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ABSTRACT
We study the inverse problem of determining the vector and scalar potentials
A = (Ao(t,x), A1(t,x), -+, An(t,z)) and q(t,x), respectively, in the relativistic

Schrodinger equation

n

(@ + Ao(t,2))* = > (0 + A; (,2)) + a(t, ) Ju(t, ) = 0

j=1

in the region Q@ = (0,T) x €, where Q is a C? bounded domain in R™ for n > 3
and T > diam(§2) from partial data on the boundary 9Q. We prove the unique
determination of these potentials modulo a natural gauge invariance for the vector
field term.

KEYWORDS
Inverse problems, relativistic Schréodinger equation, Carleman estimates, partial
boundary data

1. Introduction

Let Q@ C R", n > 3 be a bounded domain with C? boundary. For T > diam(fQ2),
let @ := (0,7) x Q and denote its lateral boundary by X := (0,7 x 9. Consider
the linear hyperbolic partial differential operator of second order with time-dependent
coeflicients:

Lagui={ @+ Ao(t,2))* = 3 (0 + A5t @) +alt,2) bu =0, (o) € Q. (1)

j=1

We denote A = (Ag,---,A,) and A = (A1, -+, A,). Then A = (A4p, A). We assume
that A is R valued with coefficients in C°(Q) and ¢ € L>(Q). The operator (1) is
known as the relativistic Schrédinger equation and appears in quantum mechanics and
general relativity [20, Chap. XII]. In this paper, we study an inverse problem related
to this operator. More precisely, we are interested in determining the coefficients in
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(1) from certain measurements made on suitable subsets of the topological boundary
of Q.

Starting with the work of Bukhgeim and Klibanov [6], there has been extensive
work in the literature related to inverse boundary value problems for second order
linear hyperbolic PDE. For the case when A is 0 and ¢ is time-independent, the unique
determination of g from full lateral boundary Dirichlet to Neumann data was addressed
by Rakesh and Symes in [22]. Isakov in [16] considered the same problem with an
additional time-independent time derivative perturbation, that is, with A = (Ap(x),0)
and ¢(x) and proved uniqueness results. The results in [22] and [16] were proved using
geometric optics solutions inspired by the work of Sylvester and Uhlmann [30]. For
the case of time-independent coefficients, another powerful tool to prove uniqueness
results is the boundary control (BC) method pioneered by Belishev, see [3-5]. Later
it was developed by Belishev, Kurylev, Katchalov, Lassas, Eskin and others; see [17]
and references therein. Eskin in [10,12] developed a new approach based on the BC
method for determining the time-independent vector and scalar potentials assuming
Ap = 01in (1). Hyperbolic inverse problems for time-independent coefficients have been
extensively studied by Yamamoto and his collaborators as well; see [1,2,8,13,14].

Inverse problems involving time-dependent first and zeroth order perturbations fo-
cusing on the cases A = 0 or when A is of the form (Ap,0) have been well studied in
prior works. We refer to [23,24,26,28] for some works in this direction.

Eskin in [11] considered full first and zeroth order time-dependent perturbations of
the wave equation in a Riemannian manifold set-up and proved uniqueness results (for
the first order term, uniqueness modulo a natural gauge invariance) from boundary
Dirichlet-to-Neumann data, under the assumption that the coefficients are analytic
in time. Salazar removed the analyticity assumption of Eskin in [25], and proved
that the unique determination of vector and scalar potential modulo a natural gauge
invariance is possible from Dirichlet-to-Neumann data on the boundary. In a recent
work of Stefanov and Yang in [27],! they proved stability estimates for the recovery
of light ray transforms of time-dependent first- and zeroth-order perturbations for
the wave equation in a Riemannian manifold setting from certain local Dirichlet to
Neumann map. Their results, in particular, would give uniqueness results in suitable
subsets of the domain recovering the vector field term up to a natural gauge invariance
and the zeroth-order potential term from this data.

For the case of time-dependent perturbations, if one is interested in global unique-
ness results in a finite time domain, extra information in addition to Dirichlet-to-
Neumann data is required to prove uniqueness results. Isakov in [15] proved unique-
determination of time-dependent potentials (assuming A = 0 in (1)) from the data set
given by the Dirichlet-to-Neumann data as well as the solution and the time deriva-
tive of the solution on the domain at the final time. Recently Kian in [18] proved
unique determination of time-dependent damping coefficient Ag(t,z) (with A of the
form, A = (Ap,0)) and the potential ¢(¢,z) from partial Dirichlet to Neumann data
together with information of the solution at the final time.

