In particular, S°R" = C and S'R" = C". Let S(R™; S™R") be
the Schwartz space of S™R"-valued functions that are called rank m smooth fast decaying
symmetric tensor fields on R™. The ray transform is the linear continuous operator

I:S(R™; S™R™) — S(TS™™1) (1.4)
that is defined, for f = (fi, i..) € S(R™; S™R™), by

(1f)(2,€) = / Foin (@ 4+ 16) €06 dt = / (fla+16). €™ dt ((2,€) € TS"™).

(1.5)
We use the Einstein summation rule: the summation from 1 to n is assumed over every
index repeated in lower and upper positions in a monomial. To adopt our formulas to the
Einstein summation rule, we use either lower or upper indices for denoting coordinates of
vectors and tensors. For instance, £ = & in (1.5). There is no difference between co- and
contravariant tensors since we use Cartesian coordinates only.
Observe that the integral (1.5) makes sense for arbitrary x € R” and 0 # £ € R". We
define the operator

J: S(R™; S™R™) — C*(R™ x (R™\ {0})) (1.6)
by the same formula
(Jf)@%f)z./kfﬁt+t§%§m>dt ((z.§) e R" x (R"\ {0})). (1.7)

For a tensor field f € S(R™; S™R"), the function ¢ = If is recovered from ¢» = Jf by
@ = Y|rsn-1. On the other hand, 1) can be recovered from . Indeed, as immediately
follows from (1.7), the function ¢» = J f possesses the following homogeneity in the second

argument
wlr t) = ) (0#1cR

and has the following property in the first argument
Yz +1t8,8) =¢(x,§) (teR).
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This implies that

w(o&) = oo - Sde £, (19

Thus the functions ¢ = If and ¥ = Jf give the same information for a tensor field f.

Therefore the operator (1.6) is also called the ray transform. The function v = Jf is

sometimes more convenient since the partial derivatives g;@ and % are well defined.
The range characterization for the operator (1.4) was obtained by V. Sharafutdinov.

Let us cite Theorem 2.10.1 of [9].

Theorem 1.1. A function p € S(TS"™1) (n > 3) belongs to the range of the operator
(1.4) if and only if the following two conditions hold:

(1) QO(I’, _5) = (_1)mgp(l.’§);
(2) the function ¢ € C*°(R™ x (R™\ {0})), defined by (1.8), satisfies the equations

82 02 02 62
(Grmaen ~ wnoes) - (Grmggn ~ gmgge)? =0 (19
for all indices 1 < i1, J1, ... bmat, Jme1 < N

We call (1.9) the John equations and the differential operators
0? 0?
0xtd&l  0xIo¢!
the John operators. In the case of (m,n) = (0,3), Theorem 1.1 is equivalent to John’s
result. In the case of m = 0, Theorem 1.1 was proved by Helgason [3]. Just the latter case
is used in the current paper. Nevertheless, we have presented the statement in the most
generality since it is interesting to compare Theorem 1.1 with our main result, Theorem

1.3 below.

The system (1.9) is worth studying by itself. How many linearly independent equations
are contained in the system? What is the geometric sense of the system? The present
paper does not discuss such questions. See recent papers [1] and [6] related to these
questions.

Theorem 1.1 is definitely false in the case of n = 2. More precisely, for a tensor field
f € S(R?%* S™R?), the John equations (1.9) are still satisfied by the function ¢ = Jf; but
the John equations are not sufficient for the existence of a tensor field f € S(R?; S™R?)
such that ¢y = Jf. Observe that, in the case of (m,n) = (0,2), the operator (1.4),
which in this case is the same as operator (1.3) coincides, up to notation, with the Radon
transform on the plane. Unlike (1.9), the corresponding consistency conditions for the
Radon transform are of integral nature, see [3, Chapter 1, Theorem 2.4]. These conditions
are named the Helgason — Ludwig conditions. However, they were, in fact, first written
down by I. Gelfand et. al. [2, Section 1.6]. The situation is quite similar for tensor fields.
Let us cite the result belonging to E. Pantjukhina [7].

T = L O°(R" x R") - C°(R" x R") (1.10)

Theorem 1.2. Let n > 2 and m > 0. If a function ¢ € S(TS"') belongs to the range
of the operator (1.4), then

(2) for every integer r > 0, there exist homogeneous polynomials P}, ; (x) of degree r
on R™ such that

/@(x',ﬁ)@,ﬂf')’"dl“' =P, (@) ...&m ((2,6) e TS"),
§J_
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where dx’ is the (n — 1)-dimensional Lebesque measure on the hyperplane £+ = {2/ € R" |

(¢ 2) =0}
In the case of n = 2, the converse statement is true: If a function ¢ € S(T'S') satisfies
(1) and (2) then there exists a tensor field f € S(R?; S™R?) such that ¢ = I f.

This statement will be used in our proof of Theorem 1.4 below.

Now we introduce the subject of the current paper and present our main results.
The momentum ray transforms

I¥: S(R™; S™R™) — S(TS"™)

are defined for £k =0, 1,... as follows:
(") (2, €) = / t*(f(x + ), &™) dt ((x,6) € TS"H). (1.11)

In particular, I° = I. A rank m symmetric tensor field f is uniquely determined by the
functions (I°f, I'f,..., I"™f). The inversion algorithm is presented in [5].
Quite similarly to (1.6), we introduce the operators

J" SR S™R™) — C=(R" x (R™\ {0}))
by
(J*f)(x,€) = / t5 (f(x+t€),&m)dt ((x,€) € R" x (R™\ {0})). (1.12)

For a tensor field f € S(R"; S™R"), the function * = I*f is recovered from ¥* =
JEf by ©* = ¢*|pgn-1. On the other hand, 1* can be recovered from (¢°,...,").
Indeed, as immediately follows from (1.12), the functions ¢* = J* f possess the following
homogeneity in the second argument

m—k

Wt = v @O 0#tER) (1.13)
and have the following property in the first argument
k
Hare =3 ()0 we e (114
=0
The two previous formulas imply
: k Ex), ¢
k _ |¢|m—2k—1 )k ¢ k=t of . \Ss S 11
g = S (et nt (e Gle ). A

Formulas (1.14) and (1.15) mean, in particular, that the operator I* must always be
considered together with lower order momenta (1°,..., I*71) i.e., the data (I°f,..., I*f)
must always be used instead of I*f.

Theorem 1.3. Letn >3 and m > 0. An (m + 1)-tuple
(% ..., ™) eS(TS" ) x --- x S(TS™™)

m+1
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belongs to the range of the operator

S(R™; S™R"™) = S(I'S"™") x -+ x S(IS"™),  f s (I%,... . I"f)

m+1

if and only if the following two conditions are satisfied:
(1) the functions possess the following evenness in the second argument:

Pz, =€) = (=1)" "¢ (@,6) (0<k <m); (1.16)

(2) the function ¥™ € C*(R™ x (R™\ {0})), defined by (1.15) for k = m, satisfies the
John conditions

']iljl e Jierljerllpm =0 forall 1 S il,jl, c im+17,jm+1 S n, (117)
where the John operators J;; are defined by (1.10).

Observe that the differential equations (1.17) are imposed on the function ™ only.
Nevertheless, all the data (©°, ..., ™) indirectly appear in (1.17) in view of (1.15).

Let us now discuss the two-dimensional case. Fix Cartesian coordinates on R%. For
£ = (£,8) € R? let &+ = (=&, &) As before, to adopt our formulas to the Einstein
summation rule, we use either lower or upper indices for coordinates of vectors.

