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ABSTRACT
We study the inverse problem of determining the vector and scalar potentials
A = (A0(t, x), A1(t, x), · · · , An(t, x)) and q(t, x), respectively, in the relativistic
Schrödinger equation

(
(∂t + A0(t, x))2 −

n∑
j=1

(∂j + Aj(t, x))2 + q(t, x)
)
u(t, x) = 0

in the region Q = (0, T ) × Ω, where Ω is a C2 bounded domain in Rn for n ≥ 3
and T > diam(Ω) from partial data on the boundary ∂Q. We prove the unique
determination of these potentials modulo a natural gauge invariance for the vector
field term.

KEYWORDS
Inverse problems, relativistic Schrödinger equation, Carleman estimates, partial
boundary data

1. Introduction

Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with C2 boundary. For T > diam(Ω),
let Q := (0, T ) × Ω and denote its lateral boundary by Σ := (0, T ) × ∂Ω. Consider
the linear hyperbolic partial differential operator of second order with time-dependent
coefficients:

LA,qu :=
{

(∂t +A0(t, x))2 −
n∑
j=1

(∂j +Aj(t, x))2 + q(t, x)
}
u = 0, (t, x) ∈ Q. (1)

We denote A = (A0, · · · , An) and A = (A1, · · · , An). Then A = (A0, A). We assume
that A is R1+n valued with coefficients in C∞c (Q) and q ∈ L∞(Q). The operator (1) is
known as the relativistic Schrödinger equation and appears in quantum mechanics and
general relativity [20, Chap. XII]. In this paper, we study an inverse problem related
to this operator. More precisely, we are interested in determining the coefficients in
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(1) from certain measurements made on suitable subsets of the topological boundary
of Q.

Starting with the work of Bukhgèım and Klibanov [6], there has been extensive
work in the literature related to inverse boundary value problems for second order
linear hyperbolic PDE. For the case when A is 0 and q is time-independent, the unique
determination of q from full lateral boundary Dirichlet to Neumann data was addressed
by Rakesh and Symes in [22]. Isakov in [16] considered the same problem with an
additional time-independent time derivative perturbation, that is, with A = (A0(x), 0)
and q(x) and proved uniqueness results. The results in [22] and [16] were proved using
geometric optics solutions inspired by the work of Sylvester and Uhlmann [30]. For
the case of time-independent coefficients, another powerful tool to prove uniqueness
results is the boundary control (BC) method pioneered by Belishev, see [3–5]. Later
it was developed by Belishev, Kurylev, Katchalov, Lassas, Eskin and others; see [17]
and references therein. Eskin in [10,12] developed a new approach based on the BC
method for determining the time-independent vector and scalar potentials assuming
A0 = 0 in (1). Hyperbolic inverse problems for time-independent coefficients have been
extensively studied by Yamamoto and his collaborators as well; see [1,2,8,13,14].

Inverse problems involving time-dependent first and zeroth order perturbations fo-
cusing on the cases A = 0 or when A is of the form (A0, 0) have been well studied in
prior works. We refer to [23,24,26,28] for some works in this direction.

Eskin in [11] considered full first and zeroth order time-dependent perturbations of
the wave equation in a Riemannian manifold set-up and proved uniqueness results (for
the first order term, uniqueness modulo a natural gauge invariance) from boundary
Dirichlet-to-Neumann data, under the assumption that the coefficients are analytic
in time. Salazar removed the analyticity assumption of Eskin in [25], and proved
that the unique determination of vector and scalar potential modulo a natural gauge
invariance is possible from Dirichlet-to-Neumann data on the boundary. In a recent
work of Stefanov and Yang in [27],1 they proved stability estimates for the recovery
of light ray transforms of time-dependent first- and zeroth-order perturbations for
the wave equation in a Riemannian manifold setting from certain local Dirichlet to
Neumann map. Their results, in particular, would give uniqueness results in suitable
subsets of the domain recovering the vector field term up to a natural gauge invariance
and the zeroth-order potential term from this data.

For the case of time-dependent perturbations, if one is interested in global unique-
ness results in a finite time domain, extra information in addition to Dirichlet-to-
Neumann data is required to prove uniqueness results. Isakov in [15] proved unique-
determination of time-dependent potentials (assuming A = 0 in (1)) from the data set
given by the Dirichlet-to-Neumann data as well as the solution and the time deriva-
tive of the solution on the domain at the final time. Recently Kian in [18] proved
unique determination of time-dependent damping coefficient A0(t, x) (with A of the
form, A = (A0, 0)) and the potential q(t, x) from partial Dirichlet to Neumann data
together with information of the solution at the final time.

In this article, we prove unique determination of time-dependent vector and scalar
potentials A(t, x) and q(t, x) appearing in (1) (modulo a gauge invariance for the
vector potential) from partial boundary data. Our work extends the results of Salazar
[25] in the sense that in [25], the uniqueness results are shown with full Dirichlet to
Neumann boundary data and assuming such boundary measurements are available
for all time. Additionally, it extends the recent work of Kian [18], since we consider

1We thank Plamen Stefanov for drawing our attention to the results of this paper.
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the full time-dependent vector field perturbation, whereas Kian assumes only a time
derivative perturbation.

The paper is organized as follows. In §2, we state the main result of the article.
In §3, we prove the Carleman estimates required to prove the existence of geometric
optics (GO) solutions, and in §4, we construct the required GO solutions. In §5, we
derive the integral identity using which, we prove the main theorem in §6.

2. Statement of the main result

In this section, we state the main result of this article. We begin by stating precisely
what we mean by gauge invariance.

2.1. Gauge Invariance

Definition 2.1. The vector potentials A(1),A(2) ∈ C∞c (Q) are said to be gauge equiv-
alent if there exists a g(t, x) ∈ C∞(Q) such that g(t, x) = eΦ(t,x) with Φ ∈ C∞c (Q)
and

(A(2) −A(1))(t, x) = −∇t,xg(t, x)

g(t, x)
= −∇t,xΦ(t, x).

Now we state the following proposition proof of which is given in [25].

Proposition 2.2. [25] Suppose u(t, x) is a solution to the following IBVP

[
(∂t +A

(1)
0 (t, x))2 −

n∑
j=1

(∂j +A
(1)
j (t, x))2 + q1(t, x)

]
u(t, x) = 0 in Q (2)

u(0, x) = ∂tu(0, x) = 0 in Ω

u|Σ = f

and g(t, x) is as defined above, then v(t, x) = g(t, x)u(t, x) satisfies the following IBVP

[
(∂t +A

(2)
0 (t, x))2 −

n∑
j=1

(∂j +A
(2)
j (t, x))2 + q1(t, x)

]
v(t, x) = 0 in Q (3)

v(0, x) = ∂tv(0, x) = 0 in Ω

v|Σ = f

with A(1) and A(2) gauge equivalent. In addition if Λ1 and Λ2 are Dirichlet to Neumann
operator associated with (2) and (3) respectively, then

Λ1 = Λ2.
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2.2. Statement of the main result

We introduce some notation. Following [7], fix an ω0 ∈ Sn−1, and define the ω0-
shadowed and ω0-illuminated faces by

∂Ω+,ω0
:= {x ∈ ∂Ω : ν(x) · ω0 ≥ 0} , ∂Ω−,ω0

:= {x ∈ ∂Ω : ν(x) · ω0 ≤ 0}

of ∂Ω, where ν(x) is outward unit normal to ∂Ω at x ∈ ∂Ω. Corresponding to ∂Ω±,ω0
,

we denote the lateral boundary parts by Σ±,ω0
:= (0, T )× ∂Ω±,ω0

. We denote by F =
(0, T )×F ′ and G = (0, T )×G′ where F ′ and G′ are small enough open neighbourhoods
of ∂Ω+,ω0

and ∂Ω−,ω0
respectively in ∂Ω.

