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Abstract. We study inversion of the spherical Radon transform with centers on a sphere (the data
acquisition set). Such inversions are essential in various image reconstruction problems arising in medical,
radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform
can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the
support of the image function is inside the data acquisition sphere, outside that sphere, as well as on
both sides of the sphere. Furthermore, in addition to the uniqueness result our method of proof provides
reconstruction formulas for all those cases. We present a robust computational algorithm and demonstrate
its accuracy and efficiency on several numerical examples.

1. Introduction

The spherical Radon transform (SRT) maps a function of n variables to its integrals over a family of
spheres in Rn. Such transforms naturally appear in mathematical models of various imaging modalities in
medicine [10, 24, 27, 33, 35, 36, 40, 43, 44, 48], geophysical applications [16, 32], radar [15], as well as in
some purely mathematical problems of approximation theory [1, 3, 30], PDEs [1, 2, 17, 18, 19, 25, 28, 29]
and integral geometry [5, 6, 7, 8, 11, 12, 20, 22, 34, 41, 42].

One of the most important questions related to SRT is the possibility of its stable inversion. Since the
family of all spheres in Rn has n + 1 dimensions, the problem of inversion from the set of integrals along
all spheres is overdetermined. Hence it is customary to consider the problem of inverting the SRT from
the restriction of the full set of integrals to an n-dimensional subset. While one can come up with several
different choices of such subsets, a common approach (especially in imaging applications) is to restrict the
centers of integration spheres to a hypersurface in Rn.

For example, a simple model of thermoacoustic tomography (TAT) can be described as follows. A
biological object under investigation is irradiated with a short pulse of electromagnetic waves. Certain part
of that radiation gets absorbed in the body heating up the tissue leading to its thermoelastic expansion.
The latter generates ultrasound waves, which propagate through the body and are registered by transducers
placed on its surface. Under a simplifying assumption of constant speed c of ultrasound waves in the tissue,
at any moment of time t, a single transducer records a superposition of signals generated at locations that
are at the fixed distance ct from the transducer. In other words, the transducer measurements can be
modeled as integrals of a function along spheres centered at the transducer location and of different radii
(depending on time). By moving the transducer around the surface of the object (or equivalently using
an array of such transducers) one can essentially measure a 3-dimensional family of spherical integrals of
the unknown image function. Hence to recover the image in this simple TAT model, one would need to
invert the SRT in the setup described above. Similar mathematical problems arise also in various models
of ultrasound reflection tomography, as well as in sonar and radar imaging.

While our work is motivated by its potential applications in imaging problems, we study the spherical
Radon transform in Rn for any n ≥ 3. We discuss the inversion of SRT from integrals of a function f
along spheres whose centers lie on the surface of the unit (data acquisition) sphere1. With the additional
restriction on the set of radii of integration spheres, we prove the uniqueness as well as derive reconstruction
formulas for f from such data. We provide several results that hold for the cases when the support of f

1Our results carry over with little difficulty when the centers of the SRT data lie on a sphere of radius R.

1



2 AMBARTSOUMIAN, GOUIA-ZARRAD, KRISHNAN AND ROY

is inside, outside, or on both sides of the unit sphere. More precisely, for the case when the support of a
function f is inside the unit sphere, our result shows that in order to reconstruct f in the spherical shell
{r < |x| < 1} for any r < 1, we only need SRT data with centers on the unit sphere and for all radii ρ
such that 0 < ρ < 1− r. Analogous statements can be made for the case when the support of f is outside
or on both sides of the unit sphere. In connection with this, we mention the result [18, Theorem 5], where
it was shown that for a bounded open connected set D in Rn for n odd, a function f supported in D can
be reconstructed from SRT data with centers on ∂D and all radii ρ such that ρ ∈ [0,diam(D)/2]. One
of the consequences of our work is a generalization of this result for the case of even dimensions, as well
as when the support of the function lies inside, outside or on both sides for the case when D is a sphere.
We emphasize here that the uniqueness result [17, Theorem 5] was already generalized for variable sound
speeds in [43] in all space dimensions; see Prop. 2 in that paper. If one is interested in uniqueness results
alone, unique continuation arguments as in [43] or analytic microlocal analysis methods as in [4, 39] could
be used2, although to the best of our knowledge, even for the case of spherical acquisition surface and for
functions supported outside or on both sides of the sphere, such results have not been published. The
advantage of our work, in the specific setting where the acquisition geometry is the unit sphere, is that it
provides in addition to uniqueness results, inversion formulas using radially partial data.

The paper is organized as follows. The main results are stated in Section 2 and the proofs are presented
in Section 3. In Section 4 we write down the inversion formulas for the special case of n = 3. In Section
5 we discuss the numerical algorithm based on the product integration method. In Section 6, we provide
numerical examples illustrating the accuracy and efficiency of the proposed inversion algorithms.

2. Main results

We consider the usual spherical coordinate system:

x1 = r cosϕ1

x2 = r sinϕ1 cosϕ2

x3 = r sinϕ1 sinϕ2 cosϕ3

...

xn−1 = r sinϕ1 sinϕ2 · · · sinϕn−2 cosϕn−1

xn = r sinϕ1 sinϕ2 · · · sinϕn−2 sinϕn−1,

where 0 ≤ ϕi ≤ π for 1 ≤ i ≤ n − 2 and 0 ≤ ϕn−1 ≤ 2π. For simplicity, from now on, we will denote
ϕ = (ϕ1, · · · , ϕn−1). Let us consider the unit sphere centered at the origin in Rn and fix an arbitrary point
C on this sphere. We will denote C in the above spherical coordinates by α, where α = (α1, · · · , αn−1).
The Cartesian coordinates of the point C will then be

(cosα1, sinα1 cosα2, · · · , sinα1 sinα2 · · · sinαn−2 cosαn−1, sinα1 sinα2 · · · sinαn−2 cosαn−1).