In this article, we prove unique determination of time-dependent vector and scalar
potentials A(¢,z) and ¢(¢,x) appearing in (1) (modulo a gauge invariance for the
vector potential) from partial boundary data. Our work extends the results of Salazar
[25] in the sense that in [25], the uniqueness results are shown with full Dirichlet to
Neumann boundary data and assuming such boundary measurements are available
for all time. Additionally, it extends the recent work of Kian [18], since we consider
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the full time-dependent vector field perturbation, whereas Kian assumes only a time
derivative perturbation.

The paper is organized as follows. In §2, we state the main result of the article.
In §3, we prove the Carleman estimates required to prove the existence of geometric
optics (GO) solutions, and in §4, we construct the required GO solutions. In §5, we
derive the integral identity using which, we prove the main theorem in §6.

2. Statement of the main result

In this section, we state the main result of this article. We begin by stating precisely
what we mean by gauge invariance.

2.1. Gauge Invariance

Definition 2.1. The vector potentials AW AR € 0(Q) are said to be gauge equiv-
alent if there exists a g(t, ) € C®°(Q) such that g(t,z) = e*®*) with ® € CX(Q)
and

_ vt,a:g(ta .T)

(A(2) _ A(l))(t,:c) — o2

— _vt,xq)(ta .’E)

Now we state the following proposition proof of which is given in [25].
Proposition 2.2. [25] Suppose u(t,z) is a solution to the following IBVP

n

0+ AP 22 = >0+ AV (@) +ault2)|uta) =0 inQ  (2)
j=1

u(0,z) = du(0,2) =0 in Q

ulg = f
and g(t, ) is as defined above, then v(t,z) = g(t,x)u(t, z) satisfies the following IBVP

n

[(at + A(()Q) (t,z))* — Z(Oj + Af) (t.2))* + a(t, x)} v(t,z) =0 inQ (3)
j=1

v(0,z) = Ow(0,2) =0 in Q
vls = f

with AY and A® gauge equivalent. In addition if A1 and Ay are Dirichlet to Neumann
operator associated with (2) and (3) respectively, then

A = As.



2.2. Statement of the main result

We introduce some notation. Following [7], fix an wy € S"!, and define the wo-
shadowed and wp-illuminated faces by

Oy, ={z€0: v(z) wyp>0}, 0N ={r€dQ: v(x) wy <0}

of 02, where v(z) is outward unit normal to 902 at x € 9. Corresponding to Q4 ,,,
we denote the lateral boundary parts by ¥4 ., := (0,T) x 004 ,. We denote by F =
(0,T)x F" and G = (0,T) x G' where F’ and G’ are small enough open neighbourhoods
of 024 ., and ON_ ,, respectively in Of.

Consider the IBVP

Laqu(t,z)=0; (t,x) € Q
u(O,m) = ¢(1‘), 8tu(ow%') = ¢($)a r € (4)
u(t,z) = f(t,x), (t,z) € X.

For ¢ € H'(Q),% € L*(Q) and f € HY(X), (4) has a unique solution u €
CH([0,T); L*(2)) N C([0,T]; H*(R2)) and furthermore d,u € L%*(X); see [17,19]. Thus
we have u € H'(Q). Therefore we can define our input-output operator A A,q by

AA,q(¢7 1, f) = ((%u‘(;, u’t:T) (5)

where u is the solution to (4). The operator
Agq: HYQ) x L2(Q) x H'(Z) — HY(Q) x L*(G)

is a continuous linear map which follows from the well-posedness of the IBVP given by
Equation (4) (see [17,19]). A natural question is whether this input-output operator
uniquely determines the time-dependent perturbations A and gq. We now state our
main result.

Theorem 2.3. Let (.A(l), q1) and (A(z), qg) be two sets of vector and scalar potentials
such that each Ag.i) € CX(Q) and g; € L>®(Q) fori=1,2 and 0 < j < n. Let u; be

solutions to (4) when (A,q) = (AY, ¢;) and Ay g, for i = 1,2 be the input-output
operators defined by (5) corresponding to u;. If

Apw g, (0,0, ) = A a4, (6,90, f), for all (¢,%, f) € H'(Q) x L*(Q) x H' (),
then there exists a function ® € C°(Q) such that
AV — A (t,2) = V;,®(t, 2); and q1(t,2) = @2(t,2), (t,2) € Q.
Remark 1. We have stated the above result for vector potentials in C2°(Q) for sim-

plicity. We can, in fact, prove for the case in which the vector potentials A € W1>(Q)
provided they are identical on the boundary 9Q), see [18].



