
ar
X

iv
:2

40
1.

05
23

0v
1 

 [
m

at
h.

A
P]

  1
0 

Ja
n 

20
24

RAY TRANSFORM ON SOBOLEV SPACES OF SYMMETRIC

TENSOR FIELDS, II: RANGE CHARACTERIZATION

VENKATESWARAN P. KRISHNAN AND VLADIMIR A. SHARAFUTDINOV

Abstract. The ray transform I integrates symmetric m-tensor field in Rn over lines.
This transform in Sobolev spaces was studied in our earlier work where higher order
Reshetnyak formulas (isometry relations) were established. The main focus of the cur-
rent work is the range characterization. In dimensions n ≥ 3, the range characterization
of the ray transform in Schwartz spaces is well-known; the main ingredient of the char-
acterization is a system of linear differential equations of order 2(m+1) which are called
John equations. Using the higher order Reshetnyak formulas, the range of the ray trans-
form on Sobolev spaces is characterized in dimensions n ≥ 3 in this paper.

1. Introduction

The ray transform integrates functions or more generally symmetric tensor fields over
lines and the Radon transform integrates functions over hyperplanes in Rn. The ray
transform of functions is the main mathematical tool of computer tomography. The
ray transform of vector fields and that of symmetric second rank tensor fields arise in
Doppler tomography and travel time tomography, respectively. The Radon transform
originally arose while trying to decompose a solution of the wave equation in terms of
plane waves. In 2-dimensions, the ray transform of functions coincides, up to notation,
with the Radon transform. The Radon transform is extensively studied in [3, 10] and a
systematic treatment of the ray transform of symmetric tensor fields in Euclidean and
Riemannian manifold settings is performed in [12]. The ray and Radon transforms will
be denoted by I and R, respectively, in this paper.

Three questions naturally arise in the study of the Radon transform and ray transform
of symmetric tensor fields (or any other transform with tomographic applications) (i)
inversion formulas (ii) stability and (iii) range characterization. We do not discuss inver-
sion formulas in this paper. Instead, we refer the interested reader to the aforementioned
books [3, 10, 12] where explicit inversion formulas are derived for such transforms. The
second question is that of stability. As we will see, this is related to the third question
of range characterization; the main topic of this paper. For this reason, we begin with a
discussion of stability for the Radon transform. To make the discussion accessible to a
broader audience, we have chosen to be informal in the Introduction. Our current work is
a companion paper to our prior work on this topic [8], and we largely follow the notation
from that paper. To avoid repetition, we have chosen to give only a condensed version of
the relevant material to make the discussion self-contained. We recommend the interested
readers to read this in conjunction with our earlier work as and when required.

The Radon transform R integrates a function along hyperplanes. The set of hyperplanes
can be parameterized by points of Sn−1 × R. Then R is defined by

Rf(ξ, p) =

∫

〈ξ,x〉=p

f(x) dx
(
(ξ, p) ∈ S

n−1 × R
)
,
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where 〈· , ·〉 is the standard dot-product in Rn and dx is the (n−1)-dimensional Lebesgue
measure on the hyperplane {x | 〈ξ, x〉 = p}. Some condition on f should be imposed
for the integral above to converge. The Reshetnyak formulas for the Radon transform
is a family of isometry relations (the best stability estimates possible) involving certain
weighted Sobolev spaces on Rn and on Sn−1×R. For the precise definitions of the weighted
Sobolev spaces appearing below, we refer the reader to [3, 14, 13]. Section 2.1 in [8] also
provides a good summary of these works. We have the following family of higher order

Reshetnyak formulas for the Radon transform [13]:

‖f‖
H

(r,s)
t (Rn)

= ‖Rf‖
H

r,s+(n−1)/2
t+(n−1)/2

(Sn−1×R)
,

for arbitrary reals s, r and for t > −n/2. We discuss a few special cases of this formula.
The case when r = s = t = 0 is the original isometry relation between f and its Radon
transform, due to Reshetnyak in the 1960s. The case when r = 0, s arbitrary and
t > −n/2 was given by the second author in [14].

The Reshetnyak formulas are closely related to the range characterization of the Radon
transform. The classical Gel’fand-Helgason-Ludwig (GHL) range characterization theo-
rem for the Radon transform on the Schwartz space is the following (below S(Sn−1 × R)
denotes the Schwartz space of functions on S

n−1 × R):
A function g ∈ S(Sn−1×R) is the Radon transform of a function f ∈ S(Rn) if and only

if the following two conditions are satisfied:
(1) g(ω, p) = g(−ω,−p),
(2) for any integer k ≥ 0,

∫
R
pkg(ω, p) dp is a homogeneous polynomial of degree at

most k in ω.
A natural question is the range characterization of the Radon transform in weighted

Sobolev spaces H
(r,s)
t (Rn). The following result is obtained in [13]: For arbitrary reals r, s

and t > −n/2, the Radon transform R : S(Rn) → S(Sn−1 × R) uniquely extends to a
bijective isometry of Hilbert spaces

R : H
(r,s)
t (Rn) → H

(r,s+(n−1)/2)
t+(n−1)/2,e (Sn−1 × R).

Hereafter, the index e stands for “even”, i.e., H
(r,s
t,e (Sn−1×R) is the subspace ofH

(r,s
t (Sn−1×

R) consisting of functions satisfying g(ω, p) = g(−ω,−p). We make one crucial remark
here. The second part of the GHL condition disappears in the range characterization
when one extends the Radon transform from the Schwartz space to the weighted Sobolev
spaces. The special case of this result, when r = s = t = 0 can be found in [3], and
for the case when r = 0, s arbitrary and t > −n/2 in [14]. To show the bijectivity of
the Radon transform on these spaces, one proceeds as follows. The Reshetnyak formula
shows that, being an isometry, the range of the operator R|

H
(r,s)
t (Rn)

is a closed subspace

of H
(r,s+(n−1)/2)
t+(n−1)/2,e (Sn−1 × R), and the proof is completed by showing that the orthogonal

complement of the latter subspace (with respect to the H
(r,s+(n−1)/2)
t+(n−1)/2 (Sn−1 × R) scalar

product) is equal to zero.
We next discuss the existence of Reshetnyak formulas for the ray transform. Let SmRn

be the
(
n+m−1

m

)
-dimensional complex vector space of rank m symmetric tensor fields on

R
n. The family of oriented straight lines in R

n is parameterized by points of the manifold

TSn−1 = {(x, ξ) ∈ R
n × R

n | |ξ| = 1, 〈x, ξ〉 = 0} ⊂ R
n × R

n,

that is, the tangent bundle of the unit sphere Sn−1. A point (x, ξ) ∈ TSn−1 determines
the line {x + tξ | t ∈ R}. Let S(Rn;SmRn) denote the Schwartz space of SmRn-valued
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functions on Rn and S(TSn−1) denote the Schwartz space of functions on TSn−1. The ray
transform I is the linear continuous operator

I : S(Rn;Sm
R

n) → S(TSn−1) (1.1)

that is defined, for f = (fi1...im) ∈ S(Rn;Sm
R

n), by

If(x, ξ) =

∞∫

−∞

fi1...im(x+ tξ) ξ
i1 . . . ξim dt =

∞∫

−∞

〈f(x+ tξ), ξm〉 dt
(
(x, ξ) ∈ TSn−1

)
. (1.2)

Here and henceforth, we use the Einstein summation rule: the summation from 1 to
n is assumed over every index repeated in lower and upper positions in a monomial.
We use either lower or upper indices for denoting coordinates of vectors and tensors.
Since we work in Cartesian coordinates only, there is no difference between covariant and
contravariant tensors. For m > 0, the ray transform I has an infinite dimensional kernel
consisting of so-called potential tensor fields. Therefore it is natural to restrict the ray
transform to the orthogonal complement of potential tensor fields, called solenoidal tensor
fields. Analogous to the higher order Reshetnyak formulas for the Radon transform, the
following family of higher order Reshetnyak formulas for the ray transform of symmetric
tensor fields was derived recently in our work [8]: For an integer r ≥ 0, real s and
t > −n/2, the rth order Reshetnyak formula for the ray transform restricted to solenoidal
tensor fields is

‖f‖
H

(r,s)
t (Rn;SmRn)

= ‖If‖
H

(r,s+1/2)
t+1/2

(TSn−1)
. (1.3)

Definitions of the spaces in the formula are given in the next section. Two special cases
of this Reshetnyak formula were derived by the second author. The first was for the case
r = 0 in [14], and a first order Reshetnyak formula corresponding to r = 1 (with a slightly
different definition for the weighted Sobolev spaces) for the case of the ray transform of
functions was given in [13].