Consider the IBVP


LA,qu(t, x) = 0; (t, x) ∈ Q
u(0, x) = φ(x), ∂tu(0, x) = ψ(x); x ∈ Ω

u(t, x) = f(t, x), (t, x) ∈ Σ.

(4)

For φ ∈ H1(Ω), ψ ∈ L2(Ω) and f ∈ H1(Σ), (4) has a unique solution u ∈
C1([0, T ];L2(Ω)) ∩ C([0, T ];H1(Ω)) and furthermore ∂νu ∈ L2(Σ); see [17,19]. Thus
we have u ∈ H1(Q). Therefore we can define our input-output operator ΛA,q by

ΛA,q(φ, ψ, f) = (∂νu|G, u|t=T ) (5)

where u is the solution to (4). The operator

ΛA,q : H1(Ω)× L2(Ω)×H1(Σ) → H1(Ω)× L2(G)

is a continuous linear map which follows from the well-posedness of the IBVP given by
Equation (4) (see [17,19]). A natural question is whether this input-output operator
uniquely determines the time-dependent perturbations A and q. We now state our
main result.

Theorem 2.3. Let
(
A(1), q1

)
and

(
A(2), q2

)
be two sets of vector and scalar potentials

such that each A
(i)
j ∈ C∞c (Q) and qi ∈ L∞(Q) for i = 1, 2 and 0 ≤ j ≤ n. Let ui be

solutions to (4) when (A, q) = (A(i), qi) and ΛA(i),qi for i = 1, 2 be the input-output
operators defined by (5) corresponding to ui. If

ΛA(1),q1(φ, ψ, f) = ΛA(2),q2(φ, ψ, f), for all (φ, ψ, f) ∈ H1(Ω)× L2(Ω)×H1(Σ),

then there exists a function Φ ∈ C∞c (Q) such that

(A(1) −A(2))(t, x) = ∇t,xΦ(t, x); and q1(t, x) = q2(t, x), (t, x) ∈ Q.

Remark 1. We have stated the above result for vector potentials in C∞c (Q) for sim-
plicity. We can, in fact, prove for the case in which the vector potentials A ∈W 1,∞(Q)
provided they are identical on the boundary ∂Q, see [18].
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3. Carleman Estimate

We denote by H1
scl(Q), the semiclassical Sobolev space of order 1 on Q with the

following norm

||u||H1
scl(Q) = ||u||L2(Q) + ||h∇t,xu||L2(Q) ,

and for Q = R1+n we denote by Hs
scl(R1+n), the Sobolev space of order s with the

norm given by

||u||2Hs
scl(R1+n) = ||〈hD〉s u||2L2(R1+n) =

∫
R1+n

(1 + h2τ2 + h2|ξ|2)s |û(τ, ξ)|2 dτdξ.

In this section, we derive a Carleman estimate involving boundary terms for (1) conju-
gated with a linear weight. We use this estimate to control boundary terms over subsets
of the boundary where measurements are not available. Our proof follows from modifi-
cations of the Carleman estimate given in [18]. Since we work in a semiclassical setting,
we prefer to give the proof for the sake of completeness.

Theorem 3.1. Let ϕ(t, x) := t + x · ω, where ω ∈ Sn−1 is fixed. Assume that Aj ∈
C∞c (Q) for 0 ≤ j ≤ n and q ∈ L∞(Q). Then the Carleman estimate

h
(
e−ϕ/h∂νϕ∂νu, e

−ϕ/h∂νu
)
L2(Σ+,ω)

+ h
(
e−ϕ(T,·)/h∂tu(T, ·), e−ϕ(T,·)/h∂tu(T, ·)

)
L2(Ω)

+ ‖e−ϕ/hu‖2L2(Q) + ‖he−ϕ/h∂tu‖2L2(Q) + ‖he−ϕ/h∇xu‖2L2(Q)

≤ C
(
‖he−ϕ/hLA,qu‖2L2(Q) +

(
e−ϕ(T,·)/hu(T, ·), e−ϕ(T,·)/hu(T, ·)

)
L2(Ω)

(6)

+ h
(
e−ϕ(T,·)/h∇xu(T, ·), e−ϕ(T,·)/h∇xu(T, ·)

)
L2(Ω)

+ h
(
e−ϕ/h (−∂νϕ) ∂νu, e

−ϕ/h∂νu
)
L2(Σ−,ω)

)
holds for all u ∈ C2(Q) with

u|Σ = 0, u|t=0 = ∂tu|t=0 = 0,

and h small enough.

Proof. To prove the estimate (6), we will use a convexification argument used in [18].
Consider the following perturbed weight function

ϕ̃(t, x) = ϕ(t, x)− ht2

2ε
. (7)

We first consider the conjugated operator

�ϕ,ε := h2e−ϕ̃/h�eϕ̃/h. (8)
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For v ∈ C2(Q) satisfying v|Σ = v|t=0 = ∂tv|t=0 = 0, consider the L2 norm of �ϕ,ε:∫
Q

|�ϕ,εv(t, x)|2 dxdt.

Expanding (8), we get,

�ϕ,εv(t, x) =
(
h2� + h�ϕ̃+

(
|∂tϕ̃|2 − |∇xϕ̃|2

)
+ 2h (∂tϕ̃∂t −∇xϕ̃ · ∇x)

)
v(t, x).

We write this as

�ϕ,εv(t, x) = P1v(t, x) + P2v(t, x),

where

P1v(t, x) =
(
h2� + h�ϕ̃+

(
|∂tϕ̃|2 − |∇xϕ̃|2

))
v(t, x)

=

(
h2� +

h2t2

ε2
− 2ht

ε
− h2

ε

)
v(t, x),

and

P2v(t, x) = 2h (∂tϕ̃∂t −∇xϕ̃ · ∇x) v(t, x)

= 2h

((
1− ht

ε

)
∂t − ω · ∇x

)
v(t, x).