3. Carleman Estimate

We denote by Hslcl(Q), the semiclassical Sobolev space of order 1 on ) with the
following norm

ull g @) = Nl L2 (@) + 1MV eaull 2 -

and for Q = R'*" we denote by HSSCI(RH"), the Sobolev space of order s with the
norm given by

[l aeny = [[(ADY ulZagany = / (L+ W22 4 W2JE2)* [a(r, €)1 drde.

Ritn

In this section, we derive a Carleman estimate involving boundary terms for (1) conju-
gated with a linear weight. We use this estimate to control boundary terms over subsets
of the boundary where measurements are not available. Our proof follows from modifi-
cations of the Carleman estimate given in [18]. Since we work in a semiclassical setting,
we prefer to give the proof for the sake of completeness.

Theorem 3.1. Let o(t,z) :=t + x - w, where w € S"1 is fived. Assume that A; €
CX(Q) for 0 < j<n and q € L*(Q). Then the Carleman estimate

h (e—so/haysoayu, e—so/hayu> +h (e_SD(T")/ "ou(T, ), eI opu(T, '))

L2(2+‘w) L2(Q)
+ ”eﬂp/huH%%Q) + ”he*‘f’/h(‘)tuH%Q(Q) + Hhe*sﬂ/hvqu%z(Q)
< —¢/h 2 —(T,)/h D, e~ T/ .
< C(Hhe Laqulli @t (e u(T,-),e u(T, )>L2(Q) (6)

+h (e*“’(T")/hvggu(T, s e*“’(T")/hvxu(T, )) +h (e*“”/h (—=0up) Opu, e*“o/ha,,u)

L2(2) LZ(E,M)>

holds for all u € C%(Q) with
uly =0, ult=o = uli=o =0,

and h small enough.

Proof. To prove the estimate (6), we will use a convexification argument used in [18].
Consider the following perturbed weight function

- hit?
t = p(t - —. 7
Bt ) = pt,2) — (7
We first consider the conjugated operator
Oy, := h2e=?/hge?/h, (8)



For v € C?(Q) satisfying v|g = v|t=0 = 9v|i=0 = 0, consider the L? norm of Oy e

/ O, co(t, ) dadt,
Q

Expanding (8), we get,
Opev(t,2) = (BP0 + 005 + (101 = [VaPl?) + 2 (0130, — Va3 - Vo) )o(t, 2).
We write this as

O, cv(t,x) = Pio(t, z) + Pou(t, x),

where
Pro(t,z) = (RO + 00 + (103 — Va3l o(t,2)
= <h2D + if 2t h2> v(t, ),
9 (3 13
and
Pov(t, ) = 2h (830 — Va3 - V) 0(t, )
=2h ((1 - ?) O —w- Vx> v(t, ).

Now

/ |D%5v(t,a:)|2 dzdt > 2/Re (Plv(t,a:)ng(t, x)) dadt
Q Q

= 4h3Q/Re (Dv(t,x) (1 - ?) atv(t,x)> dzdt

— 4p3 / Re (Dv(t, z)w - Vzo(t, 1‘)) dadt

h*t?  2ht  h? ht\
+4h | Re < - — - ) v(t, x) <1 - > &gv(t,x)) dzdt

9

L ) o(t, 2)w .W> dadt



We first simplify I;. We have

I = 4h3/Re (Dv(t, x) (1 — ?) Ov(t, :U)> dzdt
Q

= 2n3 / %\&w(t,x)P (1 - }?) dxdt — 4h3 /Re <Av(t,az) (1 - ?) ov(t, x)) dzdt
Q Q

4
o3 (1—h6T>/(\Gtv(T,:r:)]2+\va(T,a:)\Q) dx+2g/(\atv(t,x)|2+ Vau(t,2)?) dadt.
Q

In the above steps, we used integration by parts combined with the hypotheses that
v|y = v|t=0 = Opv|i=0 = 0. Note that v|x, = 0 would imply that v = 0 on X.
Now we consider Is. We have