Now we come to the question of range characterization for the ray transform. John
[5] studied the range characterization of the ray transform of Schwartz class functions in
R

3 and showed that a function is in the range of this transform if and only if it solves a
certain second order linear differential equation, the so-called John equation. Helgason [2]
generalized this result to an arbitrary n ≥ 3 dimension. A system of linear second order
differential equations appears in the case of n ≥ 4, they are still called John equations. The
second author proved a range characterization result for the ray transform of symmetric
tensor fields in Schwartz space in dimensions n ≥ 3 [12, Theorem 2.10.1].

For the m-tensor case, a big system of linear differential equations of order 2(m + 1)
appears, see equations (2.5) below. Observe that the left-hand side of every equation
(2.5) is actually a product of m John operators defined by (2.6). Equations (2.5) are not
independent, there are many linear relations between them since John operators commute
with each other. One would like to distinguish a minimal subsystem of (2.5) which is still
equivalent to the whole system. We do not try to minimize the system (2.5) in the
present paper. Nevertheless, let us mention that, in the 3-dimensional case, the system
(2.5) is equivalent to one linear differential equation of order 2(m + 1) if an appropriate
parametrization of the family of lines in R3 has been chosen [9]. In an arbitrary dimension,
minimization of the system (2.5) is discussed in [1].

Integral GHL conditions for the Radon transform are very different of John differential
equations for the ray transform. Nevertheless, they are related as is shown by Denisiuk
[1] by restricting the ray transform to 2D planes.
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Unlike GHL conditions, the John equations persist in the passage from the Schwartz
space to weighted Sobolev spaces. In the scalar case, this fact is proved in [15]. The
main goal of the present article is the proof of the latter fact for the ray transform of
symmetric tensor fields. Namely, being understood in the distribution sense, the John

equations characterize the range of the ray transform on the spaces H
(r,s)
t (Rn;Sm

R
n).

Unlike the case of the Schwartz space, Reshetnyak formulas play an important role in the
characterization.

In our opinion, the difference between GHL conditions for the Radon transform and
John equations for the ray transform is caused by the following. The ray transform is
over-determined in dimensions n ≥ 3: we try to recover a tensor field depending on n
variables from a (2n− 2)-dimensional set of information. On the other hand, in the case
of the Radon transform, the problem of recovering f from Rf is formally determined.

Finally, we shortly discuss the ray transform in the 2-dimensional case. As we have men-
tioned, the ray transform of functions coincides with the Radon transform in 2-dimensions.
For symmetric m-tensor fields, the range characterization of the 2-dimensional ray trans-
form in the Scwartz space was obtained by Pantjukhina [11]; some version of integral
GHL conditions participates here. The range characterization of the 2D ray transform
in weighted Sobolev spaces of symmetric m-tensor fields is not studied so far for m > 0.
The following interesting question remains open: What kind of conditions, either John’s
differential equations or GHL integral conditions, should be used in the latter problem?

2. Preliminaries and statement of the main result

In this section, we state all preliminary definitions and results required for a precise
statement of the range characterization.

2.1. Ray transform of symmetric tensor fields. Recall from the previous section
that S(Rn;SmRn) is the Schwartz space of symmetric m-tensor valued functions on Rn

(each component of the tensor field is a Schwartz class function) and we also introduced
the Schwartz space S(TSn−1) that is defined as follows. Given a function ϕ ∈ C∞(TSn−1),
we extend it to some neighborhood of TSn−1 in Rn × Rn so that (the extension is again
denoted by ϕ)

ϕ(x, rξ) = ϕ(x, ξ) (r > 0), ϕ(x+ rξ, ξ) = ϕ(x, ξ) (r ∈ R).

We say that a function ϕ ∈ C∞(TSn−1) belongs to S(TSn−1) if the seminorm

‖ϕ‖k,α,β = sup
(x,ξ)∈TSn−1

∣∣∣(1 + |x|)k∂αx ∂βξ ϕ(x, ξ)
∣∣∣

is finite for every k ∈ N and for all multi-indices α and β. The family of these seminorms
defines the topology on S(TSn−1).

Recall that the ray transform (1.1) is defined by (1.2). In the case of an even m, the
ray transform is the linear continuous operator

I : S(Rn;Sm
R

n) → Se(TS
n−1),

and in the case of an odd m,

I : S(Rn;Sm
R

n) → So(TS
n−1),

where Se(TS
n−1) (So(TS

n−1)) is the subspace of Se(TS
n−1) consisting of functions satis-

fying ϕ(x,−ξ) = ϕ(x, ξ) (satisfying ϕ(x,−ξ) = −ϕ(x, ξ)). To unite these formulas, let us
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introduce the parity of m

π(m) =

{
e if m is even,
o if m is odd.

Then the ray transform can be initially considered as a linear continuous operator

I : S(Rn;Sm
R

n) → Sπ(m)(TS
n−1). (2.1)

2.2. Fourier slice theorem. The Fourier transform of symmetric tensor fields

F : S(Rn;Sm
R

n) → S(Rn;Sm
R

n), f 7→ f̂

is defined component wise (hereafter i is the imaginary unit):

f̂i1···im(y) =
1

(2π)n/2

∫

Rn

e−i〈y,x〉fi1···im(x) dx.

The Fourier transform F : S(TSn−1) → S(TSn−1), ϕ 7→ ϕ̂ is defined as the (n − 1)-
dimensional Fourier transform over the subspace ξ⊥:

ϕ̂(y, ξ) =
1

(2π)(n−1)/2

∫

ξ⊥

e−i〈y,x〉ϕ(x, ξ) dx
(
(y, ξ) ∈ TSn−1

)
.

The Fourier slice theorem [12, formula (2.1.5)] states:

Îf(y, ξ) =
√
2π〈f̂(y), ξm〉 for (y, ξ) ∈ TSn−1. (2.2)

2.3. Range characterization of the ray transform on the Schwartz space. We
first observe that the right-hand side of (1.2) makes sense for all (x, ξ) ∈ Rn × Rn \ {0},
and we use notation J to denote the extended operator. Strictly speaking, we define the
continuous linear operator

J : S(Rn;Sm
R

n) → C∞(Rn × R
n \ {0})

by

Jf(x, ξ) =

∞∫

−∞

fi1...im(x+ tξ) ξi1 . . . ξim dt (x ∈ R
n, 0 6= ξ ∈ R

n). (2.3)

This extension allows us to take partial derivatives of Jf with respect to variables x and
ξ freely. One can go back and forth between the original definition and the extended one
by

Jf |TSn−1 = If and Jf(x, ξ) = |ξ|m−1If

(
x− 〈x, ξ〉ξ

|ξ|2 ,
ξ

|ξ|

)
.

Given a function ϕ ∈ TSn−1, let us define an extension ψ of this function to Rn×Rn \{0}
as follows:

ψ(x, ξ) = |ξ|m−1ϕ

(
x− 〈x, ξ〉ξ

|ξ|2 ,
ξ

|ξ|

)
. (2.4)

The range characterization theorem for the ray transform of symmetric tensor fields in
dimension n ≥ 3 is as follows:

Theorem 2.1. A function ϕ ∈ S(TSn−1) (n ≥ 3) belongs to the range of the operator

(1.1) if and only if the following two conditions hold:

(1) ϕ(x,−ξ) = (−1)mϕ(x, ξ);
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(2) the function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
, defined by (2.4), satisfies the equations

( ∂2

∂xi1∂ξj1
− ∂2

∂xj1∂ξi1

)
. . .

( ∂2

∂xim+1∂ξjm+1
− ∂2

∂xjm+1∂ξim+1

)
ψ = 0 (2.5)

for all indices 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n.