Theorem 1.4. Let m > 0. If an (m + 1)-tuple
(% ..., ™) € S(TS") x --- x S(TS")

m+1

belongs to the range of the operator,

S(R2, Sm]RQ) — §(TSl) X oo X S(TSl)j f — (lof, ey [mf),

~
m—+1

then the following conditions are satisfied.
(1) ¢z, =€) = (1) *p"(z,£) (0 <k <m).
(2) For everyr =0,1,2,... and for every k=0,1,...,m
[ v e do=PHe o cest
where P™ (&) are homogeneous polynomials of degree r + k +m on R2.

(3) Polynomials P™* (&) are not independent. They are described by the following con-
struction. For every pair (o, B) of non-negative integers there ezists a symmetric

m-tensor pu®® = (u$” , ) € S™R? such that

r k k . .
PrE =22 (a) ( 6) Mo TED)M @) TG g

a=0 B=0

Conversely, if functions ©* € S(TS') (k = 0,...m) satisfy conditions (1)—(3) with
some tensors u®® € S™R2, then there exists a tensor field f € S(R?; S™R?) such that
(@0 . m) = (I%, ..., I™f).

Proofs of Theorems 1.3 and 1.4 are presented in Sections 2 and 3 respectively.
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2. PROOF OF THEOREM 1.3

2.1. Preliminaries. In this section, we prove several preliminary lemmas required for
the proof of Theorem 1.3.

Lemma 2.1. If a function ¢ € C®°(R™\ {0}) is positively homogeneous of degree X\, then

for any integer k > 0
&n fikia kwa ©=MA=1)...(A=k+ 1))
& ogn + .

We omit the proof which can be easily done by induction on k on the basis of Euler
equation for homogeneous functions.
We will use two first order differential operators:

p a _ pi

The symmetrization o(jy ... jx) in the indices (ji, ..., Jx) is defined by

. ‘ 1
U(]l . ']k‘)a’jl---jk = H Z (1))

melly

where IIj, is the set of all permutations of the set {1,...,k}.

Lemma 2.2. For any non-negative integers k and ¢ and for all indices (ji, ..., jr) satis-
fying 1 < 71,..., 7k < n, the commutator formula
o . K\ 0 i
—— =0(J1...J —1)P . —— . )P
(€ 02)° dei .o ~ OVt k) p:o( ) (p) ((—p)! 9ui .. Owirgirt . ogi &%)
(2.1)

holds under the agreement: (£,0,)" =0 for r < 0.

Proof. We prove the statement by induction on k. The statement trivially holds for £ = 0.
Assuming (2.1) to be valid for some k, we apply ag%ﬂ to (2.1) from the left

ak+1 ak+1

ger o %) Gragn g

QxIk+1080 | ., Q&Ix
k
o AN s .
=0(ji---Jk) Z(_l)p <p) (€= p)! Dz ... Qwivd&iv1 ... Ofikn (€, 0s)

p=0

(€,0,)"

We write this in the form

, o+l k 1)Pe! ok+1 ,
A -p
(€, 0) O .. Q&Tr+1 pz ( ) Oxdr ... QxirQ&Ir+1 .. O&Tk+1 (€, 0s)
ak+1
B -1
£4E O Owik+19En .. OETk
(2.2)
By the same induction hypothesis (2.1),
ak
-1 _

k
(f — 1) o .
Z ( ) ¢ — 2 1)' oxit ... al’jpagjp+l o 0§Jk <£7 am> .

p=0
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We apply 8:0]2 — from the left to the above equality. Since the latter derivative commutes
with (£, 0,), the result can be written as
8k+1

/-1 _
(€, 00) OxIkr19&i | OEik

k
o E\ (£—1)! ok+1 P
=0l 2 (1) (p) == 1) 00 O o o %

p=0

Substitute this expression into (2.2)

8k+1 k p£' 8k+1
¢ B N
(€, 0x) o .. OEin Z ( )axh TN IRy (€,0,)¢P
p=
k
(¢—1)! gk+1 .
_EU Z £ — D) Oxdr . Oxdr Qxik+19ETIp+1 . QETk <€>ax> L
=0 p—1! 13 13

The symmetrlzatlon o(J1 ... Jx) can be replaced with o(j; . .. jxs1) since the left-hand side
is symmetric in indices (ji,...,jk+1). After the replacement, we can write these indices
in the lexicographic order. In this way the formula becomes

k1 k (—1)P0 [k k1
)4 _ . . /—
(€ 0u) R (1 i) Y (0 —p)! (p) Ot ... QairDin+1 . DIkt (&0

p=0

o b i (F /! o+l 51
ol en) 2 (-1) (p) (= =10 dan . G o 0

p=0

In the second sum, we change the summation index as p:=p — 1

gkl k (=1)P0! [k gkl
l — . . {—p
L O .. Q&Tr+1 o1 Jre) Z (¢ —p)! (p) Oxiv ... QxirQ&Ir+1 .. Q€I+ (€ 0)

p=0

N~ ypf F (! s 5 \t-r
+“(‘71"“7’f“)p;(_ ) (p—l) ( — p)! Bzdr ... DairdEirr . . OEins (& D

Under the agreement (2) = 0 if either s < 0 or r < s, both summations can be extended
to the limits 0 < p < k + 1, and the formula becomes

ak—i—l

¢ _
L 0L | Qi+

R, Lk k ! ! .
= oG- fie) 2 (1) Kp) - (p—l)] (=) G dwmogm g o0

p=0

With the help of the Pascal relation (];) + (pﬁ 1) = (k;fl), the formula takes the final form

ak—l—l

¢ _
(€, 0:) DEh .0

(€ 0,)"

k+1
k+ 1 f' ak—l—l
. . . IRy

= 0’(]1 .. .]k-i-l) Z( 1) ( P ) (f _p)! orit .. .aszagjp+1 . ‘agjk+1

p=0
This finishes the induction step. U
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Corollary 2.3. For integers 0 < k < m, the identity

- 1 o m—k
Ut m) 2 G 71 90 i gamaenn L aem 0" =
k=0 (2.3)
1 o -
ol ogh . OEim (€5 0e)

holds for all 1 < j31,...,Jm < n.

Proof. Denote the left-hand side of (2.3) by A. Indices can be written in an arbitrary
order because of the presence of the symmetrization o(j; ... J,). In particular.

_ . : 1 o m—Fk
A=o(i-im) 3 (m — k)| (&0 g o aen o SO

k=0

m

Since (&, 0,) commutes with derivatives %, this can be written as

! o oy "
(m — k) Qadm—rk+1 . Quim ™77 9L L OEIm—k

m

A=o(i- . jm) (€0, (2.4)

k=0
By Lemma 2.2,

am—k am—k am—k
Oy . . = . . ,Op) — —k T S —.

&0 g aems ~ e o & O = (m =Kol k) e
While substituting this expression into (2.4), we can omit the symmetrization o(J; . . . jm—x)
because of the presence of the stronger symmetrization o(j; ... ju). In this way we obtain

_ : : < 1 o m—k+1
A= U(]l e ]m) Z (m _ kf)' Orim—kr1 . axjmagjl o (%jwm <§a a:r:)
k=0
o~ m—k o .
_U(jl---]m)z <§aa:c> k'

(m — k) OxIm—rk+1 . Qzim Qui Q2 . . . O&Im—k

k=0
In the second sum, we can reduce summation limits to 0 < & < m — 1 because of the
presence of the factor m — k. Besides this, we can again write indices in the lexicographic

order. The formula becomes
e 1 om
A= 0 dn) 3 (m — k)l 0zir ... Ozirdinet . OEim

k=0
1

(€, 0,)m M

m—

. : 1 o m—Fk
— o) ) (m —k — 1)! 929 ... Dadee1d€inrz . Oeim (& )™
k=0

We distinguish the summand of the first sum corresponding to £ = 0 and change the
summation variable in the second sum as k := k — 1. The formula takes the form

_ 1 8’” m—+1
A= e e &%)
+o(j...j >i : > (€, 0,y
e dm) 2 T g dadEie L oim > O
k=1
. ‘ m 1 8777, m—k+1
k=1