Now∫
Q

|�ϕ,εv(t, x)|2 dxdt ≥ 2

∫
Q

Re
(
P1v(t, x)P2v(t, x)

)
dxdt

= 4h3

∫
Q

Re

(
�v(t, x)

(
1− ht

ε

)
∂tv(t, x)

)
dxdt

− 4h3

∫
Q

Re
(
�v(t, x)ω · ∇xv(t, x)

)
dxdt

+ 4h

∫
Q

Re

((
h2t2

ε2
− 2ht

ε
− h2

ε

)
v(t, x)

(
1− ht

ε

)
∂tv(t, x)

)
dxdt

− 4h

∫
Q

Re

((
h2t2

ε2
− 2ht

ε
− h2

ε

)
v(t, x)ω · ∇xv(t, x)

)
dxdt

:= I1 + I2 + I3 + I4.
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We first simplify I1. We have

I1 = 4h3

∫
Q

Re

(
�v(t, x)

(
1− ht

ε

)
∂tv(t, x)

)
dxdt

= 2h3

∫
Q

∂

∂t
|∂tv(t, x)|2

(
1− ht

ε

)
dxdt− 4h3

∫
Q

Re

(
∆v(t, x)

(
1− ht

ε

)
∂tv(t, x)

)
dxdt

= 2h3

(
1− hT

ε

)∫
Ω

(
|∂tv(T, x)|2 + |∇xv(T, x)|2

)
dx+

2h4

ε

∫
Q

(
|∂tv(t, x)|2 + |∇xv(t, x)|2

)
dxdt.

In the above steps, we used integration by parts combined with the hypotheses that
v|Σ = v|t=0 = ∂tv|t=0 = 0. Note that v|Σ = 0 would imply that ∂tv = 0 on Σ.

Now we consider I2. We have

I2 = −4h3

∫
Q

Re
(
�v(t, x)ω · ∇xv(t, x)

)
dxdt.

We have

I2 = −4h3Re

∫
Q

∂2
t v(t, x)ω · ∇xv(t, x)dxdt+ 4h3Re

∫
Q

∆v(t, x)ω · ∇xv(t, x)dxdt

= −4h3Re

∫
Q

∂t

(
∂tv(t, x)ω · ∇xv(t, x)

)
dxdt+ 4h3Re

∫
Q

∂tv(t, x)ω · ∇x∂tv(t, x)dxdt

+ 4h3Re

∫
Q

∇x ·
(
∇xv(t, x)ω · ∇xv(t, x)

)
dxdt− 4h3Re

∫
Q

∇xv(t, x) · ∇x
(
ω · ∇xv(t, x)

)
dxdt

= −4h3Re

∫
Ω

∂tv(T, x)ω · ∇xv(T, x)dx+ 2h3

∫
Q

∇x ·
(
ω|∂tv(t, x)|2

)
dxdt

+ 2h3Re

∫
Σ

∂νv(t, x)ω · ∇xv(t, x)dSxdt− 2h3

∫
Q

∇x ·
(
ω|∇xv|2

)
dxdt

= −4h3Re

∫
Ω

∂tv(T, x)ω · ∇xv(T, x)dx+ 2h3

∫
Σ

ω · ν|∂tv(t, x)|2dSxdt+ 2h3

∫
Σ

ω · ν|∂νv|2dSxdt.

In deriving the above equation, we used the fact that

2h3Re

∫
Σ

∂νv(t, x)ω · ∇xv(t, x)dSxdt = 2h3

∫
Σ

ω · ν|∂νv|2dSxdt,

since v = 0 on Σ. Also note that |∇xv| = |∂νv|.
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Next we consider I3. We have

I3 = 4h

∫
Q

Re

((
h2t2

ε2
− 2ht

ε
− h2

ε

)
v(t, x)

(
1− ht

ε

)
∂tv(t, x)

)
dxdt

= 2h

∫
Q

(
h2t2

ε2
− 2ht

ε
− h2

ε

)(
1− ht

ε

)
∂t|v(t, x)|2dxdt

= 2

∫
Ω

(
h3T 2

ε2
− 2h2T

ε
− h3

ε

)(
1− hT

ε

)
|v(T, x)|2dx

− 2

∫
Q

[(
2h3t

ε2
− 2h2

ε

)(
1− ht

ε

)
− h2

ε

(
h2t2

ε2
− 2ht

ε
− h2

ε

)]
|v(t, x)|2dxdt.

Finally, we consider I4. This is

I4 := −4h

∫
Q

Re

((
h2t2

ε2
− 2ht

ε
− h2

ε

)
v(t, x)ω · ∇xv(t, x)

)
dxdt

= −4h

∫
Q

(
h2t2

ε2
− 2ht

ε
− h2

ε

)
∇ ·
(
ω|v|2

)
dxdt

= 0 since v = 0 on Σ.

Therefore∫
Q

|�ϕ,εv(t, x)|2dxdt ≥ 2h3

(
1− hT

ε

)∫
Ω

(
|∂tv(T, x)|2 + |∇xv(T, x)|2

)
dx

+
2h4

ε

∫
Q

(
|∂tv(t, x)|2 + |∇xv(t, x)|2

)
dxdt

− 4h3Re

∫
Ω

∂tv(T, x)ω · ∇xv(T, x)dx+ 2h3

∫
Σ

ω · ν|∂tv(t, x)|2dSxdt

+ 2h3

∫
Σ

ω · ν|∂νv|2dSxdt+ 2

∫
Ω

(
h3T 2

ε2
− 2h2T

ε
− h3

ε

)(
1− hT

ε

)
|v(T, x)|2dx

− 2

∫
Q

[(
2h3t

ε2
− 2h2

ε

)(
1− ht

ε

)
− h2

ε

(
h2t2

ε2
− 2ht

ε
− h2

ε

)]
|v(t, x)|2dxdt.
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Choosing ε and h small enough, we have

∫
Q

|�ϕ,εv(t, x)|2dxdt ≥ 2h4

ε

∫
Q

|∂tv(t, x)|2 + |∇xv(t, x)|2dxdt

+ ch3

∫
Ω

|∂tv(T, x)|2dx

+ 2h3

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt− ch3

∫
Ω

|∇xv(T, x)|2dx

− ch2

∫
Ω

|v(T, x)|2dx+
ch2

ε

∫
Q

|v(t, x)|2dxdt. (9)

Now we consider the conjugated operator Lϕ,ε := h2e−
ϕ̃

hLA,qe
ϕ̃

h . We have

Lϕ,εv(t, x) = h2
(
e−ϕ̃/h (� + 2A0∂t − 2A · ∇x + q̃) eϕ̃/hv(t, x)

)
,

where

q̃ = q + |A0|2 − |A|2 + ∂tA0 −∇x ·A.