We call (2.5) the John equations and the differential operators

Jij =
∂2

∂xi∂ξj
− ∂2

∂xj∂ξi
: C∞(Rn × R

n) → C∞(Rn × R
n), (2.6)

the John operators. (We hope the reader is not confused by similarity between the notation
J for the operator (2.3) and Jij for John operators; both the notations are standard ones.)
In the case of (m,n) = (0, 3), Theorem 2.1 is equivalent to John’s result [5]. In the case
of m = 0, Theorem 2.1 was proved by Helgason [2]. For the proof in the general case see
[12, Theorem 2.10.1].

Our goal, as already mentioned, is to generalize the above result to weighted Sobolev
spaces. The spaces are discussed in next few paragraphs.

2.4. The vector fields Xi and Ξi and intrinsic John operators. The following first
order differential operators on TSn−1 were introduced in [6, 7]. Consider Rn × Rn with
variables (x, ξ) and introduce the following vector fields:

X̃i =
∂

∂xi
− ξiξ

p ∂

∂xp
,

Ξ̃i =
∂

∂ξi
− xiξ

p ∂

∂xp
− ξiξ

p ∂

∂ξp
.

These vector fields are tangent to TSn−1 at every point (x, ξ) ∈ TSn−1, as was shown in [6],
and therefore can be viewed as vector fields on TSn−1. Let Xi and Ξi be the restrictions
of these vector fields to TSn−1.

The operators Xi and Ξi are related to the Fourier transform by the equalities [6]:

X̂iϕ = i yi ϕ̂, Ξ̂iϕ = Ξiϕ̂,

which hold for every function ϕ ∈ S(TSn−1) and for every 1 ≤ i ≤ n.
We use the vector fields Xi and Ξi to introduce the second order differential operators

Jij : C
∞(TSn−1) → C∞(TSn−1) (1 ≤ i, j ≤ n)

by Jij = XiΞj −XjΞi. The operator Jij are called intrinsic John operators.

2.5. The spaces H
(r,s)
t (TSn−1). We define the second order differential operator ∆ξ on

TSn−1 by ∆ξ = −
n∑

i=1

Ξ2
i . This operator is used for defining the weighted Sobolev spaces on

TSn−1. The following scalar product was introduced in [14]. For ϕj ∈ S(TSn−1) (j = 1, 2),

(ϕ1, ϕ2)Hs
t (TSn−1) =

Γ
(
n−1
2

)

4π(n+1)/2

∫

Sn−1

∫

ξ⊥

|y|2t(1 + |y|2)s−tϕ̂1(y, ξ) ϕ̂2(y, ξ)dydξ. (2.7)

We showed in [8] that (1.1) is a positive semi-definite operator with respect to the scalar
product (2.7) for any real s and t > −(n− 1)/2.
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Definition 2.2. [8, Def 3.4] For an integer r ≥ 0, real s and t > −(n − 1)/2, introduce
the norm on S(TSn−1)

‖ϕ‖2
H

(r,s)
t (TSn−1)

=
(
(Id + ∆ξ)

rϕ, ϕ
)
Hs

t (TSn−1)
=

r∑

l=0

(
r

l

)(
∆l

ξϕ, ϕ
)
Hs

t (TSn−1)
(2.8)

and define the Hilbert space H
(r,s)
t (TSn−1) as the completion of S(TSn−1) with respect to

the norm (2.8).

The Hilbert spaces H
(r,s)
t (Rn;SmRn) are defined in such a way that there is the equality

in (1.3); see [8, Def 5.2]. We do not oresent the precise definition of H
(r,s)
t (Rn;SmRn) here

since it does not participate in calculations related to the range characterization result
below.

Recall that Ssol(R
n;SmRn) is the subspace of S(Rn;SmRn) consisting of solenoidal

tensor fields satisfying
n∑

p=1

∂fpi2...im
∂xp

= 0. (2.9)

By [8, Theorem 1.1], for all n ≥ 2 and m ≥ 0, the ray transform

I : S(Rn;Sm
R

n) → Sπ(m)(TS
n−1)

extends to the isometric embedding of Hilbert spaces

I : H
(r,s)
t,sol (R

n;Sm
R

n) → H
(r,s+1/2)
t+1/2,π(m)(TS

n−1) (2.10)

for every integer r ≥ 0, every real s and every t > −n/2. See (2.1) for the additional
index π(m) on the right-hand side of (2.10). Therefore the range of the operator (2.10)

is a closed subspace of H
(r,s+1/2)
t+1/2,π(m)(TS

n−1).

Let S ′(TSn−1) be the space of tempered distributions on TSn−1. By 〈ϕ|ψ〉 we denote the
value of a distribution ϕ ∈ S ′(TSn−1) on a test function ψ ∈ S(TSn−1). The embedding
S(TSn−1) ⊂ S ′(TSn−1) is defined by

〈ϕ|ψ〉 =
∫

Sn−1

∫

ξ⊥

ϕ(x, ξ)ψ(x, ξ) dxdξ for ϕ, ψ ∈ S(TSn−1). (2.11)

Proposition 2.3. For an integer r ≥ 0, real s and t ∈
(
− (n − 1)/2, (n − 1)/2

)
, the

space H
(r,s)
t (TSn−1) consists of tempered distributions. More precisely, the identity map

of S(TSn−1) extends to a continuous embedding H
(r,s)
t (TSn−1) ⊂ S ′(TSn−1).

Proof. There exists the continuous embedding H
(r,s)
t (TSn−1) ⊂ Hs

t (TS
n−1). Therefore it

suffices to prove Proposition 2.3 in the case of r = 0, i.e., to prove that the identical map
of S(TSn−1) extends to a continuous embedding Hs

t (TS
n−1) ⊂ S ′(TSn−1). To this end we

will demonstrate the validity of the estimate

|〈ϕ|ψ〉| ≤ Cs,t‖ϕ‖Hs
t (TSn−1)‖ψ‖H−s

−t (TSn−1) for ϕ, ψ ∈ S(TSn−1).

With the help of the Plancherel formula, (2.11) can be written as

〈ϕ|ψ〉 =
∫

Sn−1

∫

ξ⊥

ϕ̂(y, ξ)ψ̂(y, ξ) dydξ.
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Writing this in the form

〈ϕ|ψ〉 =
∫

Sn−1

∫

ξ⊥

(
|y|t(1 + |y|2)(s−t)/2ϕ̂(y, ξ)

)(
|y|−t(1 + |y|2)−(s−t)/2ψ̂(y, ξ)

)
dydξ

and applying the Cauchy – Bunyakovski inequality, we obtain

|〈ϕ|ψ〉| ≤
( ∫

Sn−1

∫

ξ⊥

|y|2t(1 + |y|2)s−t|ϕ̂(y, ξ)|2 dydξ
)1/2

×

×
( ∫

Sn−1

∫

ξ⊥

|y|−2t(1 + |y|2)t−s|ψ̂(y, ξ)|2 dydξ
)1/2

= Cs,t‖ϕ‖Hs
t (TSn−1)‖ψ‖H−s

−t (TSn−1).

�

By Proposition 2.3, we have the linear continuous operator

Ji1j1

(
Ji2j2 − (ξi2Xj2 − ξj2Xi2)

)(
Ji3j3 − 2(ξi3Xj3 − ξj3Xi3)

)
. . .

. . .
(
Jim+1jm+1 −m(ξim+1Xjm+1 − ξjm+1Xim+1)

)
: H

(r,s+1/2)
t+1/2,π(m)(TS

n−1) → S ′(TSn−1)

(2.12)
under the only restriction t ∈

(
− n/2, (n− 2)/2

)
.

We are now ready to state the main result of this paper.

Theorem 2.4 (Main theorem). Let n ≥ 3 and t ∈
(
− (n − 1)/2, (n− 2)/2

)
. For every

integers m ≥ 0, r ≥ 0 and every real s, the range of the operator (2.10) coincides with the

intersection of kernels of differential operators (2.12) for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n.

In other words, a “function” ϕ ∈ H
(r,s+1/2)
t+1/2,π(m)(TS

n−1) belongs to the range of the operator

(2.10) if and only if it satisfies the equations

Ji1j1

(
Ji2j2 − (ξi2Xj2 − ξj2Xi2)

)(
Ji3j3 − 2(ξi3Xj3 − ξj3Xi3)

)
. . .

. . .
(
Jim+1jm+1 −m(ξim+1Xjm+1 − ξjm+1Xim+1)

)
ϕ = 0

(2.13)

for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n. Equations (2.13) are understood in the distribution

sense.