Two sums on the right-hand side cancel each other and we arrive at (2.3). O
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Lemma 2.4. For a function f € S(R™), the equalities
oI f) OIS

. — = . . 2.5
oxdr...0xie Q& ... Q&I (25)
hold for all 0 < ¢ < k and for all indices 1 < jy,...,750 < n.
Proof. Applying the operator m to the equality
()6 = [ ¢ oty de
we obtain
8é(
oxir .. :W 2 / 8x11 o (x ) dt (2:6)
On the other hand, applying the operator W to the equality
(D) = [ flo+ ) d
we obtain
o)
a6 ogn 8$11 gor L gwr T (27)
Formulas (2.6) and (2.7) imply (2.5). O
Lemma 2.5. Given an integer m > 0, define the operators
J™F SR SFRY) — C*(R™ x (R™\ {0})) (k=0,1,...)
by
() €)= [ o), €. (28)
Then for every k and every f € S(R™; SKR™),
']iljl e Jik+1jk+1(Jm’kf) = O fOT’ CL” 1 S il;jlu e ik—l—la,jk—l—l S n, (29)
2 P

where Jij =

52705 — FaioE S the John operator.

Remark. We hope the reader is not confused by using the letter J in two different
senses: J;; is the John operator while J™* is defined by (2.8). Both notations are standard.

Proof. In the case of k = 0, (2.8) reads

(T0F) (. €) = / " f (o + t6) dt

Differentiating this equality, we obtain

PO [ P
daige D)= / 1 G (7 1)t

—00
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The right-hand side is symmetric in (7, j). Therefore
P P (Imp)
J(Im0f) = (S5 = 552 ) =0,
i) 0x' &I 0xrIoE"
This proves the statement of the lemma for £ = 0. Then we proceed by induction in k.
Let k > 0. Differentiating (2.8), we obtain

02(Jm’kf) _ i m *f k [ mOfir i 1 i1 i1

The first summand on the right-hand side of this equality is symmetric in (4, j). Therefore

I 9 i1..9—1] 0 Q111 ; )
(Jij(Jm’kf))(SC,ﬁ) =k / tm (%T(xﬂg)—%T(Htf))g“ S Erdt (2.10)

Let us fix indices ¢ and j and define the tensor field h;; € S(R™; S¥~!R") by
(Ofiinag Ofiiy i
(ig)orins = k( ozt Ox )
Then (2.10) can be written as

Jij (J™EF) = TRy, (2.11)
By the induction hypothesis,
Jivjr o Jinj (J™F i) =0 forall 1<y, j1, .. 0m, fjm < 0.
Together with (2.11), this gives
Jivis - Jinim Jig (JT™FF) =0 for all 1<y, 51, im, Jm, 3,7 < 1.
This coincides with (2.9). O

Lemma 2.6. Let a function ¢ € C*°(R™ x R™\ {0})) be positively homogeneous in the
second argument

U(x,t€) = t'(x, &) (t>0). (2.12)
Assume the restriction |psa—1 to belong to S(TS™'). Assume also that restrictions to
S(TS"1) of the function (£,0.)1 and of all its derivatives belong to S(TS™™1), i.e.,

(€, 0,))
Oxt ... Qi dLIt ... QL

cS(TS™™Y) forall 1<iy,... 0 71,...,J0 <n.

TSn—1
(2.13)
Then the restriction to S(TS"™') of every derivative of ¥ also belongs to S(TS™™'), i.e.,
ak+€¢
Do . 0n0gi .. Ogh

e S(TS™™Y) forall 1<iy,... 0 51,...,J0 <n.

TSn-1
(2.14)
Proof. For 1 < i < n, we define first order differential operators on R" x (R™\ {0})
- o N
Xi=g5—&l6d), == T — 25(€,0,) — &(E, 0e). (2.15)

Being considered as vector fields on R” x (R \ {0}), X; and Z; are tangent to TS"! at
every point of the latter submanifold, see [5, Lemma 4.1]. Let X; and Z; be the restrictions
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to T'S™ ! of )~(,~ and éi respectively. Thus, X; and Z; are well defined first order differential
operators on 7'S" . Obviously,

X, 2 : S(TS™™Y) — S(TS™™) (1 <i<n).
Let ¢ = ¢|psn—1 € S(T'S™'). Then
Xi¢|TS"*1 = XZ()O, éi’lﬁhﬂgnfl = EZ()O (216)
By the Euler equation for homogeneous functions,
(& 0e)Y = M.
With the help of the last formula, (2.15) gives

o oL
- = XZ i\Sy Yz ) - =0 i\Sy Vo 1.
g = X+ 600, g = Eb -+ aule, D)+ A
Together with (2.16), this implies
o
T =X i\§, Op ne1,
e . @ + (&l 0)¥)|rs
0 -
W =St e 000l + Mo
OE" | pgn
All terms on right-hand sides of these equalities belong to S(T'S"~!). Thus,
8—% € S(TS" 1), 8—w c S(TS™ ).
8IZ TSn—1 862 TSn—1

We have thus proved the statement of the lemma for first order derivatives. In the case
of £ =0, (2.14) is proved actually in the same way. Indeed, since the operator (£, d,)

commutes with the derivatives 8?0“ every derivative axi?]ilgxik satisfy hypotheses (2.12) and
(2.13) of the lemma. On using this fact, we easily prove (2.14) for ¢ = 0 by induction in
k.
In the case of ¢ # 0, the proof is more complicated since the operator (£, d,) does not
0

commute with the derivatives 36 Nevertheless, we have the commutator formula

0" 0" 0"
(€, 00) o ... Qe - o ... Qe (& 00) = Lol 'jé)ﬁxﬁ@fﬁ eISL
which is a partial case of Lemma 2.2.
Now we prove (2.14) by induction on ¢. Assume that
8k+s¢
Ozt ... 0z &I ... 087 | pgn

(2.17)

e S(TS" ) for s</

with some /.
Let £ > 1. From (2.15),
8k+£+1¢ ak—l—fw
Da . QrikdEI .. Pt I i QrikdEi . dee

8k+é¢

oxh ... 0x*Q&h ... Q&I
ak—l—f,w

Oxr ... Qx & . O&ie

[1]2

+ Ijz+1<€> 896)

+ &joir (€5 O8)
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. akJrlw
Since 50w DEI . DEiL

ak-ﬁ-ﬁ—i—lw

is positively homogeneous of degree A—/ in £, the formula becomes

~ ak+é¢
Orit . OrikdEn . Qg | It grin grinden . g
ak+£¢
RN TR P, T T (218)
8k+é¢
R S S e e T TR TR
We transform the second term on the right hand side of (2.18) with the help of (2.17)
Oy (€, 0:))
Tjy i1 (&5 Or) dxiv ... xindEi .. O = Ljey it
where

T owwogn . oo T X

i1 g d1-Jot 10
ak+£w
Xit gt des1 — —L xjula(jl - 'ﬂ) Hxit

. OxR Oz 98I . QI
By the induction hypothesis,

Xt witgigess |51 € S(TS"H). (2.19)
Formula (2.18) becomes now

By, AF+af
C 0RO L QT

. OzindEN ... DEi
({8, 9n)¢)
T Tie i opwagn .. ogn | Xiimiiden

oxh

[1]:

jZ+1 axll .

ak+£w
A =08 g ownaen g
Taking the restriction to T'S"!, we have
8k+é+lw ~ ak+€¢
Oz ... 0z O&I .. O&It+1 | g B (Hj”l dxh ... 0z 9En .. .8572) e—
L. OG0
R RN ARG L (2.20)
+ Xiy.igjidosn | rsn—1
ak—i—ﬂw
+ ()\ — g)gjul oxri . 8%8@1 o _— .
By the induction hypothesis,
ak+£¢
. — : s ).
Do 0z BET . B |y SO
Therefore
~ ak—%w
(ZW Dri ... Orin O | .aga‘e)