Let f : Rn → R be a continuous function of compact support. Consider a sphere S(ρ, α) of
radius ρ centered at C. The spherical Radon transform of f along the sphere S(ρ, α) for ρ > 0 and
α = (α1, · · · , αn−2, αn−1) ∈ [0, π]× · · · × [0, π]× [0, 2π] is defined as

Rf(ρ, α) = g(ρ, α) =

∫
S(ρ,α)

f dΩ, (1)

where dΩ is the usual surface measure on the sphere S(ρ, α).
Finally, let us denote by A(R1, R2) the spherical shell lying between the spheres of radii R1 and R2

centered at the origin. Expressing in Cartesian coordinates:

A(R1, R2) = {x ∈ Rn : R1 < |x| < R2}.

2We thank Plamen Stefanov for bringing this as well as the result stated in the previous sentence to our attention.
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Note that this spherical shell can also be expressed in spherical coordinates by

A(R1, R2) = {(r, ϕ) : R1 < r < R2, 0 ≤ ϕi ≤ π for 1 ≤ i ≤ n− 2 and 0 ≤ ϕn−1 ≤ 2π}.
We now state the main results.

Theorem 2.1 (Exterior support). Let f(r, ϕ) be a C∞ function supported inside A(1, 3). If Rf(ρ, α) is
known for all (ρ, α) with 0 < ρ < R1 where 0 < R1 < 2 and α ∈ [0, π] × · · · × [0, π] × [0, 2π], then f(r, ϕ)
can be uniquely recovered in the spherical shell A(1, 1 +R1) with an iterative reconstruction procedure.

Theorem 2.2 (Interior support). Let f(r, ϕ) be a C∞ function supported inside A(ε, 1). If Rf(ρ, α) is
known for all (ρ, α) with 0 < ρ < 1− ε, where 0 < ε < 1 and α ∈ [0, π]× · · · × [0, π]× [0, 2π], then f(r, ϕ)
can be uniquely recovered in the spherical shell A(ε, 1) with an iterative reconstruction procedure.

Theorem 2.3 (Interior and exterior support). Let f(r, ϕ) be a C∞ function supported inside the ball
B(0, R2) centered at the origin and of radius R2 > 2. Define R1 = R2 − 2. If Rf(ρ, α) is known for all ρ
with R2− 1 < ρ < R2 + 1 and α ∈ [0, π]× · · · × [0, π]× [0, 2π], then f(r, ϕ) can be uniquely recovered in the
spherical shell A(R1, R2) with an iterative reconstruction procedure.
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Figure 1. Sketches illustrating the setups of Theorems 2.1 in (1a), 2.2 in (1b), 2.3 in (1c).
The shaded area contains the support of f(r, ϕ) and the smaller dashed circle represents
the data acquisition surface.

3. Proofs

Let {Yl} be the full set of spherical harmonics forming an orthonormal basis for L2 functions on Sn−1.
We expand f and g into a series involving {Yl}. We have

f(r, ϕ) =
∞∑
l=0

fl(r)Yl(ϕ) (2)

g(ρ, α) =
∞∑
l=0

gl(ρ)Yl(α). (3)

Due to rotational invariance of the spherical Radon transform, the spherical harmonics expansion of f
and g leads to diagonalization of the transform, that is, for each fixed l ≥ 0 the coefficient gl(ρ) depends
only on fl(r). Our main goal in the following calculations is to find that relationship, and express fl(r)
through gl(ρ).
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Using (2) in (1), the spherical Radon transform is expressed as

g(ρ, α) =

∫
S(ρ,α)

f dΩ =

∫
S(ρ,α)

∞∑
l=0

fl(r)Yl(ϕ) dΩ.

Since f is a C∞ function of compact support, by straightforward modifications of the arguments in [26]3,
we have that the spherical harmonics series of f converges uniformly to f . Hence we can interchange the
sum and the integral, and we have

g(ρ, α) =

∞∑
l=0

∫
S(ρ,α)

fl(r)Yl(ϕ) dΩ. (4)

We denote by ~C1 the vector pointing from the origin to the fixed point C on the unit sphere in Rn. Let

us fix an orthonormal coordinate system for the plane ~C⊥1 , which we denote by ~C2, · · · , ~Cn. Reordering

the vectors if necessary, we assume that (~C1, · · · , ~Cn−1, ~Cn) is an oriented orthonormal coordinate system
for Rn. We can consider spherical coordinates with respect to this coordinate system, and denote them by
(r̃, ϕ̃) where ϕ̃ = (ϕ̃1, · · · , ϕ̃n−1).

The surface measure dΩ on the sphere S(ρ, α) in this coordinate system is

dΩ = ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin2 ϕ̃n−3 sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1. (5)

Our next goal, which we state as Proposition 3.3 below, is to find the above surface measure dΩ in the
spherical coordinate system (r, ϕ). To this end, we first prove a lemma.

Let us consider an arbitrary point P in the coordinate system (r, ϕ) and denote it as r ~P with ~P ∈ Sn−1.
We recall the orthonormal coordinate system (~C1, · · · , ~Cn−1, ~Cn) with respect to the arbitrary fixed point
C ∈ Sn−1 introduced above and define

Ai = ~P · ~Ci for 1 ≤ i ≤ n. (6)

Lemma 3.1. We have the following formula:

det

 ∇ϕA1
...