3. Range characterization for ray transform of Schwartz class tensor

fields using intrinsic John operators

We start with the following lemma.

Lemma 3.1. Assume a function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
to be positively homogeneous

of degree λ in ξ and to satisfy

ψ(x+ tξ, ξ) = ψ(x, ξ) (t ∈ R). (3.1)

Let ϕ ∈ C∞(TSn−1) be the restriction of ψ to TSn−1. Then the equality

(Jijψ)|TSn−1 =
(
Jij − (λ+ 1)(ξiXj − ξjXi)

)
ϕ (3.2)

holds for any 1 ≤ i, j ≤ n.
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Proof. (Compare with [15, Lemma 2.4]) By the very definition of the operators Xi and
Ξi, the equality

Jijϕ = (XiΞj −XjΞi)ϕ = (X̃iΞ̃j − X̃jΞ̃i)ψ (3.3)

holds on TSn−1.
By the definition of the operators X̃i and Ξ̃i,

X̃iΞ̃j − X̃jΞ̃i =
( ∂

∂xi
− ξiξ

p ∂

∂xp

)( ∂

∂ξj
− xjξ

q ∂

∂xq
− ξjξ

q ∂

∂ξq

)

−
( ∂

∂xj
− ξjξ

p ∂

∂xp

)( ∂

∂ξi
− xiξ

q ∂

∂xq
− ξiξ

p ∂

∂ξq

)
.

After opening parentheses, this becomes

X̃iΞ̃j − X̃jΞ̃i =
( ∂2

∂xi∂ξj
− ∂2

∂xj∂ξi

)
+
(
xiξ

p ∂2

∂xj∂xp
− xjξ

p ∂2

∂xi∂xp

)

+
(
ξiξ

p ∂2

∂xj∂ξp
− ξjξ

p ∂2

∂xi∂ξp

)
−
(
ξiξ

p ∂2

∂xp∂ξj
− ξjξ

p ∂2

∂xp∂ξi

)

− (xiξj − xjξi)ξ
pξq

∂2

∂xp∂xq
.

(3.4)

We transform the fourth term on the right-hand side as follows:

ξiξ
p ∂2

∂xp∂ξj
− ξjξ

p ∂2

∂xp∂ξi
= ξi

∂

∂ξj

(
ξp

∂

∂xp

)
− ξi

∂

∂xj
− ξj

∂

∂ξi

(
ξp

∂

∂xp

)
+ ξj

∂

∂xi

=
(
ξi
∂

∂ξj
− ξj

∂

∂ξi

)
ξp

∂

∂xp
−

(
ξi

∂

∂xj
− ξj

∂

∂xi

)
.

Substitute this expression into (3.4)

X̃iΞ̃j − X̃jΞ̃i =
( ∂2

∂xi∂ξj
− ∂2

∂xj∂ξi

)
+
(
xiξ

p ∂2

∂xj∂xp
− xjξ

p ∂2

∂xi∂xp

)

+
(
ξiξ

p ∂2

∂xj∂ξp
− ξjξ

p ∂2

∂xi∂ξp

)

−
(
ξi
∂

∂ξj
− ξj

∂

∂ξi

)
ξp

∂

∂xp
+
(
ξi
∂

∂xj
− ξj

∂

∂xi

)

− (xiξj − xjξi)ξ
pξq

∂2

∂xp∂xq
.

On using the operators Jij, 〈ξ, ∂x〉 = ξp ∂
∂xp and 〈ξ, ∂ξ〉 = ξp ∂

∂ξp
, we write this in the form

X̃iΞ̃j − X̃jΞ̃i = Jij +
(
xi

∂

∂xj
− xj

∂

∂xi

)
〈ξ, ∂x〉+

(
ξi

∂

∂xj
− ξj

∂

∂xi

)
〈ξ, ∂ξ〉

−
(
ξi
∂

∂ξj
− ξj

∂

∂ξi

)
〈ξ, ∂x〉+

(
ξi

∂

∂xj
− ξj

∂

∂xi

)
− (xiξj − xjξi)〈ξ, ∂x〉2.

(3.5)

Since ψ is positively homogeneous of degree λ in ξ and satisfies (3.1), the equations

〈ξ, ∂x〉ψ = 0, 〈ξ, ∂ξ〉ψ = λψ

hold. Therefore the equality (3.5) for the function ψ looks as follows:

(X̃iΞ̃j − X̃jΞ̃i)ψ = Jijψ + (λ+ 1)
(
ξi

∂

∂xj
− ξj

∂

∂xi

)
ψ. (3.6)
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The relation

ξi
∂

∂xj
− ξj

∂

∂xi
= ξiXj − ξjXi

holds on TSn−1 as is seen from the definition of Xi. Therefore (3.6) implies that

(X̃iΞ̃j − X̃jΞ̃i)ψ = Jijψ + (λ+ 1)(ξiXj − ξjXi)ϕ

on TSn−1. Together with (3.3), this gives (3.2). �

Lemma 3.2. Assume a function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
to be positively homogeneous

of degree λ in ξ and to satisfy ψ(x + tξ, ξ) = ψ(x, ξ) for t ∈ R. Let ϕ ∈ C∞(TSn−1) be

the restriction of ψ to TSn−1. Then, for every k = 1, 2, . . . , the equality

(Ji1j1 . . . Jikjkψ)|TSn−1

=
(
Ji1j1 − c1(λ, k)

(
ξi1Xj1 − ξj1Xi1

))(
Ji2j2 − c2(λ, k)

(
ξi2Xj2 − ξj2Xi2

))

. . .
(
Jikjk − ck(λ, k)

(
ξikXjk − ξjkXik

))
ϕ

(3.7)

holds for any indices 1 ≤ i1, j1, . . . , ik, jk ≤ n, where

cl(λ, k) = λ− k + l + 1. (3.8)

Proof. The proof is going by induction in k.
By Lemma 3.1,

(Jikjkψ)|TSn−1 =
(
Jikjk − (λ+ 1)

(
ξikXjk − ξjkXik

))
ϕ. (3.9)

This coincides with (3.7) for k = 1 with

c1(λ, 1) = λ+ 1. (3.10)

Fix indices ik and jk and set ψ′ = Jikjkψ. Formula (3.9) can be rewritten as

ψ′|TSn−1 =
(
Jikjk − c1(λ, 1)

(
ξikXjk − ξjkXik

))
ϕ. (3.11)

The function ψ′ is homogeneous of degree λ−1 in ξ. Besides this, it satisfies 〈ξ, ∂x〉ψ′ = 0
since the operators 〈ξ, ∂x〉 and Jkl commute as easily follows from definitions of these
operators. By the induction hypothesis,

(Ji1j1 . . . Jik−1jk−1
ψ′)|TSn−1 =

(
Ji1j1 − c1(λ− 1, k − 1)

(
ξi1Xj1 − ξj1Xi1

))
. . .

. . .
(
Jik−1jk−1

− ck(λ− 1, k − 1)
(
ξik−1

Xjk−1
− ξjk−1

Xik−1

))(
ψ′|TSn−1

)
.

Substituting the expression (3.11) into the right-hand side of the last formula and the
value ψ′ = Jikjkψ into the left-hand side, we obtain (3.7) with the coefficients

c1(λ, k) = c1(λ−1, k−1), . . . , ck−1(λ, k) = ck−1(λ−1, k−1); ck(λ, k) = c1(λ, 1).

Together with (3.10), last equalities imply (3.8) �

Let us distinguish the most important case when k = m+ 1 and λ = m− 1.
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Corollary 3.3. For an integer m ≥ 0, assume a function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
to

be positively homogeneous of degree m − 1 in ξ and to satisfy ψ(x + tξ, ξ) = ψ(x, ξ) for

t ∈ R. Let ϕ ∈ C∞(TSn−1) be the restriction of ψ to TSn−1. Then the equality

(Ji1j1 . . . Jim+1jm+1ψ)|TSn−1 = Ji1j1

(
Ji2j2 −

(
ξi2Xj2 − ξj2Xi2

))(
Ji3j3 − 2

(
ξi3Xj3 − ξj3Xi3

))

. . .
(
Jim+1jm+1 −m

(
ξim+1Xjm+1 − ξjm+1Xim+1

))
ϕ

(3.12)
holds for any indices 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n.