We write

Lϕ,εv(t, x) = �ϕ,εv(t, x) + P̃ v(t, x),

where

P̃ v(t, x) = h2
(
e−ϕ̃/h (2A0∂t − 2A · ∇x + q̃) eϕ̃/hv(t, x)

)
. (10)

By triangle inequality,∫
Q

|Lϕ,εv(t, x)|2 dxdt ≥ 1

2

∫
Q

|�ϕ,εv(t, x)|2dxdt−
∫
Q

|P̃ v(t, x)|2dxdt. (11)

We have∫
Q

∣∣∣P̃ v(t, x)
∣∣∣2 dxdt =

∫
Q

∣∣∣∣[h2 (2A0∂t − 2A · ∇x + q̃) v + h

{
2A0

(
1− ht

ε

)
− 2ω ·A

}
v

]∣∣∣∣2 dxdt

≤ Ch4

‖A0‖2L∞(Q)

∫
Q

|∂tv(t, x)|2dxdt+ ‖A‖2L∞(Q)

∫
Q

|∇xv(t, x)|2dxdt


+ Ch2

(h2‖q̃‖2L∞(Q) + ‖A‖2L∞(Q)

)∫
Q

|v(t, x)|2dxdt+ ‖A0‖2L∞(Q)

∫
Q

(
1− ht

ε

)2

|v(t, x)|2dxdt

 .
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Choosing h small enough, we have,

∫
Q

∣∣∣P̃ v(t, x)
∣∣∣2 dxdt ≤ Ch4

‖A0‖2L∞(Q)

∫
Q

|∂tv(t, x)|2dxdt+ ‖A‖2L∞(Q)

∫
Q

|∇xv(t, x)|2dxdt


+ Ch2

(
‖A0‖2L∞(Q) + ‖A‖2L∞(Q)

)∫
Q

|v(t, x)|2dxdt

+ Ch4‖q̃‖2L∞(Q)

∫
Q

|v(t, x)|2dxdt.

(12)

Using (9) and (12) in (11) and taking ε small enough, we have that there exists a
C > 0 depending only on ε, T , Ω, A and q such that

∫
Q

|Lϕ,εv(t, x)|2dxdt ≥ Ch2

{
h2

∫
Q

|∂tv(t, x)|2 + |∇xv(t, x)|2dxdt

+

∫
Q

|v(t, x)|2dxdt

−
∫
Ω

|v(T, x)|2dx

}
+ Ch3

∫
Ω

|∂tv(T, x)|2dx

+ h3

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt− Ch3

∫
Ω

|∇xv(T, x)|2dx,

and this inequality holds for h small enough. After dividing by h2, we get

C

∫
Q

(
|h∂tv(t, x)|2 + |h∇xv(t, x)|2

)
dxdt+

∫
Q

|v(t, x)|2dxdt


+ Ch

∫
Ω

|∂tv(T, x)|2dx+ h

∫
Σ

ω · ν(x)|∂νv(t, x)|2dSxdt

≤ 1

h2

∫
Q

|Lϕ,εv(t, x)|2 dxdt+ Ch

∫
Ω

|∇xv(T, x)|2dx+ C

∫
Ω

|v(T, x)|2dx. (13)

Let us now substitute v(t, x) = e−
ϕ̃

h u(t, x). We have

he−ϕ/h∂tu(t, x) = he−t
2/2ε∂tv + e−ϕ/h

(
1− ht

ε

)
u,

he−ϕ/h∇xu = he−t
2/2ε∇xv + e−ϕ/hωu,

∂νv(t, x)|Σ = e−ϕ/h∂νu|Σ, since u = 0 on Σ.
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Using the above equalities and the triangle inequality, we then have for h small enough,

h

∫
Ω

e−2ϕ/h|∂tu(T, x)|2dx+ h

∫
Σ+,ω

e−2ϕ/h|∂νu(t, x)|2|ω · ν(x)|dSxdt

+ h2

∫
Q

e−2ϕ/h
(
|∂tu(t, x)|2 + |∇xu(t, x)|2

)
dxdt+

∫
Q

e−2ϕ/h|u(t, x)|2dxdt

≤ C

(
h2

∫
Q

e−2ϕ/h|LA,qu(t, x)|2dxdt+ h

∫
Ω

e−2ϕ/h|∇xu(T, x)|2dx

+

∫
Ω

e−2ϕ/h|u(T, x)|2dx+ h

∫
Σ−,ω

e−2ϕ/h|∂νu(t, x)|2|ω · ν(x)|dSxdt

)
.

Finally,

h
(
e−ϕ/h∂νϕ∂νu, e

−φ/h∂νu
)
L2(Σ+,ω)

+ h
(
e−ϕ(T,·)/h∂tu(T, ·), e−ϕ(T,·)/h∂tu(T, ·)

)
L2(Ω)

+ ‖e−ϕ/hu‖2L2(Q) + ‖he−ϕ/h∂tu‖2L2(Q) + ‖he−ϕ/h∇xu‖2L2(Q)

≤ C

(
‖he−ϕ/hLA,qu‖2L2(Q) +

(
e−ϕ(T,·)/hu(T, ·), e−ϕ(T,·)/hu(T, ·)

)
L2(Ω)

+ h
(
e−ϕ(T,·)/h∇xu(T, ·), e−ϕ(T,·)/h∇xu(T, ·)

)
L2(Ω)

+ h
(
e−ϕ/h (−∂νϕ) ∂νu, e

−ϕ/h∂νu
)
L2(Σ−,ω)

)
.

This completes the proof.

In particular, it follows from the previous calculations that for u ∈ C∞c (Q),

‖u‖H1
scl(Q) ≤

C

h
‖Lϕu‖L2(Q). (14)

To show the existence of suitable solutions to (1), we need to shift the Sobolev index
by −1 in (14). This we do in the next lemma.

Lemma 3.2. Let ϕ(t, x) = t + x · ω and Lϕ := h2e−ϕ/hLA,qeϕ/h. There exists an
h0 > 0 such that

‖v‖L2(R1+n) ≤
C

h
‖Lϕv‖H−1

scl (R1+n), (15)

and

‖v‖L2(R1+n) ≤
C

h
‖L∗ϕv‖H−1

scl (R1+n) (16)

for all v ∈ C∞c (Q), 0 < h ≤ h0.

Proof. We give the proof of the estimate in (15) and that of (16) follows similarly.
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We follow arguments used in [9]. We again consider the convexified weight

ϕ̃(t, x) = t+ x · ω − ht2

2ε
,

and as before consider the convexified operator:

�ϕ,ε := h2e−ϕ̃/h�eϕ̃/h.

From the properties of pseudodifferential operators, we have

〈hD〉−1 (�ϕ,ε) 〈hD〉 = �ϕ,ε + hR1

where R1 is a semi-classical pseudo-differential operator of order 1. Now

‖�ϕ,ε〈hD〉v‖H−1
scl (R1+n) = ‖〈hD〉−1�ϕ,ε〈hD〉v‖L2(R1+n).

and by the commutator property above, we get

‖�ϕ,ε〈hD〉v‖2H−1
scl (R1+n)

= ‖(�ϕ,ε + hR1) v‖2L2(R1+n) ≥
1

2
‖�ϕ,εv‖2L2(R1+n)−‖hR1v‖2L2(R1+n).