∇ϕAn−1

 =
(
~P · ~Cn

)
sinn−2 ϕ1 sinn−3 ϕ2 · · · sin2 ϕn−3 sinϕn−2dϕ1 · · · dϕn−1. (7)

The proof of the above lemma relies on the following result due to Cauchy and Binet.

Theorem 3.2 (Cauchy-Binet). Let A be an m× n and B be an n×m matrix. Then

det(AB) =
∑
J

det(A(J)) det(B(J))

with
J = j1, j2, · · · , jm, 1 ≤ j1 < j2 · · · < jk ≤ m

and A(J) denotes the matrix formed from A with the columns J with the order preserved and B(J) denotes
the matrix formed from B with the rows J with the order preserved.

Proof of Lemma 3.1. Since Ai = ~P · ~Ci, we have that ∇ϕA1
...

∇ϕAn−1

 =

 ~C1
...

~Cn−1

(∂ ~P t∂ϕ1
· · · ∂ ~P t

∂ϕn−1

)
.

3The result in [26] shows that the spherical harmonics series of a sufficiently smooth function h on the unit sphere converges
uniformly to h. One can adapt the same arguments to show that the spherical harmonics series of a compactly supported
smooth function f on (0,∞)× Sn−1 converges uniformly to f in the radial and angular variables.
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We are interested in calculating the determinant of (n − 1) × (n − 1) matrix that is written as a product

of (n − 1) × n matrix with an n × (n − 1) matrix (the first matrix comprising of ~Ci and the second one

involving the derivatives with respect to ϕ of ~P ).
We have (

∂ ~P t

∂ϕ1
· · · ∂ ~P t

∂ϕn−1

)
=



− sinϕ1 0 · · · · · · 0
cosϕ1 cosϕ2 − sinϕ1 sinϕ2 · · · · · · 0

cosϕ1 sinϕ2 cosϕ3 sinϕ1 cosϕ2 cosϕ3 − sinϕ1 sinϕ2 sinϕ3 · · · 0
...

...
...

. . . 0
cosϕ1 sinϕ2 · · · sinϕn−2 cosϕn−1 · · · · · · · · · − sinϕ1 · · · sinϕn−1

cosϕ1 sinϕ2 · · · sinϕn−1 · · · · · · · · · sinϕ1 · · · sinϕn−2 cosϕn−1


.

The determinant of this matrix is

= sinn−2 ϕ1 sinn−3 ϕ2 · · · sinϕn−2 det
(
v1 v2 · · · vn−1

)
with the vectors vi for 1 ≤ i ≤ n − 1 being an orthonormal collection of n − 1 vectors perpendicular

to the vector ~P . Note that each of these vectors is perpendicular to ~P because each vi is obtained by

differentiating ~P with respect to ϕi.
Now we have

det
(
v1 · · · vn−1 ~P

)
= ±1,

since the matrix belongs to O(n). We can write the above determinant as

n∑
i=1

(−1)n+i ~Pi ·Min = ±1,

where ~Pi denotes the ith component of i and Min denotes the corresponding minor.
Since

(
v1 · · · vn−1 ~P

)
∈ O(n), this implies that(

(−1)1+nM1n, · · · , (−1)2nMnn

)
= ±~P .

Since ~Ci for 1 ≤ i ≤ n− 1 are orthonormal and oriented, we have that

det


~C1
...

~Cn−1
~Cn

 = 1.

The same argument as above shows that the vector with the minors M̃ni coming from this matrix satisfies(
(−1)1+nM̃n1, · · · , (−1)2nM̃nn

)
= ±~Cn.

Now using Cauchy-Binet theorem, (7) is proved. �

Now we find the surface measure (5) with respect to the coordinate system (r, ϕ).

Proposition 3.3. The surface measure dΩ on the sphere S(ρ, α) with respect to the spherical coordinate
system (r, ϕ) is given by

dΩ =
ρn−2r2

|r −A1|
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1,

where A1 is defined in (6).
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Proof. We have

dΩ = ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin2 ϕ̃n−3 sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1.
We express cos ϕ̃i for 1 ≤ i ≤ n− 1 in terms of the coordinates (ϕ1, · · · , ϕn−1).

We have:

cos ϕ̃1 =

(
r ~P1 − ~C1

)
· ~C1

|r ~P − ~C1|
=
r ~P1 · ~C1 − 1

ρ
=
rA1 − 1

ρ
.

Furthermore it is easy to see that

 cos ϕ̃1
...

cos ϕ̃n−1

 =


rA1−1
ρ
A2√
1−A2

1

...
An−1√

1−(A2
1+···+A2

n−2)

 .

Let us compute the determinant of the Jacobian of the transformation

(ϕ1, · · · , ϕn−1)→ (cos ϕ̃1, · · · , cos ϕ̃n−1). (8)

Since

ρ2 = r2 + 1− 2rA1, (9)

differentiating this equation, we get
∂r

∂ϕi
=

r

r −A1

∂A1

∂ϕi
.

The Jacobian matrix of (8) is
r2

ρ(r−A1)
∇ϕA1

1√
1−A2

1

∇ϕA2 + A1A2

(1−A2
1)

3/2∇ϕA1

...
1√

1−(A2
1+···+A2

n−2)
∇ϕAn−1 +

A1An−1∇ϕA1+···+An−2An−1∇ϕAn−1

(1−(A2
1+···+A2

n−2)
3/2


Here ∇ϕ denotes the (n− 1)-vector ( ∂

∂ϕ1
, · · · , ∂

∂ϕn−1
).