_ 8k+é¢
B WL I T L

T7Sn—1 )
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TSn—1 )

TSn—1

Formula (2.20) becomes

8k+€+1,¢
Orit .. QxinOEi .. Ogien

_ ak—l—f,w
e N R O T T 12

0" ((€, 0:)v)
D .. Oz dEN ... DT

Tt Xirciggides |TS”*1

+ ()\ - E)gjwrl )

+ Ljosq

8k+£¢
i QxR L D&
The second and third terms on the right hand side belong to S(7'S"') by (2.13) and
(2.19) respectively. The last term on the right-hand side belongs to S(7'S"™!) by the

induction hypothesis. Finally, the first term on the right-hand side belongs to S(7'S"™ 1)
since Z;,,, is an intrinsic operator on TS 1. Thus

TSn—1

ak+€+1¢ )
. — - S(TS" ).
Ozt ... QxR d&I ... 0+ | gy €S )
This finishes the induction step. O

2.2. Necessity.

Proof of the necessity part in Theorem 1.53. Given a tensor field f € S(R™; S™R™), let
o =TI € S(TS" 1) (k=0,1,...,m). The definition (1.11) implies

o0

o) = (1 [ 4 (1o 1)) d
Changing the integration variable as t := —t, we obtain
P =€) = (1 [ (19, €M dt = (-1 (0,

This proves property (1) of Theorem 1.3.
Let the function ¢™ € C*°(R™ x (R™\ {0})) be defined by (1.15) with k = m. This
means

" = J"f. (2.21)
Observe that J™ = J™™ as is seen from (2.8) and (1.12). By Lemma 2.5,
Ji1j1"'Jim+1jm+1(Jmf> =0 fOI' all 1 Silujla---im—l—l;jm-i-l §n

Together with (2.21), this gives (1.17). O

2.3. Main Lemma. The following statement is the most essential part of the proof of
Theorem 1.3.

Lemma 2.7. Given an integer m > 0, let a function Y™ € C'* (R" x (R™\ {O})) satisfy
(1.17) and

P (x, tE) = % ™(x,&) for 0#£teR (2.22)
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Define the functions 1y, ;€ C™ (]R" x (R™\ {O})) for all indices 1 <'iq,... 0, <n by

-Hm e 1 om A
Bt = m!) ol 'Z’”)<; (= W)l 9o Bz ogn . ogm 0% k>w '
B (2.23)
Then
JijViy i =0 forall 1<4,5 <n. (2.24)

Proof. The John operator J;; commutes with partial derivatives (as any differential oper-
ator with constant coefficients). Therefore (2.24) is equivalent to the equation

. . 1 o™ m—k m o __
o(iy.. .zm)<kz_0 (m— k)l Oon D dE L Og Jij (€, Ox) )¢ =0.

Moreover, the operators (£, 0,) and J;; commute as one can easily check. Therefore our
equation takes the form

. . - 1 8m m—k m __
ol 'Z’”)<kzo (m = %) 97 draggem o %) )y =0. (225)

Thus we have to prove that (2.22) and (1.17) imply (2.25). This is trivially true for m = 0.
We proceed by induction in m. Assume Lemma 2.7 to be valid for some m > 0. Now, let
a function ™+ € C*°(R™ x (R™\ {0})) satisfy

B (0, 16) = |—1|wm+1<x,f> (041 €R) (2.26)

and
JijJiljl . Jz

We have to prove that ¢! satisfies equation (2.25) with m increased by 1, i.e.,

i =0 forall 1 <id,4,01, 51,y bt ts g1 < 7 (2.27)
= 1 ot

o0 imi) ( 2 (m —k + 1)! Ozt ... 0z 9+ .. Oimn

k=0

<£’ 8w>m—k+1> Jijwm—l—l =0
(2.28)

forall 1 <4,7,41,...0,01 < n. N
Let us temporary fix values of indices (i1, j1, . - ., tmi1, Jmy1) and set J = Ji 5, ... J;
Equation (2.27) is now written as J;;J¢Y™ ™ =0 or
a2(j¢m+1) a2(jwm+1)
0xt0&I 0xI O¢!
Multiplying this equation by &’ and taking sum over j, we have
gj az(jtbm-i'—l) ; az(jq/}mfl)
0x'0EI 0xrIoE
This can be written in the form

0 ~ 0

Note that jwmﬂ(x, €) is positively homogeneous of degree —(m + 2) in its second argu-
ment. By the Euler equation for homogeneous functions,

(€,06) JY™H = —(m + 2) Ty,

m+1jm+1 N

= 0.

—¢ =0.

T mA+1 0 ~ m+1
(€ 0:) U™ 4 o Jypm T = 0. (2.29)
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Substituting this expression into (2.29), we get

9

Toom+1l

a T mA41

Since (&, 0,) commutes with J, the last equation can be written as

f( ! 8<§,8x>+ 8.)wm+1:0.

m+18—§" ox’

Substituting the value J = Jivir - Ji we write this in the final form

m41Jm+19
1 0 0
Jivjr - Jipin —— —(£,0, | ™t = 0. 2.30
1J1 m+1Jm+1 <m ‘I’ 1 agl <§ > _I_ 81’7') w ( )
From now on, the indices (i1, j1,- - -, m+1, Jm+1) take again arbitrary values. Thus (2.30)

holds for all 1 < 4,1, 71, -+, tmat, Jma1 < M.
For every index i, satisfying 1 < i,,.1 < n, we define the function ¥[* by

’im+1
1 0 0 41
0. = (57 o €00+ g ) 97 (0.6) (231)
As easily follows from (2.26) and (2.31), this function satisfies
1
Vi, (4, 16) = I i (0,6) (0# ¢ €R). (2.32)

Equations (2.30) and (2.32) mean that, for every iy,11, the function ¢j"  satisfies hypothe-
ses of Lemma 2.7. By the induction hypothesis (2.25), for all 1 < 4, j, 411,91, -+, I < 1,

: : 1 o m—k m _
o1 im) < go (m —k)! Ozhr ... Oz O&+1 .. OEim (& 0) )Jij%m“ =0 (233
Let us denote
m : : S 1 o m—Fk m
s = i) (3 oy g g g (€ ") e (239

k=0
Equation (2.33) is written in terms of functions ;" , . as follows:
JiiXiy ippr = 0- (2.35)

We will show the following equality, which would complete the induction step and hence
the proof of Lemma 2.7:

<« 1 ot metl ), ml

mo =0 i —__° (6,0
XZ1.~.Zm+1 O'(Zl 2 +1> < kZ:O (m—k—l—l)' oxrin . . 8$2k852k+1. B 857'7”8£Zm+1 <£ > w

(2.36)

Indeed, substitution of (2.36) into (2.35) gives (2.28). By the way, formula (2.36) shows

that X} ; ., is symmetric in the indices (i1,...,im41). The latter fact is not obvious

from definition (2.34).
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It remains to prove (2.36). To this end we substitute expression (2.31) for ¥"  into
(2.34)
XZL-..imH = U(il (i m k)l orh xm&an;kﬂ 85@ <£’ 8$>m_k) X

k=0 a ' (2.37)

9 9 m+1

X ( + ]_ aglm+1 <§’ ax) al’Zerl ) w ’

The commutator formula
0 0 0
m—k _ m— m—k—1
<£7 8ac> 852'7"“ - 8£im+1 <£7 am) (m k) <£ 8 > 8:clm+1

is a partial case of Lemma 2.2. With the help of the latter formula, (2.37) becomes