Theorem 3.4 (Intrinsic form of Theorem 2.1). Let n ≥ 3. A function ϕ ∈ Sπ(m)(TS
n−1)

belongs to the range of the operator (1.1) if and only if it satisfies

Ji1j1

(
Ji2j2 −

(
ξi2Xj2 − ξj2Xi2

))(
Ji3j3 − 2

(
ξi3Xj3 − ξj3Xi3

))

. . .
(
Jim+1jm+1 −m

(
ξim+1Xjm+1 − ξjm+1Xim+1

))
ϕ = 0

(3.13)

for all indices 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n.

Proof. Necessity. Let a function ϕ ∈ Sπ(m)(TS
n−1) belong to the range of the operator

(1.1). Define the function ψ ∈ C∞
(
Rn × (Rn \ {0})

)
by (2.4). Then ψ|TSn−1 = ϕ.

By Theorem 2.1, the function ψ satisfies the John equations (2.5) for all indices 1 ≤
i1, j1, . . . , im+1, jm+1 ≤ n. The left-hand side of equation (3.12) is equal to zero. Equating
the right-hand side of (3.12) to zero, we arrive to (3.13).

Sufficiency. Let a function ϕ ∈ Sπ(m)(TS
n−1) satisfy (3.13). We again define ψ ∈

C∞
(
Rn × (Rn \ {0})

)
by (2.3). Then ψ|TSn−1 = ϕ and Corollary 3.3 applies to the

functions ψ and ϕ. By (3.13), the right-hand side of (3.12) is equal to zero. Equating the
left-hand side of (3.12) to zero, we obtain (Ji1j1 . . . Jik−1jk−1

ψ)|TSn−1 = 0. Since ψ satisfies

ψ(x+ tξ, ξ) = ψ(x, ξ) (t ∈ R), ψ(x, tξ) = sgn(t)ψ(x, ξ) (0 6= t ∈ R),

the latter equation implies Ji1j1 . . . Jik−1jk−1
ψ = 0. Applying Theorem 2.1, we infer that

ϕ belongs to the range of the operator (1.1). �

Recall that Ssol(R
n;Sm

R
n) is the space of smooth solenoidal fast decaying tensor fields

defined by (2.9).

Lemma 3.5 (Main lemma). Let n ≥ 3 and t ∈
(
− (n − 1)/2, (n − 2)/2

)
. For every

integer m ≥ 0 and every real s, the following statement is valid.

Let a “function” ϕ ∈ H
s+1/2
t+1/2,π(m)(TS

n−1) satisfy equations (2.13) in the distribution

sense for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n. Assume also that

(ϕ, If)
H

s+1/2
t+1/2

(TSn−1)
= 0 for every tensor field f ∈ Ssol(R

n;Sm
R

n). (3.14)

Then ϕ = 0.

We emphasize that the integer r does not participate in Lemma 3.5 (more precisely,
r = 0 in the lemma). It is the main advantage of Lemma 3.5 as compared with Theorem
2.4. Even in the case of r = 0, Lemma 3.5 has one more advantage: we do not need to
recall the definition of the norm ‖ · ‖

H
(0,s)
t,sol (R

n;SmRn)
.

The proof of Lemma 3.5 will be presented in the next section. Now, we present the
proof of Theorem 2.4 assuming Lemma 3.5 to be valid.
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Proof of Theorem 2.4. We start with the easy proof of the “only if” statement of Theorem

2.4. Given f ∈ H
(r,s)
t,sol (R

n;SmRn), set ϕ = If ∈ H
(r,s+1/2)
t+1/2,π(m)(TS

n−1). Since Ssol(R
n;SmRn)

is a dense subspace of H
(r,s)
t,sol (R

n;SmRn), we can choose a sequence of tensor fields fk ∈
Ssol(R

n;Sm
R

n) (k = 1, 2, . . . ) such that

fk → f in H
(r,s)
t,sol (R

n;Sm
R

n) as k → ∞. (3.15)

Set ϕk = Ifk. By Theorem 3.4, every function ϕk ∈ Sπ(m)(TS
n−1) satisfies the equations

Ji1j1

(
Ji2j2 − (ξi2Xj2 − ξj2Xi2)

)(
Ji3j3 − 2(ξi3Xj3 − ξj3Xi3)

)
. . .

. . .
(
Jim+1jm+1 −m(ξim+1Xjm+1 − ξjm+1Xim+1)

)
ϕk = 0

(3.16)

for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n. Of course (3.15) implies that

ϕk → ϕ in S ′(TSn−1) as k → ∞.

Passing to limit as k → ∞ in (3.16), we arrive to (2.13).
Now, we prove the “if” statement of Theorem 2.4. The following diagram is helpful for

better understanding our arguments

H
(r,s)
t,sol (R

n;Sm
R

n)
I−→ H

(r,s+1/2)
t+1/2,π(m)(TS

n−1)

i ↓ ↓ j

Hs
t,sol(R

n;Sm
R

n)
I−→ H

s+1/2
t+1/2,π(m)(TS

n−1)

(3.17)

Here horizontal arrows (the ray transform) are isometric embeddings of Hilbert spaces
while vertical arrows are continuous embeddings. The diagram is commutative, i.e., iI =
Ij.

Let (Ker J)
(r,s+1/2)
t+1/2 be the closed subspace of H

(r,s+1/2)
t+1/2,π(m)(TS

n−1) consisting of “func-

tions” ϕ satisfying equations (3.16) for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n. We denote

the range of the operator (2.10) by (Ran I)
(r,s+1/2)
t+1/2 . It is also a closed subspace of

H
(r,s+1/2)
t+1/2,π(m)(TS

n−1) by the Reshetnyak formula. By the “only if” statement of Theorem
2.4,

(Ran I)
(r,s+1/2)
t+1/2 ⊂ (KerJ)

(r,s+1/2)
t+1/2 . (3.18)

We have to prove that actually there is the equality in (3.18). To this end we represent

(Ker J)
(r,s+1/2)
t+1/2 as

(KerJ)
(r,s+1/2)
t+1/2 = (Ran I)

(r,s+1/2)
t+1/2 ⊕

(
(Ran I)

(r,s+1/2)
t+1/2

)⊥
, (3.19)

where
(
(Ran I)

(r,s+1/2)
t+1/2

)⊥
is the orthogonal complement of (Ran I)

(r,s+1/2)
t+1/2 in (Ker J)

(r,s+1/2)
t+1/2

with respect to the scalar product (·, ·)
H

s+1/2
t+1/2

(TSn−1)
. The embedding (3.18) is the equality

if and only if the second summand on the right-hand side of (3.19) is equal to zero.

Let ϕ ∈
(
(Ran I)

(r,s+1/2)
t+1/2

)⊥
. Then the “function” ϕ satisfies equations (2.13) for all

1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n and the statement (3.14) holds for ϕ.
Recall that j denotes the right vertical arrow in the diagram (3.17). The embedding j

obviously preserves the scalar product (·, ·)
H

s+1/2
t+1/2

(TSn−1)
. Therefore (3.14) implies

(jϕ, If)
H

s+1/2
t+1/2

(TSn−1)
= 0 for every tensor field f ∈ Ssol(R

n;Sm
R

n).
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Besides this, the “function” jϕ satisfies equations (2.13) for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤
n since these equations are understood in the distribution sense. Thus, the “function”

jϕ ∈ H
s+1/2
t+1/2,π(m)(TS

n−1) satisfies all hypotheses of Lemma 3.5. By the lemma, jϕ = 0.

Since j is an injective operator, this implies ϕ = 0. �

4. Proof of Lemma 3.5

Recall that the weighted L2-space L2,s
t (Rn) was defined in [15, Section 3] for s ∈ R and

t > −n/2 as the completion of S(Rn) with respect to the norm

‖f‖2
L2,s
t (Rn)

=

∫

Rn

|y|2t(1 + |y|2)s−t|f(y)|2 dy.