The determinant of the matrix above is the same as the determinant of the matrix

r2

ρ(r −A1)

1√
1−A2

1

· · · 1√
1− (A2

1 + · · ·+A2
n−2

 ∇ϕA1
...

∇ϕAn−1

 .

Recall that we are interested in expressing

sinn−2 ϕ̃1 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1
in terms of dϕ1 · · · dϕn−1. Using Lemma 3.1, we have,

(sin ϕ̃1 · · · sin ϕ̃n−1) dϕ̃1 · · · dϕ̃n−1 =
r2

ρ(r −A1)

1√
1−A2

1

· · · 1√
1− (A2

1 + · · ·+A2
n−2)

×
(
~P · ~Cn

)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1 (10)

Note that

sin ϕ̃n−1 =
~P · ~Cn√

1− (A2
1 + · · ·+A2

n−2)
.
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Therefore we have

(sin ϕ̃1 · · · sin ϕ̃n−2) dϕ̃1 · · · dϕ̃n−1 =
r2

ρ(r −A1)

1√
1−A2

1

· · · 1√
1− (A2

1 + · · ·+A2
n−3)

× sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1.

Hence √
1−A2

1 · · ·
√

1− (A2
1 + · · ·+A2

n−3) (sin ϕ̃1 · · · sin ϕ̃n−2) dϕ̃1 · · · ϕ̃n−1

=
r2

ρ(r −A1)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. (11)

Now we have ∣∣∣∣∣∣
√

1− (A2
1 + · · ·+A2

n−3)√
1− (A2

1 + · · ·+A2
n−4)

∣∣∣∣∣∣ = |sin ϕ̃n−3| .

Multiplying and dividing the left hand side of (11), by
√

1− (A2
1 + · · ·+A2

n−4) and then by (1 − (A2
1 +

· · ·+A2
n−5)) and continuing this way, we get

sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1

=
r2

ρ(r −A1)
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. (12)

Since we are interested in the absolute value of the determinant of the Jacobian of the transformation
in (8), we finally have

ρn−1 sinn−2 ϕ̃1 sinn−3 ϕ̃2 · · · sin ϕ̃n−2dϕ̃1 · · · dϕ̃n−1

=
ρn−2r2

|r −A1|
sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1.

This completes the proof. �

3.1. Exterior problem. In this section, we prove Theorem 2.2.
We have

g(ρ, α) =

∞∑
l=0

gl(ρ)Yl(α)

and

g(ρ, α) =
∞∑
l=0

∫
S(ρ,α)

fl(r)Yl(ϕ) dΩ.

Using Proposition 3.3, we can write the above surface measure dΩ = ρn−2r2

|r−A1| dΩ(ϕ), where dΩ(ϕ) =

sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1. Then

g(ρ, α) =

∞∑
l=0

∫
Sn−1

fl(r)Yl(ϕ)
ρn−2r2

r −A1
dΩ(ϕ).
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The integrand in (13) is to be interpreted as 0 outside a suitable range of ϕ. Now since r =

A1 +
√
A2

1 + ρ2 − 1, we have

g(ρ, α) =
∞∑
l=0

∫
Sn−1

fl(A+
√
A2 + ρ2 − 1)

ρn−2
(
A+

√
A2 + ρ2 − 1

)2
√
A2 + ρ2 − 1

× Yl(ϕ)dΩ(ϕ).

Now we apply Funk-Hecke theorem.

Theorem 3.4 (Funk-Hecke). If
1∫
−1

|F (t)|(1− t2)
n−3
2 dt <∞,

then ∫
Sn−1

F (〈σ, η〉)Yl(σ)dσ =

∣∣Sn−2∣∣
C
n
2
−1

l (1)

 1∫
−1

F (t)C
n
2
−1

l (t)(1− t2)
n−3
2 dt

Yl(η),

where |Sn−2| denotes the surface measure of the unit sphere in Rn−1 and C
n
2
−1

l are the Gegenbauer
polynomials.

Using this theorem, we have,

gl(ρ) =

∣∣Sn−2∣∣
C
n
2
−1

l (1)

1∫
1− ρ2

2

fl(x+
√
x2 + ρ2 − 1)

ρn−2
(
x+

√
x2 + ρ2 − 1

)2
√
x2 + ρ2 − 1

C
n
2
−1

l (x)(1− x2)
n−3
2 dx.

Making the change of variables r = x+
√
x2 + ρ2 − 1, we have

gl(ρ) =
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

1+ρ∫
1

fl(r)r

(
C
n
2
−1

l

(
r2 − ρ2 + 1

2r

))(
1−

(
r2 − ρ2 + 1

2r

)2
)n−3

2

dr

=
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

ρ∫
0

fl(r + 1)(r + 1)

(
C
n
2
−1

l

(
r2 + 2r − ρ2 + 2

2r + 2

))(
1−

(
r2 + 2r − ρ2 + 2

2r + 2

)2
)n−3

2

dr

This can be written in the form

gl(ρ) =

ρ∫
0

Kl(ρ, r)Fl(r)dr,

where

Kl(ρ, r) =
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)
(r + 1)

(
C
n
2
−1

l

(
r2 + 2r − ρ2 + 2

2r + 2

))(
1−

(
r2 + 2r − ρ2 + 2

2r + 2

)2
)n−3

2

Fl(r) = fl(r + 1).