Let Q ⊂⊂ Q̃, and for v ∈ C∞c (Q̃), using the estimate in (9) for C∞c functions combined
with estimates for pseudodifferential operators, we have,

‖�ϕ,ε〈hD〉v‖2H−1
scl (R1+n)

≥ Ch2

ε
‖v‖2H1

scl(R1+n) − h
2‖v‖2H1

scl(R1+n). (17)

Using the expression for P̃ (see (10)), we get, for v ∈ C∞c (Q̃) and for h small enough,

‖P̃ v‖2
H−1

scl (R1+n)
≤ Ch2‖v‖2L2(R1+n),

and therefore

‖P̃ 〈hD〉v‖2
H−1

scl (R1+n)
≤ Ch2‖〈hD〉v‖2L2(R1+n) = Ch2‖v‖2H1

scl(R1+n).

Combining this with the estimate in (17) together with triangle inequality, we get,

‖Lϕ,ε〈hD〉v‖2H−1
scl (R1+n)

≥ Ch2

ε
‖v‖2H1

scl(R1+n) (18)

for all v ∈ C∞c (Q̃).
Now to complete the proof, for any u ∈ C∞c (Q), consider v = χ〈hD〉−1u, where

χ ∈ C∞c (Q̃) with χ ≡ 1 on Q. Then from (18), we have

Ch2

ε
‖χ〈hD〉−1u‖2H1

scl(R1+n) ≤ ‖Lϕ,ε〈hD〉χ〈hD〉
−1u‖2

H−1
scl (R1+n)

.
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The operator 〈hD〉χ〈hD〉−1 is a semiclassical pseudodifferential operator of order 0,
and therefore we have

Lϕ,ε〈hD〉χ〈hD〉−1u = 〈hD〉χ〈hD〉−1Lϕ,ε + hR1,

where R1 is a semiclassical pseudodifferential operator of order 1.

Ch2

ε
‖χ〈hD〉−1u‖2H1

scl(R1+n) ≤ ‖Lϕ,εu‖
2
H−1

scl (R1+n)
+ h2‖u‖2L2(R1+n).

Finally, write

〈hD〉−1u = χ〈hD〉−1u+ (1− χ)〈hD〉−1u,

where χ is as above. Then

‖〈hD〉−1u‖2H1
scl(R1+n) ≥

1

2
‖χ〈hD〉−1u‖2H1

scl(R1+n) − ‖(1− χ) 〈hD〉−1u‖2H1
scl(R1+n).

Since (1−χ)〈hD〉−1 is a smoothing semiclassical pseudodifferential operator, taking
h small enough, and arguing as in the proof of the Carleman estimate, we get,

‖Lϕu‖2H−1
scl (R1+n)

≥ Ch2‖u‖2L2(R1+n).

Cancelling out the h2 term, we finally have,

‖u‖L2(R1+n) ≤
C

h
‖Lϕu‖H−1

scl (R1+n).

This completes the proof.

Proposition 3.3. Let ϕ, A and q be as in Theorem 3.1. For h > 0 small enough and
v ∈ L2(Q), there exists a solution u ∈ H1(Q) of

Lϕu = v,

satisfying the estimate

‖u‖H1
scl(Q) ≤

C

h
‖v‖L2(R1+n),

where C > 0 is a constant independent of h.

Proof. The proof uses standard functional analysis arguments. Consider the space
S :=

{
L∗ϕu : u ∈ C∞c (Q)

}
as a subspace of H−1(R1+n) and define a linear form L on

S by

L(L∗ϕz) =

∫
Q

z(t, x)v(t, x)dxdt, for z ∈ C∞c (Q).

13



This is a well-defined continuous linear functional by the Carleman estimate (16) . We
have ∣∣L(L∗ϕz)

∣∣ ≤ ‖z‖L2(Q)‖v‖L2(Q) ≤
C

h
‖v‖L2(Q)‖L∗ϕz‖H−1

scl (R1+n), z ∈ C
∞
c (Q).

By Hahn-Banach theorem, we can can extend L to H−1(R1+n) (still denoted as L) and
it satisfies ‖L‖ ≤ C

h ||v||L2(Q). By Riesz representation theorem, there exists a unique

u ∈ H1(R1+n) such that

L(f) = 〈f, u〉L2(R1+n) for all f ∈ H−1(R1+n) with ‖u‖H1
scl(R1+n) ≤

C

h
‖v‖L2(Q).

Taking f = L∗ϕz, for z ∈ C∞c (Q), we get

L(L∗ϕz) = 〈L∗ϕz, u〉L2(R1+n) = 〈z,Lϕu〉L2(R1+n).

Therefore for all z ∈ C∞c (Q),

〈z,Lϕu〉 = 〈z, v〉.

Hence

Lϕu = v in Q with ‖u‖H1
scl(Q) ≤

C

h
‖v‖L2(Q).

This completes the proof of the proposition.

4. Construction of geometric optics solutions

In this section we construct geometric optics solutions for LA,qu = 0 and its adjoint
operator L∗A,qu = L−A,qu = 0.

Proposition 4.1. Let LA,q be as in (1).

(1) (Exponentially decaying solutions) There exists an h0 > 0 such that for all 0 <
h ≤ h0, we can find v ∈ H1(Q) satisfying L−A,qv = 0 of the form

vd(t, x) = e−
ϕ

h (Bd(t, x) + hRd(t, x;h)) , (19)

where ϕ(t, x) = t+ x · ω,

Bd(t, x) = exp

− ∞∫
0

(1,−ω) · A(t+ s, x− sω)ds

 (20)

with ζ ∈ (1,−ω)⊥ and Rd ∈ H1(Q) satisfies

‖Rd‖H1
scl(Q) ≤ C. (21)
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(2) (Exponentially growing solutions) There exists an h0 > 0 such that for all 0 <
h ≤ h0, we can find v ∈ H1(Q) satisfying LA,qv = 0 of the form

vg(t, x) = e
ϕ

h (Bg(t, x) + hRg(t, x;h)) , (22)

where ϕ(t, x) = t+ x · ω,

Bg(t, x) = e−iζ·(t,x) exp

 ∞∫
0

(1,−ω) · A(t+ s, x− sω)ds

 (23)

with ζ ∈ (1,−ω)⊥ and Rg ∈ H1(Q) satisfies

‖Rg‖H1
scl(Q) ≤ C. (24)

Proof. We have

LA,qv = �v + 2A0∂tv − 2A · ∇xv +
(
∂tA0 −∇x ·A+ |A0|2 − |A|2 + q

)
v.

Letting v of the form

v(t, x) = e
ϕ

h (Bg + hRg) ,

and setting the term involving h−1 to be 0, we get,

(1,−ω) · (∇t,xBg + (A0, A)Bg) = 0.

One solution of this equation is

Bg(t, x) = exp

 ∞∫
0

(1,−ω) · A(t+ s, x− sω)ds

 .