The Hilbert space L2,s
t,e (TS

n−1) of even “functions” was defined in [15, Section 3] for
s ∈ R and t > −(n− 1)/2 as the completion of Se(TS

n−1) (the index e stands for “even”)
with respect to the norm

‖ϕ‖2
L2,s
t (TSn−1)

=
Γ
(
n−1
2

)

4π(n+1)/2

∫

Sn−1

∫

ξ⊥

|y|2t(1 + |y|2)s−t|ϕ(y, ξ)|2 dydξ. (4.1)

By [15, Lemma 3.1], the Fourier transform F : Se(TS
n−1) → Se(TS

n−1) extends to the
bijective isometry of Hilbert spaces

F : Hs
t,e(TS

n−1) → L2,s
t,e (TS

n−1).

Quite similarly, the weighted L2-space L2,s
t,o (TS

n−1) of odd “functions” is defined for
s ∈ R and t > −(n− 1)/2 as the completion of So(TS

n−1) (the index o stands for “odd”)
with respect to the same norm (4.1). The Fourier transform F : So(TS

n−1) → So(TS
n−1)

extends to the bijective isometry of Hilbert spaces

F : Hs
t,o(TS

n−1) → L2,s
t,o (TS

n−1).

We will first prove the following statement.

Lemma 4.1. Let m ≥ 0 and n ≥ 3 be integers, s ∈ R and t ∈
(
− (n− 1)/2, (n− 1)/2

)
.

Given a “function” ϕ ∈ Hs
t,π(m)(TS

n−1) satisfying equations (2.13) in the distribution sense

for all 1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n, let ϕ̂ ∈ L2,s
t,π(m)(TS

n−1) be the Fourier transform of

ϕ. There exists a unique symmetric tensor field Φ̂ = (Φ̂i1...im) ∈ L2,s
t (Rn;SmRn) satisfying

yp Φ̂pi2...im(y) = 0 (4.2)

and such that

ϕ̂(y, ξ) = Φ̂i1...im(y)ξ
i1 . . . ξim

(
(y, ξ) ∈ TSn−1

)
. (4.3)

Before we begin the proof of this lemma, we define a suitable smooth hypersurface
Vn in (Rn \ {0})× (Rn \ {0}) in which the operators appearing in (2.13) (in the Fourier
variables) simplify.

Let

S
n−1
0 = {(0, ξ) | ξ ∈ S

n−1} ⊂ TSn−1

and

Vn = {(x, ξ) ∈ R
n × R

n | x 6= 0, ξ 6= 0, 〈x, ξ〉 = 0} ⊂ (Rn \ {0})× (Rn \ {0}).
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Vn is a hypersurface in (Rn \ {0}) × (Rn \ {0}). The manifold Vn is diffeomorphic to
(TSn−1 \ Sn−1

0 )× (0,∞), the diffeomorphism is defined by

(TSn−1 \ Sn−1
0 )× (0,∞) −→ Vn, (x, ξ; ρ) 7→ (x, ρξ).

On the other hand, TSn−1 \ Sn−1
0 is a hypersurface in Vn and there is the projection

p : Vn → TSn−1 \ Sn−1
0 , p(x, ξ) = (x, ξ/|ξ|).

For the manifold Vn, we repeat arguments of [6, Section 4] with small modifications.

Namely, we define vector fields X̃ ′
i, Ξ̃

′
i (1 ≤ i ≤ n) on Rn × (Rn \ {0}) = {(x, ξ) | ξ 6= 0}

by

X̃ ′
i =

∂

∂xi
− 1

|ξ|2 ξiξ
p ∂

∂xp
(1 ≤ i ≤ n),

Ξ̃′
i =

∂

∂ξi
− 1

|ξ|2 xiξ
p ∂

∂xp
− 1

|ξ|2 ξiξ
p ∂

∂ξp
(1 ≤ i ≤ n).

(4.4)

As compared with formulas (4.3) of [6], there is the additional factor 1/|ξ|2 at some terms

on right-hand sides of (4.4). The factor is added to make X̃ ′
i and Ξ̃′

i homogeneous in ξ. At

points of TSn−1 \ Sn−1
0 , the vector fields X̃ ′

i and Ξ̃′
i coincide with X̃i and Ξ̃i respectively.

At every point (x, ξ) ∈ Vn, vectors X̃
′
i(x, ξ) and Ξ̃′

i(x, ξ) (1 ≤ i ≤ n) are tangent to Vn.
This follows from the obvious equalities

X̃ ′
i〈x, ξ〉 = 0, Ξ̃′

i〈x, ξ〉 = 0 (1 ≤ i ≤ n)

which hold on Vn. Let Xi and Ξi be the restrictions of vector fields X̃ ′
i and Ξ̃′

i to the
manifold Vn respectively. Thus, Xi and Ξi are smooth vector fields on Vn and can be
considered as first order differential operators

Xi,Ξi : C
∞(Vn) → C∞(Vn).

The restrictions of the vector fields Xi and Ξi to the submanifold TSn−1 \ S
n−1
0 ⊂ Vn

coincide with the vector fields on TSn−1 \Sn−1
0 which were denoted by the same notations

Xi and Ξi before. The coincidence of notations should not imply any misunderstanding
since the new vector fields Xi and Ξi are natural extensions of old Xi and Ξi from the
manifold TSn−1 \ Sn−1

0 to Vn.
The main advantage of the manifold Vn, as compared with TSn−1\Sn−1

0 , is the following
fact. The vector fields 〈ξ, ∂ξ〉 = ξp ∂

∂ξp
and xi

∂
∂ξj

− xj
∂
∂ξi

(1 ≤ i, j ≤ n) are tangent to Vn
at every point (x, ξ) ∈ Vn. This follows from the equalities

〈ξ, ∂ξ〉(〈y, ξ〉) = 0,
(
xi

∂

∂ξj
− xj

∂

∂ξi

)
〈y, ξ〉 = 0

which hold at points (x, ξ) ∈ Vn. Thus, we have the well defined first order differential
operators

〈ξ, ∂ξ〉 : C∞(Vn) → C∞(Vn), xi
∂

∂ξj
−xj

∂

∂ξi
: C∞(Vn) → C∞(Vn) (1 ≤ i, j ≤ n). (4.5)

Let D′(Vn) be the topological vector space of distributions on the manifold Vn. Since
differentiation and multiplication of a distribution by a smooth function are well defined,

〈ξ, ∂ξ〉 : D′(Vn) → D′(Vn), yi
∂

∂ξj
− yj

∂

∂ξi
: D′(Vn) → D′(Vn) (1 ≤ i, j ≤ n)

are well defined differential operators. We note that the latter formula is written in the
variables (y, ξ) that are Fourier dual of (x, ξ).
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The operators xiΞj − xjΞi : C
∞(Vn) → C∞(Vn) can be expressed through operators

(4.5):

xiΞj − xjΞi = xi
∂

∂ξj
− xj

∂

∂ξi
− 1

|ξ|2 (xiξj − xjξi)〈ξ, ∂ξ〉 (1 ≤ i, j ≤ n). (4.6)

This easily follows from the definition (4.4).

Lemma 4.2. Let a function ϕ ∈ C∞(TSn−1 \ Sn−1
0 ) satisfy the equations

(
xim+1Ξjm+1−xjm+1Ξim+1

)(
ximΞjm−xjmΞim + (ximξjm−xjmξim)

)

(
xim−1Ξjm−1−xjm−1Ξim−1+2(xim−1ξjm−1−xjm−1ξim−1)

)
. . .

. . .
(
xi1Ξj1−xj1Ξi1+m(xi1ξj1−xj1ξi1)

)
ϕ = 0

(4.7)

for all indices 1 ≤ i1, j1, . . . im+1, jm+1 ≤ n. Define the function ψ ∈ C∞(Vn) by

ψ(x, ξ) = |ξ|mϕ
(
x,

ξ

|ξ|
)
. (4.8)

This function satisfies the equations
(
xi1

∂

∂ξj1
− xj1

∂

∂ξi1

)
. . .

(
xim+1

∂

∂ξjm+1
− xjm+1

∂

∂ξim+1

)
ψ = 0 (4.9)

also for all indices.

Proof. Being defined by (4.8), the function ψ ∈ C∞(Vn) is positively homogeneous of
degree m in ξ and satisfies ψ|TSn−1\Sn−1

0
= ϕ.