This is a Volterra integral equation of the first kind (see [46]). The kernel Kl(ρ, r) is continuous together
with its first derivatives and Kl(ρ, ρ) 6= 0 on the interval (0, R1), where 0 < R1 < 2. Equations of this
type have a unique solution, which can be obtained through modification to a Volterra equation of the
second kind, and then using a resolvent kernel given by Picard’s process of successive approximations (see
[38, 45]). This completes the proof of Theorem 2.1.
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3.2. Interior problem. Next we prove Theorem 2.2.
Our starting point is:

g(ρ, α) =
∞∑
l=0

∫
Sn−1

fl(r)
ρn−2r2

|r −A1|
Yl(ϕ)dΩ(ϕ)

We split the integral∫
Sn−1

fl(r)
ρn−2r2

|r −A1|
Yl(ϕ)dΩ(ϕ) =

∫
Sn−1
+

fl(r)
ρn−2r2

|r −A1|
Yl(ϕ)dΩ(ϕ)

+

∫
Sn−1
−

fl(r)
ρn−2r2

|r −A1|
Yl(ϕ)dΩ(ϕ),

where Sn−1± corresponds to those points on the unit sphere such that the line passing through it and the

origin intersects a point on the sphere S(ρ, α) corresponding to r = A1±
√
A2

1 + ρ2 − 1. Let us denote the
right hand side of the above equation as I1 + I2. We have

I1 =

∫
Sn−1
+

fl

(
A1 +

√
A2

1 + ρ2 − 1

)
ρn−2(A1 +

√
A2

1 + ρ2 − 1)2√
A2

1 + ρ2 − 1
Yl(ϕ)dΩ(ϕ).

Applying Funk-Hecke theorem, this integral is

I1 =

∣∣Sn−2∣∣
C
n
2
−1

l (1)


1∫

1− ρ2
2

fl(x+
√
x2 + ρ2 − 1)

ρn−2
(
x+

√
x2 + ρ2 − 1

)2
√
x2 + ρ2 − 1

C
n
2
−1

l (x)(1− x2)
n−3
2 dx

Yl(α).

Similarly

I2 =

∣∣Sn−2∣∣
C
n
2
−1

l (1)


1− ρ

2

2∫
√

1−ρ2

fl(x−
√
x2 + ρ2 − 1)

ρn−2
(
x−

√
x2 + ρ2 − 1

)2
√
x2 + ρ2 − 1

C
n
2
−1

l (x)(1− x2)
n−3
2 dx

Yl(α).

Making the change of variables r = x +
√
x2 + ρ2 − 1 in I1 and r = x −

√
x2 + ρ2 − 1 and summing up

the two integrals, we get,

gl(ρ) =
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

1∫
1−ρ

fl(r)r

(
C
n
2
−1

l

(
r2 − ρ2 + 1

2r

))(
1−

(
r2 − ρ2 + 1

2r

)2
)n−3

2

dr

=
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

ρ∫
0

fl(1− r)(1− r)
(
C
n
2
−1

l

(
r2 − 2r − ρ2 + 2

2− 2r

))(
1−

(
r2 − 2r − ρ2 + 2

2− 2r

)2
)n−3

2

dr

This is of the form

gl(ρ) =

ρ∫
0

Kl(ρ, r)Fl(r)dr,
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where

Kl(ρ, r) =
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)
(1− r)

(
C
n
2
−1

l

(
r2 − 2r − ρ2 + 2

2− 2r

))(
1−

(
r2 − 2r − ρ2 + 2

2− 2r

)2
)n−3

2

Fl(r) = fl(1− r).

Note that Kn(ρ, ρ) does not vanishes in the interval (0, 1− ε) and its derivatives exist and are continuous.
The rest of the proof follows exactly as in Theorem 2.1.

3.3. Interior/exterior problem. Finally we prove Theorem 2.3.
Since the argument is exactly as in Theorems 2.1 and 2.2, we will only give the final integral identity.

Assume that the function f is supported inside the ball B(0, R2) centered at the origin and of radius R2,
where R2 > 2 and R1 = R2− 2. Suppose the spherical Radon transform data is known along all spheres of
radius ρ centered on the unit sphere with R2 − 1 < ρ < R2 + 1, then we have the following Volterra-type
integral equation:

gl(ρ) =
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

R2∫
ρ−1

fl(r)r

(
C
n
2
−1

l

(
r2 − ρ2 + 1

2r

))(
1−

(
r2 − ρ2 + 1

2r

)2
)n−3

2

dr

=
ρn−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)

R2+1−ρ∫
0

fl(R2 − r)(R2 − r)
(
C
n
2
−1

l

(
(R2 − r)2 − ρ2 + 1

2(R2 − r)

))

×

(
1−

(
(R2 − r)2 − ρ2 + 1

2(R2 − r)

)2
)n−3

2

dr

Making a change of variable ρ̂ = R2 + 1− ρ we get

Gl(ρ̂) =

ρ̂∫
0

Kl(ρ̂, r)Fl(r)dr,

where

Kl(ρ̂, r) =
(R2 + 1− ρ̂)n−2

∣∣Sn−2∣∣
C
n
2
−1

l (1)
(R2 − r)

(
C
n
2
−1

l

(
(R2 − r)2 − (R2 + 1− ρ̂)2 + 1

2(R2 − r)

))

×

1−

(
(R2 − r)2 − (R2 + 1− ρ̂)2 + 1

2(R2 − r)

)2
n−3

2

Fl(r) = fl(R2 − r), Gl(ρ̂) = gl(R2 + 1− ρ̂).