Ms

m . 8777, 1 a <£ >m k+1
Xireimis = 7 2 m— k'&x“. Oz Ogi  0gm \ m + 1 0gmn 5%

m—k _ m—k 0 m+1
(- 28) o

This is easily transformed to the form

Xirimsr = m + 1 Zm% 77: :i_ll I'Oxh .. .&Bika@zj;l ... OEtm+ (€ 0z)" M
" ; (n]z j llf)! Dzt . .axikaf::lagim A ar>m_k] Yt
Replacing the summation variable £ with £ — 1 in the second sum, we get
X?;mimﬂ T omtl ‘|' 1 kZm% ﬂﬂz :—I_I-—ll I Oz . 0:L"k68ﬂ;:+1 L O& I (& aﬂ”)m_kﬂ
- g (m — l; 1)1 Dan . .aximg::ﬂagik o & ax>m_k+1] Gl

Both summations can be extended to the limits 0 < & < m 4+ 1 because of the presence
of the factors m — k + 1 and k in the first and second sum respectively. In this way, our
formula becomes

- 1 & ol .. i) omt
it = 377 4 [(m — &+ 1) <(m R P v, e T
+ k am—l—l <§ o >m—k+1,l/)m+l
Ozt ... Qxik—19gim+19Ek . OEim T '

(2.38)
Let us recall an easy statement of tensor algebra. If a tensor (y;, ;,,.,) is symmetric in
first k£ indices and in last m — k + 1 indices, then

O 1)Uy i yr = o(ivdm)[(m =k + DYy iy + Klinrir i) -
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The proof is given in [9, Lemma 2.4.1] although the reader can easily prove this by
themselves. We apply the statement to the operator-valued tensor

8m+1

yi1.~~im+1 - axll L axlkaglk+l . agimﬁ*l

to obtain
8m+1 am-{—l

YR, I TS SR SRR, PETOS NI, PR .agim> -

8m+1

= (m+ 1ol 'ZmH)@x"l. L OTROE T, DE I

(i .. im) ((m—k+1)

Substituting this value into (2.38), we arrive at (2.36). O

2.4. Sufficiency. We start the proof of the sufficiency part in Theorem 1.3. The proof
consists of several steps that are called statements. Hypotheses of statements coincide
with that of Theorem 1.3.

Given functions ¢* € S(TS* ') (k = 0,...,m) satisfying (1.16), let the function
™ e C(R™ x (R™\ {0})) be defined by (1.15) with k& = m. Assume the function to
satisfy (1.17). We also define the functions ¢¥* € C*°(R™ x (R"\ {0})) (k=0,...,m—1)
by (1.15). Thus, (1.15) is valid for all £ = 0,1,...,m. It implies

VF|pgn1 = @* for 0<k <m. (2.39)

In Section 1, properties (1.13)—(1.15) were easily derived from (1.12). Now we have no
tensor field f (we are, in fact, proving the existence of such a tensor field) and we cannot
use Formula (1.12). Nevertheless, the functions ¥ possess the same properties as the
following statement shoes.

Statement 2.8. For every k =0,...,m,
tm—k

m (z, &) for 0#teR (2.40)

(@, ) =

and

k
YF(x 1€, €) = Z() Wiz, &) for teR. (2.41)

=
Proof. For t # 0 by (1.15),

et ok N qyiee (K e ke (¢ ) ¢
) = S (e o (e el st )

(2.42)

In the case of t > 0, this reads

k
k _ am—k—1| ¢ m—2k—1 o k—¢ £ <£ > g
) = eSS (e (e e )

Together with (1.15), this gives

P (a,16) = "R, €).
This coincides with (2.40) for t > 0.
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In the case of t < 0, (2.42) reads

U (@, t€) = (=) g 12( )|§| (6 0) o (o - <f§|§>g,_|%).

On using (1.16), this takes the form

wk(x tg) — —tm_k_1|£|m_2k_l Zk:(_l)k—f (k> |£|£<£ x>k—£ (pz (I . <€>$> é)
’ ) €72~ el

Together with (1.15), this gives

¢k(za tg) = _tm—k—lwk (l’, 5)
This coincides with (2.40) for t < 0.
By (1.15),

k

oo 16,6 = I 0 (el o + eyt of (o - Site ).
(=0

Expanding ({¢,z) + t|¢|*)%~¢ in powers of ¢, we write this in the form

o (k—¢ . (€ x), €
m—2k—1 (+2s k—f0—s 45 ¥ _ ) S
Y (48, €) = |¢] Z ()Z( . )|5| (& o) ot L |€|).

s=0

After changing the order of summations, this becomes

k k—s Lk k—/¢ B o <£ .CL’> 5
k _ s k—¢ m—2k+E+2s k—l—s ¢ :
a6 = 3 3 (e)( ; )‘5‘ e e (o= 1)

s=0
(2.43)
Let us transform the right hand side of (2.43). Obviously,
[k é k
> (§) ot v = e (e e
£=0 s=0

(we just changed the summation variable as £ = k — s). Substituting value (1.15) for
YE=3(z, €) into the right-hand side of the last formula, we obtain

() V() =

=i ()uamz oM ittt (o - Ste ).

s=

|Mw

This can be written as

Z() gt (0, €) =

=0

=S () (4 e (s - Gl £

(=0

(2.44)
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In virtue of the obvious equality

B\ (k—0\  (k\ (k—s

14 s ) \s ¢ )’
right hand sides of formulas (2.43) and (2.44) coincide. Equating left hand sides of these
formulas, we obtain (2.41). O

Equations (1.17) and (2.40) mean that the function ¢™ satisfies hypotheses of Lemma
2.7. Applying the lemma, we can state that the functions ;. ;,, € C®(R" x (R™\ {0})),
defined by (2.23) for all indices 1 < iy, ...,4, < n, satisfy (2.24). To study properties of
functions v, ;. , it is convenient to look at an alternate formulation of the formula (2.23)
which we now show.

Statement 2.9. For all indices (iy, ..., i),

I w(m omapk
Virein = g0l im) 3 (1) (k:)@xil owedgn L ogm 2®)

k=0

Compare (2.45) with the inversion formula [5, Formula (3.1)].
Proof. We first show that for every k£ = 0,1,...,m and for every integer ¢ > 0,

ok k—¢ -
oyt = 4 Y (f)w sk (2.46)
0 if ¢>k.

To see (2.46), we first change the summation variable in equation (2.41) as ¢ = k —p. We

get,
k

k _ _1\P k P k—pip
TR W (4 )

p=0
Apply the operator (£, d,)* to this equation

¢ (2 k_ek Pl k-p(p £) i
(.00 e, = 2V (a;ftg’g)) B ;( ! ( )@—N P <k,

Setting t = 0, we obtain (2.46).
Now from (2.46), we have

(€, 0,y Fym = (—1)mk (7}3) (1 — I

Substituting this into (2.23), we obtain (2.45). Also from (2.46),
-1
1
k _ -1 m—k [ 1T m—k,;m < k< )
=t (F) e arter 0<ksm)

Substituting this value into (2.45), we obtain (2.23). Thus formulas (2.23) and (2.45) are
equivalent. O
Statement 2.10. For every k=0,...,m,

syt . : o :
TTR P TR T2 eS(TS") forall 1<idy,...,0,J1,-.,]s <N

TSn—1
(2.47)
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Proof. By Statement 2.8, every function *(z,&) is positively homogeneous in &. By
(239), wk|T§n71 = QOk S S(TSn_l)

By (2.46), (£,0,)¢° = 0. Thus the function " satisfies hypotheses of Lemma 2.6.
Applying this Lemma, we obtain (2.47) for k = 0.