Let us fix indices i1, j1, . . . , im+1, jm+1 and define the functions ψ1, ψ2, . . . , ψm+1 ∈
C∞(Vn) by the recurrent relations

ψ1 =
(
xi1Ξj1 − xj1Ξi1 +

m

|ξ|2 (xi1ξj1 − xj1ξi1)
)
ψ, (4.10)

ψk =
(
xikΞjk − xjkΞik +

m− k + 1

|ξ|2 (xikξjk − xjkξik)
)
ψk−1 (k = 2, . . . , m+ 1), (4.11)

where Ξi are now understood as differential operators on the manifold Vn. Observe that
every ψk(x, ξ) is positively homogeneous of degree m− k in ξ. Combining (4.10)–(4.11),
we see that

ψm+1 =
(
xim+1Ξjm+1−xjm+1Ξim+1

)(
ximΞjm−xjmΞim +

1

|ξ|2 (ximξjm−xjmξim)
)

(
xim−1Ξjm−1−xjm−1Ξim−1+

2

|ξ|2 (xim−1ξjm−1−xjm−1ξim−1)
)
. . .

. . .
(
xi1Ξj1−xj1Ξi1+

m

|ξ|2 (xi1ξj1−xj1ξi1)
)
ψ.

Equation (4.7) is now written as

ψm+1|TSn−1\Sn−1
0

= 0. (4.12)

Since the function ψm+1 ∈ C∞(Vn) is positively homogeneous of degree −1 in ξ and
satisfies (4.12), it must be identically equal to zero, i.e.,

ψm+1 = 0. (4.13)
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Let us simplify the formula (4.10). By (4.6),

xi1Ξj1 − xj1Ξi1 = xi1
∂

∂ξj1
− xj1

∂

∂ξi1
− 1

|ξ|2 (xi1ξj1 − xj1ξi1)〈ξ, ∂ξ〉.

Substituting this expression into (4.10), we obtain

ψ1 =
(
xi1

∂

∂ξj1
− xj1

∂

∂ξi1
+

1

|ξ|2 (xi1ξj1 − xj1ξi1)(m− 〈ξ, ∂ξ〉)
)
ψ. (4.14)

Since the function ψ(x, ξ) is a positively homogeneous of degree m in ξ, it satisfies

(m− 〈ξ, ∂ξ〉)ψ = 0.

Formula (4.14) is simplified to the following one:

ψ1 =
(
xi1

∂

∂ξj1
− xj1

∂

∂ξi1

)
ψ. (4.15)

In the same way we simplify the formula (4.11) to the following one:

ψk =
(
xik

∂

∂ξjk
− xjk

∂

∂ξik

)
ψk−1 (k = 2, . . . , m+ 1). (4.16)

Combining (4.15)–(4.16), we see that

ψm+1 =
(
xim+1

∂

∂ξjm+1
− xjm+1

∂

∂ξim+1

)
. . .

(
xi1

∂

∂ξj1
− xj1

∂

∂ξi1

)
ψ.

Therefore the equation (4.13) is now written as
(
xim+1

∂

∂ξjm+1
− xjm+1

∂

∂ξim+1

)
. . .

(
xi1

∂

∂ξj1
− xj1

∂

∂ξi1

)
ψ = 0. (4.17)

This equation holds for any indices. Observe that the order of factors on the left-hand
side of (4.17) does not matter since the operators xi

∂
∂ξj

−xj ∂
∂ξi

and xk
∂
∂ξl

−xl ∂
∂ξk

commute.

We have thus proved (4.9). �

Proof of Lemma 4.1. (Compare with the proof of [15, Lemma 4.10].) We restrict the
function ϕ̂ ∈ L2,s

t,π(m)(TS
n−1) to the open set TSn−1 \ Sn−1

0 and consider the restriction as

a distribution, i.e., ϕ̂ ∈ D′(TSn−1 \ Sn−1
0 ), see Proposition 2.3.

Given ϕ̂ ∈ D′(TSn−1 \ S
n−1
0 ), similar to what was done in Lemma 4.2, we define ψ̂ ∈

D′(Vn) by

ψ̂(y, ξ) = |ξ|mϕ̂
(
y,

ξ

|ξ|
)
. (4.18)

The distribution ψ̂(y, ξ) is positively homogeneous of degreem in ξ. Hereafter we use some
basic facts of theory of homogeneous distributions. Theory of homogeneous distributions

on Rn is presented in [4, Section 3.2]. In our case, ψ̂(y, ξ) is a homogeneous distribution
of ξ depending on the additional argument y. We use only facts of the theory which can
be generalized to distributions with a parameter.

By Lemma 4.2, the equations (2.13) are written in terms of ψ̂ as follows:
(
yi1

∂

∂ξj1
−yj1

∂

∂ξi1

)
. . .

(
yim+1

∂

∂ξjm+1
−yjm+1

∂

∂ξim+1

)
ψ̂ = 0 (1 ≤ i1, j1, · · · , im+1, jm+1 ≤ n).

(4.19)
Lemma 4.2 is formulated for smooth functions. Nevertheless, it is true for distributions
as well. The proof is the same with minor modifications.
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The projection

q : Vn → R
n \ {0}, q(y, ξ) = y (4.20)

is a smooth fiber bundle with fibers q−1(y) = y⊥ \ {0} diffeomorphic to Rn−1 \ {0}. It
determines the linear continuous operator

q∗ : D′(Rn \ {0}) → D′(Vn), q∗f = f ◦ q.
See [4, Section 6.1] for the definition of the composition of a distribution with a smooth
map.

Let us consider first order differential operators

Aij = yi
∂

∂ξj
− yj

∂

∂ξi
: C∞(Vn) → C∞(Vn) (1 ≤ i < j ≤ n)

as vector fields on the manifold Vn. These vector fields are tangent to fibers of the bundle
(4.20). At every point (y, ξ) ∈ Vn, the linear hull of the vectors Aij(y, ξ) coincided with
the tangent space T(y,ξ)

(
q−1(y)

)
of the fiber q−1(y).

For an arbitrary point (y0, ξ0) ∈ Vn, we can choose a neighborhood U ⊂ Vn of (y0, ξ0)
and local coordinates (y1, . . . , yn−1, ξ1, . . . , ξn−1) defined in U so that the restriction of the
projection (4.20) to U is defined in these coordinates by q(y1, . . . , yn−1, ξ1, . . . , ξn−1) =
(y1, . . . , yn−1). Moreover, we can assume without lost of generality that the coordinate
map is a diffeomorphism of U onto Rn−1 × (Rn−1 \ {0}). Equations (4.19) are written in
these coordinates as

∂m+1ψ̂

∂ξα1 . . . ∂ξαm+1
= 0 (1 ≤ α1, . . . , αm+1 ≤ n− 1). (4.21)

The summation over repeated Greek indices is performed from 1 to n− 1. Let us use the
following easy statement

If a distribution ψ̂ ∈ D′
(
Rn−1 × (Rn−1 \ {0})

)
(n ≥ 3) on Rn−1 × (Rn−1 \ {0}) =

{(y1, . . . , yn−1, ξ1, . . . , ξn−1)} satisfies equations (4.21), then it is a homogeneous polyno-

mial of degree m in ξ, i.e., there exist distributions Φ̂α1...αm ∈ D′(Rn−1) such that

ψ̂ = (q̃ ∗Φ̂α1...αm)ξ
α1 . . . ξαm , (4.22)

where q̃ : Rn−1 × (Rn−1 \ {0}) → Rn−1 is defined by q̃(y, ξ) = y.

Applying this statement, we obtain the representation (4.22) for ψ̂ in some local co-
ordinates. Returning to Cartesian coordinates in R

n, we write the representation in the
form

ψ̂ = (q∗Φ̂i1...im)ξ
i1 . . . ξim (4.23)

with Φ̂i1...im ∈ D′(Rn \ {0}). The summation over repeated Latin indices in (4.23) is
performed from 1 to n. We will also write (4.23) in the traditional form

ψ̂(y, ξ) = Φ̂i1...im(y)ξ
i1 . . . ξim (y ∈ R

n \ {0}, ξ ∈ y⊥ \ {0}) (4.24)

although it is understood in the distribution sense. Of course we can assume Φ̂i1...im to

be symmetric in all indices, i.e., Φ̂ = (Φ̂i1...im) ∈ D′(Rn \ {0};Sm
R

n).