Alternately, another solution is

Bg(t, x) = e−iζ·(t,x) exp

 ∞∫
0

(1,−ω) · A(t+ s, x− sω)ds

 ,

provided ζ ∈ (1,−ω)⊥.
Now we have

L∗A,q = L−A,q.

For this adjoint operator, the equation satisfied by Bd is

(1,−ω) · (∇t,xBg − (A0, A)Bg) = 0.
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We let

Bd(t, x) = exp

− ∞∫
0

(1,−ω) · A(t+ s, x− sω)ds

 .

Now Rg satisfies

LϕRg = −hLA,qBg.

Then using the estimate in Proposition 3.3, we get that

‖Rg‖H1
scl(Q) ≤ C‖LA,qBg‖L2(Q).

Similarly,

‖Rd‖H1
scl(Q) ≤ C‖L−A,qBd‖L2(Q).

The proof is complete.

5. Integral Identity

In this section, we derive an integral identity involving the coefficients A and q using
the geometric optics solutions described in the previous section.

Let ui be the solutions to the following initial boundary value problems with vector
field coefficient A(i) and scalar potential qi for i = 1, 2.

LA(i),qiui(t, x) = 0; (t, x) ∈ Q
ui(0, x) = φ(x), ∂tui(0, x) = ψ(x); x ∈ Ω

ui(t, x) = f(t, x), (t, x) ∈ Σ.

(25)

Let us denote

u(t, x) := (u1 − u2)(t, x)

A(t, x) := A(2) −A(1)(t, x) := (A0(t, x), A1(t, x), · · · , An(t, x))

q̃i := ∂tA
(i)
0 −∇x · A

(i) + |A(i)
0 |

2 − |A(i)|2 + qi (26)

q̃ := q̃2 − q̃1.

Then u is the solution to the following initial boundary value problem:
LA(1),q1u(t, x) = −2A · ∇xu2 + 2A0∂tu2 + q̃u2

u(0, x) = ∂tu(0, x) = 0, x ∈ Ω

u|Σ = 0.

(27)

Let v(t, x) of the form given by (19) be the solution to following equation

L−A(1),q1
v(t, x) = 0 in Q. (28)
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Also let u2 of the form given by (22) be solution to the following equation

LA(2),q2u2(t, x) = 0, in Q. (29)

By the well-posedness result from [17,19], we have u ∈ H1(Q) and ∂νu ∈ L2(Σ).

Now we multiply (27) by v(t, x) ∈ H1(Q) and integrate over Q. We get, after
integrating by parts, taking into account the following: u|Σ = 0, u(T, x) = 0, ∂νu|G = 0,
u|t=0 = ∂tu|t=0 = 0 and A(1) is compactly supported in Q:∫
Q

LA(1),q1u(t, x)v(t, x)dxdt−
∫
Q

u(t, x)L−A(1),q1
v(t, x)dxdt =

∫
Ω

∂tu(T, x)v(T, x)dx

−
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt.

Now using the fact that L−A(1),q1
v(t, x) = 0 in Q and

LA(1),q1u(t, x) = −2A · ∇xu2 + 2A0∂tu2 + q̃u2,

we get,∫
Q

(−2A · ∇xu2 + 2A0∂tu2 + q̃u2) v(t, x)dxdt =

∫
Ω

∂tu(T, x)v(T, x)dx

−
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt.

Lemma 5.1. Let ui for i = 1, 2 solutions to (25) with u2 of the form (22). Let
u = u1 − u2, and v be of the form (19). Then

h

∫
Ω

∂tu(T, x)v(T, x)dx→ 0 as h→ 0+. (30)

h

∫
Σ\G

∂νu(t, x)v(t, x)dSxdt→ 0 as h→ 0+. (31)
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Proof. Using (19), (21) and Cauchy-Schwartz inequality, we get∣∣∣∣∣∣h
∫
Ω

∂tu(T, x)v(T, x)dx

∣∣∣∣∣∣ ≤
∫
Ω

h
∣∣∣∂tu(T, x)e−

ϕ(T,x)

h (Bd(T, x) + hRd(T, x))
∣∣∣ dx

≤ C

∫
Ω

h2
∣∣∣∂tu(T, x)e−

ϕ(T,x)

h

∣∣∣2 dx

 1

2
∫

Ω

∣∣∣e−iξ·(T,x) + hRd(T, x)
∣∣∣2 dx

 1

2

≤ C

∫
Ω

h2
∣∣∣∂tu(T, x)e−

ϕ(T,x)

h

∣∣∣2 dx

 1

2 (
1 + ‖hRd(T, ·)‖2L2(Ω)

) 1

2

≤ C

∫
Ω

h2
∣∣∣∂tu(T, x)e−

ϕ(T,x)

h

∣∣∣2 dx

 1

2

.

Now using the boundary Carleman estimate (3.1), we get,

h

∫
Ω

∣∣∣∂tu(T, x)e−
ϕ(T,x)

h

∣∣∣2 dx ≤ C‖he−ϕ/hLA(1),q1u‖
2
L2(Q)

= C‖he−ϕ/h (2A0∂tu2 − 2A · ∇xu2 + q̃u2) ‖2L2(Q).

Now substituting (22) for u2, we get,

he−ϕ/h (2A0∂tu2 − 2A · ∇xu2 + q̃u2) = (2A0∂tϕ− 2A · ∇xϕ+ q̃) (Bg + hRg)

+ h (2A0∂t − 2A · ∇x + q̃) (Bg + hRg)

Therefore

‖he−ϕ/h (2A0∂tu2 − 2A · ∇xu2 + q̃u2) ‖2L2(Q)≤ C,

uniformly in h.

Thus, we have h2

∫
Ω

∣∣∣∂tu(T, x)e−
ϕ(T,x)

h

∣∣∣2 dx

 1

2

≤ C
√
h.

Therefore

h

∫
Ω

∂tu(T, x)v(T, x)dx→ 0 as h→ 0+.
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For ε > 0, define

∂Ω+,ε,ω = {x ∈ ∂Ω : ν(x) · ω > ε}.

and

Σ+,ε,ω = (0, T )× ∂Ω+,ε,ω.

Next we prove (31). Since Σ\G ⊆ Σ+,ε,ω for all ω such that |ω−ω0| ≤ ε, substituting
v = vd from (19), in (31) we have∣∣∣∣∣∣∣

∫
Σ\G

∂νu(t, x)v(t, x)dSxdt

∣∣∣∣∣∣∣ ≤
∫

Σ+,ε,ω

∣∣∣∂νu(t, x)e−
ϕ

h (Bd + hRd) (t, x)
∣∣∣ dSxdt

≤ C
(

1 + ‖hRd‖2L2(Σ)

) 1

2

 ∫
Σ+,ε,ω

∣∣∣∂νu(t, x)e−
ϕ

h

∣∣∣2 dSxdt


with C > 0 is independent of h and this inequality holds for all ω such that |ω−ω0| ≤ ε.
Next by trace theorem, we have that ‖Rd‖L2(Σ) ≤ C‖Rd‖H1

scl(Q)
.