The rest of the proof follows exactly as before.

4. Three dimensional case

In the numerical simulations below, we specialize to the case of 3-dimensions. Therefore, in this section,
we give the formulas derived earlier for the case of n = 3.

In this section, for the sake of convenience, we rename the vector α as (α, β) and the vector ϕ as (ϕ, θ).
Thus in this section and the next, the point C will be denoted by (α, β), more precisely, the Euclidean
coordinates of the point C on the unit sphere will be denoted by (cosα, sinα cosβ, sinα sinβ). A point P
on the sphere S(ρ, α, β) will be denoted by (r cosϕ, r sinϕ cos θ, r sinϕ sin θ).
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Here the spherical harmonics for f and Rf = g are expanded as

f(r, ϕ, θ) =
∞∑
l=0

l∑
m=−l

fml (r)Y m
l (ϕ, θ). (13)

g(ρ, α, β) =

∞∑
l=0

l∑
m=−l

gml (ρ)Y m
l (α, β). (14)

In the case of 3-dimensions, we have that C
( 1
2
)

l (x) = Pl(x), where Pl(x) are the Legendre polynomials

and C
( 1
2
)

l (1) = 1. Therefore the relation between the spherical harmonics coefficients in the three cases are
as follows:

(Exterior case)

gml (ρ) =

∫ ρ

0
Fml (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2πρ(r + 1)

(
Pl

(
r2 − ρ2 + 2r + 2

2(r + 1)

))
(15)

Fml (r) = fml (r + 1).

(Interior case)

gml (ρ) =

∫ ρ

0
Fml (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2πρ(1− r)
(
Pl

(
r2 − ρ2 + 2− 2r

2(1− r)

))
(16)

Fml (r) = fml (1− r).

(Interior/exterior case)

Gml (ρ) =

∫ ρ

0
Fml (r)Kl(ρ, r)dr,

Kl(ρ, r) = 2π(R2 + 1− ρ)(R2 − r)

(
Pl

(
(R2 − r)2 + 1− (R2 + 1− ρ)2

2(R2 − r)

))
(17)

Fml (r) = fml (R2 − r), Gml (ρ) = gml (R2 + 1− ρ).

Note, that in all three cases the kernel Kl(ρ, r) is bounded and has a continuous first derivative
on the support of (corresponding) Fml , and Kl(ρ, ρ) 6= 0. Hence, these Volterra equations of the
first kind can be transformed into equations of the second kind and solved using a resolvent kernel
given by Picard’s process of successive approximations (see [38, 45]).

5. Numerical Algorithm

5.1. Generating the Radon data. We consider a generic sphere of integration S(ρ, α, β) to be centered
at C = (a1, b1, c1) and radius ρ where the center (a1, b1, c1) lies on the sphere of radius R. For the interior
and exterior cases, we choose R = 1 and thus use the formulas (15) and (16) derived in the previous
sections. For the combined interior and exterior case, we use R = 1.49 and note that (17) can be easily
generalized for acquisition spheres of radius R. We consider test phantoms f to be disjoint unions of
characteristic functions of balls. To find the spherical Radon transform of f , we need to find the surface
area of intersection of S(ρ, α, β) with f . This is equivalent to summing up the surface area of intersection
of S(ρ, α, β) with characteristic function of each ball. Thus, in the forthcoming calculations, we consider a
ball B centered at (a2, b2, c2) and radius a.
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The sphere S(ρ, α, β) and the ball B intersect only when the following conditions do not occur:√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 > (ρ+ a)

and √
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 < ρ− a.

To compute the surface area of intersection of S(ρ, α, β) with B in these cases, we first determine the
center of the circle of intersection of S and B, denoted by (xc, yc, zc). The equation of the plane P passing
through the intersection S and B is given as follows

(a2 − a1)x+ (b2 − b1)y + (c2 − c1)y =
ρ2 − a2 + a22 + b22 + c22 − a21 − b21 − c21

2
.

The equation of the straight line passing through (xc, yc, zc) and perpendicular to the plane P is given as
follows

x− a1
a2 − a1

=
y − b1
b2 − b1

=
z − c1
c2 − c1

= t, t ∈ R.

We then can compute

xc =
(ρ2 − a2)(a2 − a1)

2Z
+
a1 + a2

2
,

yc =
(ρ2 − a2)(b2 − b1)

2Z
+
b1 + b2

2
,

zc =
(ρ2 − a2)(c2 − c1)

2Z
+
c1 + c2

2
,

where Z = (a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2. Let d be the distance between (xc, yc, zc) from the center
of S. Then, by an elementary calculation, the surface area of intersection of S(ρ, α, β) with B, denoted by
S, is given as

S = 2πρ(ρ− d).

Thus

S = 2πρ2 − 2πρ · |ρ
2 − a2 + (a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2|

2
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2
.

5.2. Evaluating the spherical harmonics coefficients of the Radon data. After obtaining the
Radon data g(ρ, α, β), we need to determine gml (ρ), l = 0, . . . ,∞, m = −l, . . . , l given by

gml (ρ) =

∫ 2π

0

∫ π

0
g(ρ, α, β)Ȳ m

l (α, β)dαdβ

where Ȳ m
l (α, β) = (−1)−mY −ml (α, β). This is done numerically by following the method employed in [13].