The tensor field Φ̂ is not uniquely determined by (4.24) since the equation (4.24) holds
for ξ ∈ y⊥ only (in the distribution sense: the equation (4.23) holds on Vn). Nevertheless,

we can state: there exists a unique tensor field Φ̂ = (Φ̂i1...im) ∈ D′(Rn \ {0};SmRn)
satisfying (4.24) and (4.2), where (4.2) is also understood in the distribution sense. Indeed,
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let Φ̂′ ∈ D′(Rn \ {0};Sm
R

n) be an arbitrary tensor field satisfying (4.24). Define Φ̂ =

(Φ̂i1...im) ∈ D′(Rn \ {0};SmRn) by

Φ̂i1...im(y) =
(
δj1i1 − yi1y

j1

|y|2
)
. . .

(
δjmim − yimy

jm

|y|2
)
Φ̂′

j1...jm(y) (0 6= y ∈ R
n),

where δji is the Kronecker tensor. The latter formula can be also understood in the

distribution sense. The tensor field Φ̂ satisfies (4.24) and (4.2) and is uniquely determined

by these relations. In terms of [12, Lemma 2.6.1], Φ̂ is the tangential component of Φ̂′.
The projection (4.20) is the composition q = π ◦ p, where the smooth maps

Vn
p−→ TSn−1 \ Sn−1

0
π−→ R

n \ {0}
are defined by p(y, ξ) = (y, ξ/|ξ|) and π(y, ξ) = y. Actually p and π are also smooth fiber
bundles. The formula (4.23) can be written as

ψ̂ = |ξ|m(p∗π∗Φ̂i1...im)
ξi1

|ξ| . . .
ξim

|ξ| .

Since ξi

|ξ|
= ξi ◦ p, the formula can be also written as

ψ̂ = |ξ|mp∗
(
(π∗Φ̂i1...im)ξ

i1 . . . ξim
)
. (4.25)

By the definition (4.18),

ψ̂ = |ξ|mp∗ϕ̂.
This gives together with (4.25)

p∗ϕ̂ = p∗
(
(π∗Φ̂i1...im)ξ

i1 . . . ξim
)
.

Since p∗ is an injective operator, this implies

ϕ̂ = (π∗Φ̂i1...im)ξ
i1 . . . ξim

or in the traditional form

ϕ̂(y, ξ) = Φ̂i1...im(y)ξ
i1 . . . ξim

(
(y, ξ) ∈ TSn−1 \ Sn−1

0

)
. (4.26)

We have thus proved that the statement (4.3) of Lemma 4.1 holds on TSn−1 \Sn−1
0 . By

the hypothesis of the lemma, ϕ̂ ∈ L2,s
t,π(m)(TS

n−1). Together with (4.26), this easily implies

that Φ̂ ∈ L2,s
t (Rn \ {0};Sm

R
n) and the formula (4.3) holds in the conventional sense at

almost all points (y, ξ) ∈ TSn−1. �

Proof of Lemma 3.5. By the definition of the H
s+1/2
t+1/2 (TS

n−1)-norm, the equation (3.14) is

written as follows:∫

Sn−1

∫

ξ⊥

|y|2t+1(1 + |y|2)s−tϕ̂(y, ξ)Îf(y, ξ)dydξ = 0
(
f ∈ Ssol(R

n;Sm
R

n)
)
. (4.27)

Applying Lemma 4.1 to the function ϕ̂ ∈ L
2,s+1/2
t+1/2.π(m)(TS

n−1), we can state the existence

of a tensor field Φ̂ ∈ L
2,s+1/2
t+1/2 (Rn;SmRn) satisfying (4.2) and (4.3). With the help of (4.3),

the equation (4.27) becomes
∫

Sn−1

∫

ξ⊥

|y|2t+1(1 + |y|2)s−tΦ̂i1...im(y)Îf(y, ξ) ξi1 . . . ξim dydξ = 0. (4.28)
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By (2.2),

Îf(y, ξ) = (2π)1/2f̂i1...im(y)ξ
i1 . . . ξim

(
(y, ξ) ∈ TSn−1

)
.

Substituting this expression into (4.28), we obtain
∫

Sn−1

∫

ξ⊥

|y|2t+1(1 + |y|2)s−tΦ̂i1...im(y)f̂ j1...jm(y) ξi1 . . . ξimξj1 . . . ξjm dydξ = 0.

Changing the order of integrations with the help of [12, Lemma 2.15.3], we write this in
the form
∫

Rn

|y|2t(1 + |y|2)s−tΦ̂i1...im(y)f̂ j1...jm(y)

[ ∫

Sn−1∩ξ⊥

ξi1 . . . ξimξj1 . . . ξjm d
n−2ξ

]
dy = 0. (4.29)

By [12, Lemma 2.15.4],
∫

Sn−1∩ξ⊥

ξi1 . . . ξimξj1 . . . ξjm d
n−2ξ = cm,nε

m
i1...imj1...jm

(y)

with some positive constant cm,n, where

εij(y) = δij − yiyj/|y|2 (4.30)

and εm is the mth symmetric power of ε. The formula (4.29) becomes
∫

Rn

|y|2t(1 + |y|2)s−tεmi1...imj1...jm
(y)Φ̂i1...im(y)f̂ j1...jm(y) dy = 0. (4.31)

This equality holds for every f ∈ Ssol(R
n;SmRn).

We write the equation (4.31) in the form
∫

Rn

εmi1...imj1...jm
(y)

(
|y|t+1/2(1+|y|2)(s−t)/2Φ̂i1...im(y)

)(
|y|t−1/2(1+|y|2)(s−t)/2f̂ j1...jm(y)

)
dy = 0.

(4.32)

Since the tensor field Φ̂ belongs to L
2,s+1/2
t+1/2 (Rn;SmRn) and satisfies (4.2), the tensor field

Φ̃ = |y|t+1/2(1 + |y|2)(s−t)/2Φ̂ belongs to L2(Rn;SmRn) and satisfies

ypΦ̃
pj2...jm(y) = 0. (4.33)

Recall that 2t−1 > −n by the hypothesis t ∈
(
−(n−1)/2, (n−2)/2

)
of Lemma 3.5. Since

f ∈ S(Rn;SmRn) is a solenoidal tensor field, the tensor field g = |y|t−1/2(1 + |y|2)(s−t)/2f̂
belongs to L2(Rn;SmRn) and satisfies

ypg
pj2...jm(y) = 0. (4.34)

The equation (4.32) is written in terms of Φ̃ and g as follows:
∫

Rn

εmi1...imj1...jm(y)Φ̃
i1...im(y)gj1...jm(y)dy = 0. (4.35)

In terms of [8, Section 4], (4.33) and (4.34) mean that Φ̃ and g are tangential tensor fields.
Let L2

⊤(R
n;SmRn) be the space of all such tensor fields.
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Since the tensor fields Φ̃ and g belong to L2
⊤(R

n;SmRn), the second summand on the
right-hand side of (4.30) gives no contribution to the integral (4.35), i.e. ε can be replaced
with the Kronecker tensor δ in (4.35). We thus arrive at the equation∫

Rn

δmi1...imj1...jm(y)Φ̃
i1...im(y)gj1...jm(y) dy = 0. (4.36)

Now, we apply some arguments of [12, Section 2.15] to equation (4.36). Indeed, the
integrand in (4.35) is of the same structure as that in [12, formula 2.15.11]. The latter
formula was transformed in [12, Section 2.15] to a form similar to (4.36). We need only the
statement following from further arguments presented in [12, Section 2.15]: the integral
(4.36) defines a positive scalar product on the space L2

⊤(R
n;SmRn).

Being valid for every g ∈ L2
⊤(R

n;SmRn), the equation (4.36) implies Φ̃ = 0. Together

with the equality Φ̃ = |y|t+1/2(1 + |y|2)(s−t)/2Φ̂, this gives Φ̂ = 0. With the help of (4.26),
the latter equality implies ϕ̂ = 0 and ϕ = 0. �

Remark. The hypothesis n ≥ 3 of Lemma 3.5 was used in our arguments as follows.
It is important that Rn−1 \ {0} is a connected space for the validity of (4.22). In the case
of n = 2, the right-hand side of (4.22) can be represented by two different polynomials
on two connected components of R1 \ {0}.
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