Using this, we get∣∣∣∣∣∣∣
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt

∣∣∣∣∣∣∣ ≤ C
 ∫

Σ+,ε,ω

∣∣∣∂νu(t, x)e−
ϕ

h

∣∣∣2 dSxdt


1

2

.

Now ∫
Σ+,ε,ω

∣∣∣∂νu(t, x)e−
ϕ

h

∣∣∣2 dSxdt =
1

ε

∫
Σ+,ε,ω

ε
∣∣∣∂νu(t, x)e−

ϕ

h

∣∣∣2 dSxdt

≤ 1

ε

∫
Σ+,ε,ω

∂νϕ
∣∣∣∂νu(t, x)e−

ϕ

h

∣∣∣2 dSxdt.

Using the boundary Carleman estimate (3.1), we have

h

ε

∫
Σ+,ε,ω

∂νϕ
∣∣∣∂νu(t, x)e−

ϕ

h

∣∣∣2 dSxdt ≤ C‖he−ϕ/hLA(1),q1u‖
2
L2(Q).

We now proceed as before to conclude that

h

∫
Σ\G

∂νu(t, x)v(t, x)dSxdt→ 0 as h→ 0+.
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6. Proof of Theorem 2.3

In this section, we prove the uniqueness results.

6.1. Recovery of vector potential A

We consider the integral,∫
Q

(−2A · ∇xu2 + 2A0∂xu2 + q̃u2) (t, x)v(t, x)dxdt.

Substituting (22) for u2 and (19) for v into the above equation, and letting h → 0+,
we arrive at∫
Q

(−ω ·A+A0)Bd(t, x)Bg(t, x)dxdt = 0 for all ω ∈ Sn−1 such that |ω − ω0| ≤ ε.

Denote ω̃ := (1,−ω), A = (A0, A), and using the expressions for Bd and Bg, see (19)
and (22), we get

J :=

∫
R1+n

ω̃ · A(t, x)e−iξ·(t,x) exp

 ∞∫
0

ω̃ · A(t+ s, x− sω)

dxdt = 0,

where ξ · (1,−ω) = 0 for all ω with |ω − ω0| < ε. We decompose R1+n = R(1,−ω) ⊕
(1,−ω)⊥. We then get

J =

∫
(1,−ω)⊥

e−iξ·k

∫
R

ω̃ · A(k + τ(1,−ω)) exp

 ∞∫
τ

ω̃ · A(k + s(1,−ω))ds

√2dτ

dk.

Here dk is the Lebesgue measure on the hyperplane (1,−ω)⊥.

= −
√

2

∫
(1,−ω)⊥

e−iξ·k

∫
R

∂τ exp

 ∞∫
τ

ω̃ · A(k + s(1,−ω))ds

dτ

dk

= −
√

2

∫
(1,−ω)⊥

e−iξ·k

1− exp

∫
R

ω̃ · A(k + s(1,−ω))ds

 dk

= CF(1,−ω)⊥

1− exp

∫
R

ω̃ · A(k + s(1,−ω))ds

 (ξ) for some constant C.
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Since the integral J = 0, we have that

F(1,−ω)⊥

1− exp

∫
R

ω̃ · A(k + s(1,−ω))ds

 (ξ) = 0, k ∈ (1,−ω)⊥.

This gives us

exp

∫
R

ω̃ · A(k + s(1,−ω))ds

 = 1, for all k ∈ (1,−ω)⊥ and all ω with |ω − ω0| < ε.

Thus we deduce that∫
R

ω̃ · A(t+ s, x− sω)ds = 0, (t, x) ∈ (1,−ω)⊥ and for all ω with |ω − ω0| < ε.

(32)

Now we show that the orthogonality condition (t, x) ∈ (1,−ω)⊥, can be removed using
a change of variables as used in [25].

Consider any (t, x) ∈ R1+n. Then(
t+ x · ω

2
, x+

(t− x · ω)ω

2

)
is a point on (1,−ω)⊥, and we have∫

R

ω̃ · A
(
t+ x · ω

2
+ s̃, x+

(t− x · ω)ω

2
− s̃ω

)
ds̃ = 0.

Consider the following change of variable in the above integral:

s =
x · ω − t

2
+ s̃.

Then we have ∫
R

ω̃ · A (t+ s, x− sω) ds = 0.

Therefore, we have that∫
R

(1,−ω) · A(t+ s, x− sω)ds = 0 for all (t, x) ∈ R1+n and for all ω with |ω−ω0| < ε.

To conclude the uniqueness result for A, we prove the following lemma.
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Lemma 6.1. Let n ≥ 3 and F = (F0, F1, · · · , Fn) be a real-valued vector field whose
components are C∞c (R1+n) functions. Suppose

LF (t, x, ω) :=

∫
R

(1, ω) · F (t+ s, x+ sω)ds = 0

for all ω ∈ Sn−1 near a fixed ω0 ∈ Sn−1 and for all (t, x) ∈ R1+n. Then there exist a
Φ ∈ C∞c (R1+n) such that F (t, x) = ∇t,xΦ(t, x).

Proof. The proof follows the analysis similar to the ones used in [21,29], where support
theorems involving light ray transforms have been proved.

Denote ω = (ω1, · · · , ωn) ∈ Sn−1. We write

LF (t, x, ω) =

∫
R

n∑
i=0

ωiFi(t+ s, x+ sω)ds, where ω0 = 1.

Let η = (η0, η1, · · · , ηn) ∈ Rn+1 be arbitrary. We have

(η · ∇t,x)LF (t, x, ω) =

∫
R

n∑
i,j=0

ωiηj∂jFi(t+ s, x+ sω)ds. (33)

By fundamental theorem of calculus, we have∫
R

d

ds
(η · F )(t+ s, x+ sω)ds = 0.

But

d

ds
(η · F )(t+ s, x+ sω) =

n∑
i,j=0

ωiηj∂iFj(t+ s, x+ sω).

with ∂0 = ∂t and ∂j = ∂xj
for j = 1, 2, · · · , n. Therefore

∫
R

n∑
i,j=0

ωiηj∂iFj(t+ s, x+ sω)ds = 0. (34)

Subtracting (34) from (33), we get,

(η · ∇t,x)LF (t, x, ω) =

∫
R

n∑
i,j=0

ωiηj (∂jFi − ∂iFj) (t+ s, x+ sω)ds.

Since LF (t, x, ω) = 0 for all ω near ω0, and for all (t, x) ∈ R1+n, we have,

Ih(t, x, ω, η) :=

∫
R

n∑
i,j=0

ωiηjhij(t+ s, x+ sω)ds = 0. (35)
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Next we will show that the (n + 1) dimensional Fourier transform ĥij(ζ) = 0 for all
space-like vectors ζ near the set {ζ : ζ · (1, ω) = 0, ω near ω0}.