We proceed by induction in k. Assume (2.47) to be valid for some k. By (2.46) again,
(€,0,)F = —(k + 1)y*. Together with the induction hypothesis, this implies that
YF*1 satisfies hypotheses of Lemma 2.6. Applying this Lemma, we obtain (2.47) for
k:=k+1. O

Statement 2.11. For every m-tuple (iy,. .., 1), the function 1y, ;. satisfies

i (2, 16) = %w@: §) for0#t R (2.48)

and
¢i1---im($ + tf, 5) = ¢i1---im($’ 5) fOTt e R. (249)

Proof. We say x € C*(R" x (R™\ {0})) is a superhomogeneous function of degree X if

t>\+1

x(t&) = Wx(f) for 0 # ¢t € R. By (2.40), ¥*(z,&) is a superhomogeneous function of
degree m — k — 1 in £&. Every derivative %
by one. Therefore all summands on the right-hand side of (2.45) are superhomogeneous
functions of degree —1 in £. This proves (2.48).

The property (2.49) is equivalent to £ (.., (z + ¢, £)) = 0. Since

0
E(@Dil...im(x + 1§, f)) = ((§, 02)i, .in) (x + £, €),
(2.49) is equivalent to

decreases the degree of superhomogeneity

(&, 0u)¥iy iy, = 0. (2.50)
Applying the operator (£, d,) to the equation (2.23), we obtain

<§a a:(/‘)wh..-im =

(1) L e 1 o .
- m! [U(Zl o Zm) kzzg (m — ]{3)' <£7 8m> oxri . .. 8xik8£ik+1 - 8£zm <£7 am) g w .

By Corollary 2.3, the operator in the brackets coincides with L -—2"—— (¢, 9,)™*'. Thus,

(=)™ o |
O)iy i = . —(£,0,)" ™,
<£7 >w 1.-tm (m|)2 05]1 o 85]7” <£ > ¢
The right-hand side is equal to zero by (2.46). This proves (2.49). O
Together with Statement 2.10, (2.23), or equivalently, (2.45) implies that
Piroim (T, €) = iy iy 701 € S(TS™ ). (2.51)

As easily follows from (2.48)—(2.49), the functions v;, ; can be recovered from p;, ;-
by

1 (&), €
Vi (8:6) = [griin (¥ = S 6 7). (2.52)

Formulas (2.24), (2.51) and (2.52) mean that, for every m-tuple (iy,...,4,) of integers
satisfying 1 < 4y,...,4, < n, the function ¢;, ; € S(T'S"!) satisfies the hypotheses of
Theorem 1.1 with m = 0. Applying this theorem, we obtain the function f;, ;. € S(R")
such that

I°fi im = Pirciim- (2.53)
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We emphasize that the hypothesis n > 3 of Theorem 1.3 is essentially used on this step;
Theorem 1.1 is not true in the case of n = 2. Together with (2.52), (2.53) implies

Jofil---im = ,l7b'll'lm (254)
Let f € S(R™; S™R™) be the symmetric tensor field whose coordinates are f;, ;. .
Statement 2.12. For every k=0,1,...,m,

JEf =P, (2.55)

Proof. We will prove that

O*(JMf — ")

Oxiv ... Qxix
for all integers (ji, ..., jx) satisfying 1 < j1,..., 7% < n. This will imply (2.55). Indeed,
for a fixed 0 # £ € R", the restriction of the function (Jf — *)(-,£) to the hyperplane
¢t ={z e R"| (¢ x) = 0} belongs to the Schwartz space S({*). Equation (2.56) means
that all kth order derivatives of the latter function are identically equal to zero. This
implies that the restriction itself must be identically equal to zero. Since £ is arbitrary,
this proves (2.55).

By Lemma 2.4 with ¢ = k,
Oxdr ... Qxdv Q&N ... Q€I

Together with (2.54), this gives

ak(‘]kflllm) o akwuzm

=0 (2.56)

. = = — —. 2.57
Oxdr...0xix Q&I ... O&Ik (257)
By the definition of the operator J*,
ka = é‘il tt gzm ‘]kf’il---im‘
Applying the operator ﬁ to this equality, we obtain
Ozt ... Qi Y QanLLL Owdk
Together with (2.57), this gives
ak(ka) 21 ) akwil---im
I e L T 7 (2:58)

To compute the right-hand side of (2.58), we consider the expression for v,..; from
(2.45):

1 - m ot
i eim = 011+ 1) . —— .
w 1---tm m!U(Zl (4 ) ZZ:;( ) (E) 81.7,1 o axlgag’lg+1 L aglm
and apply the operator asj%i%jk to this equality

(9%1'1...% B 1 . . m (m am+kwf
O . ocin W(““W;(‘” <e>axh...axieagml...agimagﬁ...aga'k'

0
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We multiply this equality by £ ... &' and perform the summation over indices (i1, . .., ).
While doing this, we can omit the symmetrization o (i; .. .14,,) since the factor £ ... &m
is symmetric in these indices. In this way we obtain

a gim O iy i _ 1 S [N ey pim oMkt
&€ o ... 9gin m;(—l) (E)f € Dzt . Dz OE . e . Ot

This can be written in the form

g i LSS i g O
St oL .. Og ﬁ;(_l) (ﬁ)@’am) (5 -6 agimmagimagjl,..(%jk)’
(2.59)

By (2.40), the function 8@?’?%&% is positively homogeneous of degree m — k — ¢ — 1 in
¢. By Lemma 2.1,

8m+k—€¢€

i1 gim i im0 0"y
S e agmaen e o agm o (agjl - .aga‘k)
ak¢£

If m—k—+¢—12>0, then the product (m —k —¢—1)(m —k — € —2)...(—k) contains
the zero factor. Otherwise, if £ > m — k,

k!
Ly I e .
(m—k—{=1m—k=0=2)...(-k) = (D" gy r
Thus,
; ) am+k—f¢£ 0 if me_k_L
§Z£+1 .. .Slm (95”“ agimagjl 0§jk = 1 et k! asz o .
(_) (k+€_m)!a€jl...a€jkl > m — K.

Substitute this value into (2.59) to obtain

i gim iy e (=)™ = k! m ¢ Ot
e o¢h ... 08k ml e:;km(f)(g’am) (W>

Together with (2.58), this gives
ok (Jkf - & k! m Okt
(%) _ (1) Z ( ; <€)<§’5x>4(7>, (2.60)

gun 0w ml = (ktl—m DEI . OEin
By Lemma 2.2,
¥4t ey AN 0 ({8, 0)P9")
¢ _ . . Y. y Uz
(& 0) (agh...a@'k) ot - - i) ;0 (1) <p) ((—p) D91 . OwindSrt . OG
(2.61)
By (2.46),

14

L—p 1l _ (_ 1\l—p
(€,0,)"" = (1) Q

Substituting this value into (2.61), we get,

)it

min(k,?)

o N R\ (1 Py
L (m) = (D'olr-go) 3, 0 (p) (p) Dxit . QwirdEirt . Qg

p=




RANGE CHARACTERIZATION OF MOMENTUM RAY TRANSFORMS 23

Then substituting the latter expression into (2.60), we have

I G PN , kW m N7,
Orir ... Oxix  m) ol -du) g:;_k(_l) m ( 5) ; (p) (p) .
X Otyr
oxir . .. a$jP8£jP+1 o 8£§k .