Given g(ρ, α, β) at αj = πj/2N, βk = πk/N, j, k = 0, . . . , 2N − 1, we compute

gml (ρ) =
1

N

√
π

2

2N−1∑
j=0

2N−1∑
k=0

ajg(ρ, αj , βk)Ȳ
m
l (αj , βk),

where

aj =

√
2

N
sin

(
πj

2N

)N−1∑
p=0

1

2p+ 1
sin

(
(2p+ 1)

πj

2N

)
.
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5.3. Inversion of the integral equations (15), (16) and (17). To solve the integral equations
numerically, we use the product trapezoidal method as found in [37, 40, 47]. In this method, the integral
equations are discretized and the integrands are approximated by product trapezoidal rule. This in
turn leads to matrix-vector equations and thus, we obtain discrete solutions of the discretized integral
equations, provided the matrices are invertible. In the following section, we provide the corresponding
matrix-vector equations for solving (15), (16) and (17) corresponding to the exterior, interior and the
combined interior/exterior problems respectively and prove their invertibility.

5.3.1. Exterior case. We rewrite (15) as

gml (ρ) =

∫ ρ

0
fml (r + 1)(1 + r)K̃l(ρ, r)dr,

where

K̃(ρ, r) = 2πρPl

(
r2 − ρ2 + 2r + 2

2r + 2

)
, 0 < ρ < 1.

We discretize ρ ∈ (0, 1) into M + 1 equidistant points of interval length h as ρi, i = 0, . . . ,M . The
corresponding matrix-vector equation is given as follows

AE ~f
m
l = ~gml (18)

where

~fml =

 fml (1 + ρ0)
...

fml (1 + ρM )

 , ~gml =

 gml (ρ0)
...

gml (ρM )


and AE = (aik) where

aik =


K̃l(ρi, ρ0)

[
h(ρ1+ρ0)

6 + hρ0
6 + h

2

]
, k = 0

K̃l(ρi, ρk)
[
h(ρk−1+4ρk+ρk+1)

6 + h
]
, 1 ≤ k ≤ i− 1

K̃l(ρi, ρi)
[
h(ρi+ρi−1)

6 + hρi
6 + h

2

]
, k = i

0, k > i.

Note that AE is a lower triangular matrix, and since

a00 =K̃l(ρ0, ρ0)

[
h(ρ1 + ρ0)

6
+
hρ0
6

+
h

2

]
= 2πρ0

[
h(ρ1 + 2ρ0 + 3)

6

]
> 0, if ρ0 > 0.

aii =K̃l(ρi, ρi)

[
h(ρi + ρi−1)

6
+
hρi
6

+
h

2

]
= 2πρi

[
h(2ρi + ρi−1 + 3)

6

]
> 0,

(19)

we have that AE is invertible.

5.3.2. Interior Case. We again discretize ρ ∈ (0, 1) into M + 1 equidistant points as ρi, i = 0, . . . ,M and
obtain the following matrix-vector equation

AI ~f
m
l = ~gml (20)

where

~fml =

 fml (1− ρ0)
...

fml (1− ρM )

 , ~gml =

 gml (ρ0)
...

gml (ρM )
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and AI = (aik) where

aik =


K̃l(ρi, ρ0)

[
−h(ρ1+ρ0)

6 + −hρ0
6 + h

2

]
, k = 0

K̃l(ρi, ρk)
[
−h(ρk−1+4ρk+ρk+1)

6 + h
]
, 1 ≤ k ≤ i− 1

K̃l(ρi, ρi)
[
−h(ρi+ρi−1)

6 + −hρi
6 + h

2

]
, k = i

0, k > i.

Therefore, if ρ0 > 0

a00 =K̃l(ρ0, ρ0)

[
−h(ρ1 + ρ0)

6
+
−hρ0

6
+
h

2

]
= 2πρ0

[
−h(ρ1 + 2ρ0 − 3)

6

]
> 0.

aii =K̃l(ρi, ρi)

[
−h(ρi + ρi−1)

6
+
−hρi

6
+
h

2

]
= 2πρi

[
−h(2ρi + ρi−1 − 3)

6

]
> 0.

(21)

Thus AI is invertible.

5.3.3. Interior/Exterior Case. In a similar way as in the previous two cases, we discretize ρ ∈ (0, 2R) into
M + 1 equidistant points as ρi, i = 0, . . . ,M to obtain the following matrix-vector equation

AIE ~f
m
l = ~gml (22)

where

~fml =

 fml (R2 − ρ0)
...

fml (R2 − ρM )

 , ~gml =

 gml (ρ0)
...

gml (ρM )


and AIE = (aik) where

aik =


K̃l(ρi, ρ0)

[
−h(ρ1+ρ0)

6 + −hρ0
6 + hR2

2

]
, k = 0

K̃l(ρi, ρk)
[
−h(ρk−1+4ρk+ρk+1)

6 + hR2

]
, 1 ≤ k ≤ i− 1

K̃l(ρi, ρi)
[
−h(ρi+ρi−1)

6 + −hρi
6 + hR2

2

]
, k = i

0, k > i.

Therefore, if ρ0 > 0

a00 =K̃l(ρ0, ρ0)

[
−h(ρ1 + ρ0)

6
+
−hρ0

6
+
hR2

2

]
= 2πρ0

[
−h(ρ1 + 2ρ0 − 3R2)

6

]
> 0.

aii =K̃l(ρi, ρi)

[
−h(ρi + ρi−1)

6
+
−hρi

6
+
hR2

2

]
= 2πρi

[
−h(2ρi + ρi−1 − 3R2)

6

]
> 0.