We have

ωiηj ĥij(ζ) =

∫
R1+n

e−i(t,x)·ζωiηjhij(t, x)dtdx,

where ω, η are fixed and ζ ∈ (1, ω)⊥. Decomposing

R1+n = R(1, ω) + k, where k ∈ (1, ω)⊥,

we get,

ωiηj ĥij(ζ) =
√

2

∫
(1,ω)⊥

e−ik·ζ
∫
R

ωiηjhij(k + s(1, ω)) dsdk.

Using (35), we get that,

n∑
i,j=0

ωiηj ĥij(ζ) = 0, for all ζ ∈ (1, ω)⊥, for all η ∈ R1+n, and for all ω near ω0 with ω0 = 1.

(36)
Let us take for η the standard basis vectors in R1+n.

Now {ej , 1 ≤ j ≤ n} be the standard basis of Rn. Let ω0 = e1, and assume that
ζ0 = (0, e2). Then this is a space-like vector that satisfies the condition ζ0 ∈ (1, ω0)⊥.

We will show that ĥij(ζ
0) = 0 for all 0 ≤ i, j ≤ n. Consider the collection of the

following unit vectors for 3 ≤ k ≤ n:

ωk(α) = cos(α)e1 + sin(α)ek.

Note that for each 3 ≤ k ≤ n, ωk(α) is near ω0 for α near 0. Also ζ0 ∈ (1, ωk(α))⊥ for
all such α and for all 3 ≤ k ≤ n. Let η be the collection of standard basis vectors in
R1+n.

Substituting the above vectors ωk(α) and η, we get the following equations:

ĥ0j(ζ
0) + cos(α)ĥ1j(ζ

0) + sin(α)ĥkj(ζ
0) = 0 for all 3 ≤ k ≤ n, 0 ≤ j ≤ n and α near 0.

From this we have that

ĥ0j(ζ
0) = ĥ1j(ζ

0) = ĥkj(ζ
0) = 0 for all 3 ≤ k ≤ n and 0 ≤ j ≤ n.

Using the fact that

ĥij(ζ
0) = −ĥji(ζ0) for all 0 ≤ i, j ≤ n,

we get

ĥij(ζ
0) = 0, for all 0 ≤ i, j ≤ n with ζ0 = (0, e2). (37)
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Now our goal is to show that the Fourier transform ĥij(ζ) vanishes for all light-like
vectors ζ in a small enough neighborhood of (0, e2). To show this, assume ζ = (τ, ξ)
be a space-like vector close to (0, e2). Without loss of generality, assume that ζ is of
the form

ζ = (τ, ξ) where |ξ| = 1 and |τ | < 1.

For instance, we can take ζ as

ζ = (− sinϕ, ξ),

where ϕ is close to 0 and ξ = (ξ1, · · · , ξn) is written in spherical coordinates as

ξ1 = sinϕ1 cosϕ2

ξ2 = cosϕ1

ξ3 = sinϕ1 sinϕ2 cosϕ3

...

ξn−1 = sinϕ1 · · · sinϕn−2 cosϕn−1

ξn−1 = sinϕ1 · · · sinϕn−2 sinϕn−1.

Note that if ϕ1, · · · , ϕn−1 are close to 0, then ξ is close to e2.
Let

ωϕ = cos(ϕ)e1 + sin(ϕ)e2.

Also let

ωkϕ(α) = cos(α) cos(ϕ)e1 + sin(ϕ)e2 + sin(α) cos(ϕ)ek for k ≥ 3.

Since ϕ is close to 0, and letting α close enough to 0, we have that ωϕ and ωkϕ are close
to ω0.

Now, let A be an orthogonal transformation such that Ae2 = ξ, where ξ is as above.
With this A, consider the vectors

ωζ = Aωϕ and ωkζ = Aωkϕ for k ≥ 3.

We have that

ζ ∈ (1, ωζ)
⊥.

To see this, note that ζ = (− sinϕ, ξ) and we have

− sinϕ+ 〈Ae2, Aωϕ〉 = − sinϕ+ 〈e2, ωϕ〉 = 0.

Also similarly, we have that,

ζ ∈ (1, ωkζ )⊥ for all k ≥ 3.
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Using the standard basis vectors for ηj and the vectors (1, ωkζ ) in (36), we get, for all
k ≥ 3,

ĥ0j(ζ)+sinϕ

(
n∑
i=1

ai2ĥij(ζ)

)
+cosα cosϕ

(
n∑
i=1

ai1ĥij(ζ)

)
+sinα cosϕ

(
n∑
i=1

aikĥij(ζ)

)
= 0

This then implies that

ĥ0j(ζ) + sinϕ

(
n∑
i=1

ai2ĥij(ζ)

)
= 0

cosϕ

(
n∑
i=1

ai1ĥij(ζ)

)
= 0

cosϕ

(
n∑
i=1

aikĥij(ζ)

)
= 0

Letting j = 0, since ĥ00(ζ) = 0, we have,

n∑
i=1

aij ĥi0(ζ) = 0 for all 1 ≤ j ≤ n.

Since A is an invertible matrix, we have that ĥi0(ζ) = 0 for all 1 ≤ i ≤ n. Now

proceeding similarly and using the fact that hij is alternating, we have that ĥij(ζ) = 0
for all 0 ≤ i, j ≤ n. The same argument as above also works for rζ, where ζ is as above
and r > 0.

Since the support of all hij is a compact subset of R1+n, by Paley-Wiener theorem,

we have ĥij(ζ) = 0 ∀ i, j = 0, 1, 2, ..., n. Hence, by Fourier inversion formula, we see
that hij(t, x) = 0 ∀ (t, x) ∈ R1+n, this gives us ∇t,xF (t, x) = 0 ∀ (t, x) ∈ R1+n. Using
Poincaré lemma, we have that there exists a Φ(t, x) ∈ C∞c (R1+n) such that F = ∇t,xΦ.

This then gives that

A(t, x) :=
(
A(2) −A(1)

)
(t, x) := (A0, A1, · · · , An) := ∇t,xΦ(t, x).

6.2. Recovery of potential q

In Section 6.1, we showed that there exist a Φ such that (A2−A1)(t, x) = ∇t,xΦ(t, x).

After replacing the pair (A(1), q1) by (A(3), q3) where A(3) = A(1) +∇t,xΦ and q3 = q1,

we conclude that A(3) = A(2). Therefore substituting (22) for u2 and (19) for v, and
letting h→ 0+ in∫

Q

q(t, x)u2(t, x)v(t, x)dxdt =

∫
Ω

∂tu(T, x)v(T, x)dx−
∫

Σ\G

∂νu(t, x)v(t, x)dSxdt,
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we get, ∫
R1+n

q(t, x)e−iξ·(t,x)dxdt = 0 for all ξ ∈ (1,−ω)⊥ and ω near ω0.

The set of all ξ such that ξ ∈ (1,−ω)⊥ for ω near ω0 forms an open cone and
since q ∈ L∞(Q) has compact support, using Paley-Wiener theorem we conclude that
q1(t, x) = q2(t, x) for all (t, x) ∈ Q. This completes the proof of Theorem 2.3.
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