After changing the order of summations, this can be written as

0" (J*f) o O*ypP
G ogn ~ OUr ) ol kD) 5 g o (62
where
(=)™ (k) & P k! (m) (6)
a(m, k,p) = 1) ) 2.63
i =S G) Y g (h)() e
As we will show
|0 for p<k<m,
Substituting this value into (2.62), we obtain
ak(ka) B ak¢k

Oxit ... Oxix — Oxir ... Oxix’
This coincides with (2.56).
It remains to prove (2.64). As is seen from (2.63), a(m,0,0) = 1; this agrees with
(2.64). Therefore we assume k£ > 0 in what follows.
First of all we change the summation variable in (2.63) as £ =r+m — k

e B ke e

r=max(0,k+p—m)

Simplifying this, we obtain

atm ) = (0¥ () eom. ko),

=S ()75 7)

r=0

where

This expression for ¢(k, m,p) is well-known; see [8, Formula 47, Section 4.2.5]. Namely,

0 if p<k<m,
(-=1)* if p=k<m.

c(m,k,p) = {

Substituting this value into the previous formula, we obtain (2.64). O

Statement 2.12 establishes that I*f = ¢* for all 0 < k < m. Indeed, comparing (2.39)
and (2.55), we see that
(%, ™) = (I°f, ..., I™f).
We have completed the proof of the sufficiency part of Theorem 1.3.
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3. PROOF OF THEOREM 1.4

A symmetric rank m tensor field f on the plane R? = {(z1, z2)} is uniquely written as
=30 (") el det s,
‘o J \2,./\\,./
Introducing the functions

fj(zlax2) = (m)fl.”12.“2(1'1,1’2) (j:O>1a"'am)>
J S~

m—j J

we write this in the form

m
= E (21, o) da dah.

We refer to fj as real coordinates of the tensor field f (although they are complex-valued
functions in the general case).

We identify R? with the complex plane C = {z = z; +iz,} (hereafter i is the imaginary
unit). The covectors dz = dx; + idry and dzZ = dx; — idxs generate the algebra of
symmetric tensor fields, i.e., every symmetric rank m tensor field f is uniquely represented

in the form .
= Z fi(2)dzmd7 .
=0
We refer to f] as complex coordinates of the tensor field f
Two bases {dz]"/dz | 0 < j < m} and {dz™7dz" | 0 < j < m} of the space S™R?
are related by

dz"dz =Y " al da’"dad, (3.1)
q=0
with some nondegenerate (m + 1) x (m + 1)-matrix A,, = (a})7,_;. The components of
a tensor field are transformed by

=Y W ) (2= in), (3.2
q=0
where B,, = (b})7_ is the inverse matrix of A,,.

We write a point (z,&) € R? x (R?\ {0}) as (z,{) € C x (C\ {0}), where z = x1 + iz,
and ¢ = & + i&. The momentum ray transform

J* S(R?* S™R?) — C>(C x (C\ {0}))

is written as
NEO = [E e 0§ TgN (=6 +ie) (33)
o J=0
This is written in terms of complex coordinates of f as follows:
(J5F) (= 70 ’“i fi(z +t¢) ¢ dt. (3.4)
0 J=0

Indeed, the integrands in (3.3) and (3.4) coincide as is seen from (3.1)—(3.2).
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Points of T'S* are uniquely written as (ip(, (), where ¢ € C,|¢| = 1 and p € R. In
complex variables, Theorem 1.4 is as follows.
Theorem 3.1. Let m > 0. If an (m + 1)-tuple
(% ..., ™) € S(TS") x --- x S(TS")

~
m+1

belongs to the range of the operator
S(R?; S™R?) — S(TS") x --- x S(TSY), fws (I%, ..., 17f),

~
m—+1

then the following conditions are satisfied.

(1) ¢*(ip¢, —¢) = (— )m Fo(ipC, €) (0 <k < m).
(2) For everyr =0,1,2,... and for every k =0,1,...,m
[ e Qdp =0 for fdl=1. (3.5)
where P™({) are homogeneous polynomials of degree v +k +m in ((, ).

(3) Polynomials P™(¢) are not independent. They are described by the following con-
struction. For every pair (o, ) of non-negative integers there exists a symmetric m-tensor

1of = ([ %) e S™R? such that

Prk QT: zm: ZT: Z(_l)a <;) (g) Ia?+ﬁ,r+k—a—ﬁcm+r+k—j—a—ﬁc_j—l—a—l—ﬁ' (36)

Conversely, if functwns o* € S(TSY) (k = 0,...m) satisfy conditions (1)—(3) with
some tensors u®® € S™R2, then there exists a tensor field f € S(R?; S™R?) such that
(@0 .. om) = (I%, ..., I™f).

The equivalence of Theorems 1.4 and 3.1 is easily proved with the help of (3.1)—(3.2);
we omit the details.

Proof of the necessity in Theorem 5.1. For a tensor field f € S(R?; S™R?), we introduce
the complex integral momenta

i =) = [ Fe) o). (37)
C
Here do(z) = dxy A dxy = 1dz A dZ is the area form. We write (3.4) in the form

S(ipC,¢) = (%) (ipC, ¢) = / 557 FipC +0) ¢ d (¢ = 1),
IS Jj=0

Multiply this equality by p” and integrate with respect to p

(e}

[ ettine.o) o= / / *t’fo] (ipC +£¢) ™90 dtdp. (3.8)

—0o0 —00 —0O0

For a fixed ( satisfying || = 1, we change integration variables in (3.8) as z = ip{ + (.
Then

= R(() = %(ijL ZC), p=S(2() = %(ZC —2(), dtNdp= %dz/\ dz = do.
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After the change, formula (3.8) becomes

[ 7M. Odp= 5 [0 =07 GC4 204 S B T doa)
—00 C 7=0

Expanding (2¢ — z{)" and (2¢ + 2¢)* by Newton’s binomial formula, we obtain

o0

/prw’“(ipC,C)dpz

—00

.p m T k .
= 2i+k Z Z Z(_l)a (2) (g) Cm-i—r-i—k—j—oz—ﬁéj-i—a-i—ﬁ / ZOH_BEH_k_a_ij (Z) dO'(Z)

=0 a=0 8=0 c

On using (3.7), this becomes

o

] : k o
/ o’ Spk(jpg, C) dp = 2i+k . Z(_l)a (;) <5> Ia?-i-ﬁ,r—i-k—a—ﬁgm—i-r—i-k—g—a—ng-i—a-i-B.

o J

We write the result in the form

o

[ e = PO (=,
where the polynomials P™({) are given in (3.6). O

Proof of the sufficiency in Theorem 3.1. The proof is by induction on m. In the case of
m = 0, Theorem 3.1 actually coincides with Theorem 1.2 (also for m = 0).

Let functions ¢* € S(TS') (k = 0,...,m) satisfy conditions (1)—(3) of Theorem 3.1 with
some tensors u®’ € S™R2. In particular, the function ¢° € S(T'S!) satisfies ©°(ip(, —(¢) =
(=)™ (ipC, () and

[e.9]

/p’“ PlipC, ) dp=POC) (=1 r=0,1,...), (3.9)

—00

where P70(¢) is a homogeneous polynomial of degree r 4+ m in (¢, (). These are just the
hypotheses of Theorem 1.2. Applying the theorem, we can state the existence of a tensor
field g € S(R?; S™R?) such that
¢’ =1. (3.10)
We emphasize that such a tensor field is not unique, it is determined by (3.10) up to an
arbitrary potential field (the definition of a potential tensor field is presented in [5], as
well as the the definition of the inner derivative d which is used in the next paragraph).
Let us fix some tensor field g € S(R?; S™R?) satisfying (3.10).
Now we look for a tensor field f € S(R?*; S™R?) of the form

f=g+dv, (3.11)

where v € S(R?; S™~1R?). We are looking for a tensor field v € S(R?; S™~1R?) such that
the tensor field f defined by (3.11) satisfies

IFf=¢" (k=0,...,m). (3.12)
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Recall the relation of the inner derivative d to momentum ray transforms [5]:
I*(dv) = —kI* 1o,
Together with (3.11)—(3.12), this gives

1
Tk = —k—H(gpk+1 —I"g) (k=0,...,m—1). (3.13)
Introducing the functions
1
= (P 1) (k=0 m = 1), (3.14)

we write (3.13) in the form
I'v=x" (k=0,...,m—1). (3.15)

Observe that formula (3.14) can be taken as the definition of the functions x* €
S(TSY) (k =0,...,m — 1); we do not need to know the tensor field f for the defini-
tion. We are going to prove that the functions (x°, ..., x™ ') defined by (3.14) satisfy all
hypotheses of Theorem 3.1 with m replaced with m — 1. Then by the induction hypoth-
esis, there exists a tensor field v € S(R?; S™'R?) satisfying (3.15). Given g and v, we
define the tensor field f by (3.11). Inverting the above elementary arguments, we obtain
(3.12). This would finish the induction step.