(23)

Thus AIE is invertible.
The following theorem states the error estimate for the numerical solution of the integral equations (15),

(16) and (17) which follows from [31, Thm. 7.2].

Theorem 5.1 (Error Estimates). Let fm,exactl be the C3 solution of (15) [ (16), (17) in [0, R] and fml be
the solution to 18 [or (20) and (22) resp.]. Then

‖fm,exactl − fml ‖2 = O(h2), (24)

where ‖·‖2 represents the discrete version of the continuous L2 norm in [0, R] (see for e.g., [14, Ch. 4]).

To solve the matrix equations (18), (20) and (22), we need to invert the matrices AE , AI , AIE . It turns
out that the condition numbers of these matrices are greater than 104 for almost all values of l,m. It
is well known that numerically inverting a matrix with condition number10r leads to a loss of r digits
of accuracy [23]. Thus for inversion, we use the technique of Truncated Singular Value Decomposition
(TSVD), originally proposed in [21]. See also [9, 40].
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6. Numerical Results

In this section we show the results of the numerical computations performed for the inversion of spherical
transforms described in Section 2 with functions supported in interior, exterior and both interior and
exterior of the acquisition sphere. We discretize ρ ∈ [ε, R − ε], with ε = 0.001, into 50 equally spaced grid
points, α, θ ∈ [0, π] and β, φ ∈ [0, 2π] into 100 equally spaced grid points for all our computations. As
mentioned before, for the interior and the exterior cases, the value of R = 1 whereas for the combined
interior and exterior case, the value of R = 1.49.
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Figure 2. Results for spherical Radon transform data for a function supported inside
the acquisition sphere. Figures 2a and 2b represent the horizontal and the vertical views
of the actual phantom. Figures 2c and 2d show the horizontal and vertical views of the
reconstructed images.

6.1. Functions supported inside the acquisition sphere. Figures 2a and 2b show the horizontal and
vertical cross sections of a phantom represented by a ball centered at (0.5, 0, 0) and radius 0.3. Figure 2c
and 2d shows the horizontal and the vertical cross sections of the reconstructed phantom. We note the
good recovery in this case.

To demonstrate the robustness of our algorithm, we also tested it on the spherical Radon data with
5% multiplicative Gaussian noise. The results are shown in Figures 3a and 3b. We again note the good
recovery in presence of noisy data.

We also applied our reconstruction algorithm to a phantom whose support is inside the acquisition
sphere and contains the origin. Notice, that our result about uniqueness of the inversion (Thm. 2.2) does
not cover this case, since here the kernels Kl(ρ, r) of the integral equations appearing in the proof vanish,
when ρ = r = 1 (see eq. (16)). Hence, one may not expect stable recovery in the numerical method. And
indeed, the reconstructed image in Figure 4b shows instability near the origin.
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Figure 3. Results for spherical Radon transform data with 5% multiplicative Gaussian
noise for a function supported inside the acquisition sphere. Figures 3a and 3b show the
horizontal and vertical views of the reconstructed images.
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Figure 4. Application of the algorithm to a function supported inside the acquisition
sphere with support containing the origin. Figure 4a shows the horizontal view of the
actual phantom. Figure 4b shows the horizontal view of the reconstructed image. Figure
4c shows the cross sectional view of the reconstructed phantom along the x-axis.

6.2. Functions supported outside the acquisition sphere. Figures 5a and 5b show the horizontal
and vertical cross sections of a phantom represented by two balls centered at (−1.5, 0, 0) and (1.5, 0, 0)
with radius 0.2 and 0.3 respectively. Figures 5c and 5d shows the horizontal and the vertical cross sections
of the reconstructed phantom. Microlocal analysis arguments show that the entire spherical shell of the
balls cannot be constructed stably with the given spherical Radon transform data. We see the presence of
an increased number of artifacts in contrast to the interior case. The reconstructions are consistent with
this analysis.

6.3. Functions supported on both sides of the acquisition sphere. Figure 5a shows the horizontal
cross section of a phantom represented by two balls centered at (−1.5, 0, 0) and (1.5, 0, 0) with radius 0.2
and 0.3 respectively. Figure 5c shows the horizontal cross section of the reconstructed phantom. Again by
microlocal analysis arguments, the ball outside the acquisition sphere cannot be constructed stably whereas
the ball inside the acquisition sphere can be constructed stably. This is depicted in the reconstructions.

7. Conclusion

We studied the problem of inverting the spherical Radon transform in spherical geometry of data
acquisition with incomplete radial data. Such problems arise in image reconstruction procedures in
photo- and thermo-acoustic tomography, ultrasound reflection tomography, as well as in radar and sonar
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Figure 5. Results for spherical Radon transform data for a function supported outside
the acquisition sphere. Figures 5a and 5b represent the horizontal and the vertical views
of the actual phantom. Figures 5c and 5d show the horizontal and vertical views of the
reconstructed images.
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Figure 6. Results for spherical Radon transform data for a function supported on both
sides of the acquisition sphere. Figure 6a represents the horizontal view of the actual
phantom. Figure 6b shows the horizontal view of the reconstructed image.

imaging. We considered three distinct scenarios of the location of the support of the image function:
strictly inside the acquisition sphere (interior problem), strictly outside (exterior problem), and both
inside and outside (interior/exterior problem). For all three cases we provided a constructive proof of the
uniqueness of inversion of SRT from incomplete radial data and obtained an iterative procedure to recover
the image function. We presented a robust computational algorithm based on our inversion procedure and
demonstrated its accuracy and efficiency on several numerical examples.
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