By the necessity part of Theorem 3.1,

/ﬂW@@LO@zQWO(Mzhr=QL~% (3.16)

where Q"*(() are homogeneous polynomials of degree r+k-+m in (¢, (). These polynomials
are expressed through the integral momenta of the field ¢

70 = 2 (g) = / 2 G, (2)do(z) (j=0,...,m)
C
by

o m T k
Qrk(c) _ 2i+k Z Z Z(_l)a (;;) (g) I;jq-i—ﬁm-i-k—a—ﬁCm+r+k—j—a—ﬁ§j+a+ﬁ' (317>

j=0 a=0 =0
Equations (3.5), (3.14) and (3.16) imply

oo

(/ﬂﬁmmoszWo for (=1 k=0,...m-1 (313
where : ]
rk _ - rk+1 k41
RHQ) = g (P - @1(0)).

According to this equality, R™*(() is a homogeneous polynomial of degree r +m+k+1 in
(¢,¢). But we need to represent the left-hand side of (3.18) by a homogeneous polynomial
of degree r + m + k — 1 for || = 1. In other words, we have to prove that the difference
PrEHL(C) — QMR HL(C) is actually of the form

PHAI(C) = QPR (Q) = (CS™(Q)
with some homogeneous polynomial S™*({) of degree r + m + k — 1. This is the most
difficult part of the proof. To prove this fact, we have equations (3.9)—(3.10) only.
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From (3.9)—(3.10), we see that

PO = [ 5 i Odo= [ o (P)inG, O dp
Together with (3.16), this gives
PO = Q) =0 (<=1 r=0,1,...). (3.19)

By (3.6) and (3.17),
PrH(Q) — Q(¢) =

k
Z(_l)a (r) <k ([Lq+ﬁm+k—a—ﬁ _ I;q-l—ﬁ#-l-k—a—ﬁ)Cm—l-r—l—k—j—a—ﬁc_j—l—a—l—ﬁ.
B\ J

(3.20)
From (3.19) and (3.20),

= d o r ~Q,Tr—Q ~O,T—Q\ ~HTr—j—o o
>0 (1) (a)(“f — T =0,
0

]:O o=

Change the summation variable in the inner sum as s = j + «

m r+j
Z Z(_l)s—j (S i j) (la;j—wﬂ—s . D;—J,T+]—5)<m+r—scs —0.
7=0 s=j
After changing the order of summations, this becomes
r+m min(s,m) . o o .
Z(_l)s [ Z (—1) (8 B ]) (Ia;—]ﬂ“-i-]—s _ l;j—J,H-J—S)] CmHT=sEs — (),
s=0 j=max(0,s—7)

This equality holds identically in ¢ € S'. Since the left-hand side is a homogeneous
polynomial, all its coefficients must be equal to zero. We have thus obtained

min(s,m)
> (—1)]( ; )(ﬁ‘?_j’rﬂ_s — T =0 (r=0,1,...; 0< s <r+m),
)

_ )\ J
j=max(0,s—r 5 J
(3.21)
In particular, setting s = 0 in (3.21), we have
A= =0 (r=0,1,...). (3.22)
On the other hand, setting s =m +k+ 1 and r = k+ 1 in (3.21), we obtain
pEFLO g0 — 0 (k=0,1,...). (3.23)

In what follows, we will use (3.22) and (3.23) only.
Increase k by 1 in (3.20)

Pr,k-i—l(c) o Qr,k-i-l(c) _

. m r k+1
i" afl T k_l_l ~ r4k—0— ~ ;T k—o— —j—0— ~F
= 30 B B [ e
. (3.24)

For two polynomials P(¢) and Q((), let us denote
P =Q (mod PR
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if the difference P(() — Q(() can be represented by a homogeneous polynomial of degree
m +r + k — 1 on the unit circle |(| = 1. Observe that

¢*¢"=0 (mod P ifa>0,b>0,a+b=m+r+k+1. (3.25)

We are going to prove that P™*+1 — QmA*+l = (0 (mod P™+*+*=1), Thus, we can delete
all monomials on the right-hand side of (3.24) which are of the form (3.25).

First of all, all summands on the right-hand side of (3.24) which correspond to 0 < 5 <
k + 1 are of the form (3.25). Deleting such summands, we obtain

i —r2r—|—k+1 (Pr,k—i-l o Qr,k—i—l Z Z ( ) ~ oot ﬂ;z,r+k—a-l-l)grn+¢+k—j—a-l-1 Ej—l—a

7=0 a=0

= d r ~ r— ~ r— —j—v ~ T m-r —
+ZZ(_1)Q(Q) (u?-l—k—i-l, _qu-l—k—l—l, )CT)’H—‘F] <J+a+k+1 (IIlOdP +r+k 1)'

(3.26)

On the right-hand side of (3.26), the first line contains terms from (3.24) which correspond

to 8 =0, and the second line contains terms from (3.24) which correspond to 8 =k + 1.

Second, all summands on the right-hand side of (3.26) which correspond to 0 < o < r
are of the form (3.25). Deleting such summands, we obtain

j—r2r—|—k+1 (Pr,k-I—l _ Qr,k-}—l) = Z(Iag,r-i-k-i-l N D]Q,T’-i-k—i-l)cm-l-‘r%—j—i—l&j
=0
r Tk 1 ~T,k‘ 1 't ~q4r
(=17 (T = gt R gt
=0

m
+ Z k—i—lr . ~k+1 T)Cm-i-fr ]Cj—l—k—i-l
7=0

+ (_1)7“ Z(la;%-i-l,(] _ D;%—i-l,(])cm—jgr‘l-kﬂﬂ‘-l (mod Pm-}—r-l—k—l)'

(3.27)

On the right-hand side of (3.27), all summands of the first and second sums which

correspond to j > 0 are of the form (3.25). All summands of the third and fourth sums
which correspond to j < m are of the form (3.25). Deleting such summands, we obtain

i —r2r+k+1 (Pr,k—i-l Qr k+1) ( ~0,74+k+1 ~0,T+k+1)<—rn—|—9”+k+l + ( 1)r(lu8 el A k‘*‘l)cnﬂ-k-i-l Cr

+( BH,r Vﬂl,r)grgm—l—k—l—l —|—( 1) ( 1,0 ~r—|—k—|—1,0)cm-|-r—l49+1 (mod»]pm—i-r—l—k 1)'

22 Him
(3.28)
In the case of 7 = 0, (3.28) looks as follows:

Qk(PO’k_H . QO’kH) = (Ia%k—i-l . I;(()),k—i—l)cm-r-k—i-l + (ﬁ]:,jl’o o l;l;j—l,O)ém-I-k—i-l (mod sz-l—k—l)' (3'29)

In the case of r > 0, we can delete the second and third terms on the right-hand side of
(3.28) since they are of the form (3.25). We thus obtain

i —r27’-|4€+1 (Pr,k-‘rl QT’ k—i—l) ( ~0,rHetHl ~8,T’+k+1)<’m-|-‘r+k+l

—|—( 1) ( 1,0 ~r+k+1,0)<m+fr’+k+1 (modpm+r+k—1)

} (r>0).  (3.30)
/J“m

By (3.22)—(3.23), right-hand sides of (3.29) and (3.30) are equal to zero. Thus
PrRL_ Qrktl = 0 (mod PR (r=0,1,...).
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This finishes the induction step. O
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