I, = —4h3/Re <Dv(t,x)w . va(t,x)) dadt.
Q

We have

I, = —4h3Re/6t2v(t, x)w - Vu(t, z)dedt + 4h3Re/Av(t, x)w - Vyu(t, z)dedt
Q Q

= —4h3Re/8t <8tv(t, x)w - Vgu(t, m)) dzdt + 4h3Re/8tv(t, x)w - V0 (t, z)dzdt

Q Q
+ 4h3Re / V- (va(t, x)w - Vo(t, x)) dadt — 4h3Re / Veu(t,x) - Vy (w - Vo(t, :c)) dadt
Q Q
= —4h3Re/8tv(T,:r)w - Vou(T, x)dz + 2h3/Vm : (w|8tv(t,a:)|2) dzdt
Q Q
+ 2h°Re / dyv(t, x)w - Vyu(t, 2)dS,dt — 2h3 / Vo - (0| Vev]?) dadt
p) Q
= —4h3Re/8tv(T, z)w - Vou(T, z)dz 4 2h3 /w |0 (t, z)[2dS,dt + 2h3 /w - v|9,v|2dS,dt.
Q ) by

In deriving the above equation, we used the fact that

2h3Re / dv(t, z)w - Vyo(t, )dS,dt = 2h3 / w - v|0,v|?dS,dt,
by ¥

since v = 0 on X. Also note that |V v| = |9,v].



Next we consider I3. We have

242 92 2
13:4h/Re<<h§—ht—h> u(t, )(1—h) ov(t, m))dxdt
13 13 13 (3
Q
242 2 2
2@/<h§—}“—h><y—)@wu@pua
13 9 9
Q
3T2 2 2T 3 T
2/(3 _h_h>0_h>w@xnm
13 9 (3
Q

2h3t 2k ht h? (k22 2ht K2
4/ CA (M) SR 2R N, 1) Pt
g2 € € € g2 € €
Q

Finally, we consider I4. This is

2,2 2
I, = —4h/Re <<h £ 2t h) v(t, z)w - Vyo(t, x)) dzdt
Q

h*t? 2kt b2
= —4h/ ( -—- E) V- (w]v]?) dadt
Q

=0 sincev=0on X.

Therefore

/|Dwv (t,x)|*dzdt > 2h3 <1 — )/ 100(T, ) + |Vou(T, z)|?) dz
Q
2h* 2 2
+ — (10w (t, )]* 4 |Vao(t, 2)|?) dadt
Q
— 4h3Re / O(T, x)w - Vou(T, z)dz + 2h3 /w - v|O(t, x)|2dS,dt
b

Q
R3T?  2h*T  R? hT
+ 2n? /w - v|0,v|*dS,dt + 2/ <€2 - — ) (1 - ) |o(T, x)|*dz
Q

3

23t 2h2 ht h? (h2t2  2ht  h?
_ 2/ [(2 — ) (1 - > - — (2 -— - )] lo(t, z)[2dadt.
9) 9 g 9 3 I3 13
Q



Choosing € and h small enough, we have

2h*
/|D¥, co(t, )| ?dzdt > — /|3tv(t,x)|2 + |Vo(t, )| Adadt —|—ch3/|8tv(T,ﬂc)\2de‘

Q Q
o3 / w - ()|t 7)2AS,dt — ch / IVo0(T, 2)2dz
5
2 2 ch? 2
—ch® [ |v(T,z)|*dx + — lv(t, z)|*dzdt. 9)

Now we consider the conjugated operator L, . := h2e_%£¢4,qe%. We have

L, -v(t,x) = h? (e_wh (O+ 2408, — 24 -V, + q) ¥ u(t, :1:)) ,

where
G=q+ Ao = A" + 0,40 — V. - A.
We write
Lo cv(t,x) =040t x) + Pu(t, ),
where

Pu(t,z) = h? (e_wh (2400, — 2A -V, + §) e/ (t, x)) . (10)

By triangle inequality,

1 ~
/|E¢,Ev(t,$)|2dxdt2 2/]D%EU(t,x)Pda:dt—/]PU(t, z)2dzdt. (11)

We have

~ 2 ht 2
/’Pv(t,x)‘ dxdtz/Hfﬂ (2A08t—2A-Vx+?1)v+h{2Ao (1—8> —2w-A}v} dedt
Q Q
<ot ||A0H%OO(Q)/|8tv(t, 2)[2dadt + HA\%M(Q)/Wmv(t,xﬂzdxdt

Q
2 2113112 2 2 2 ht 2 2
+ Ch (h a1l () + HAHLoo(Q)> [o(t, @)[*dzdt + [[AollLw(q) [ (1~ ) vt 2)[ dwdt

Q



Choosing h small enough, we have,

~ 2
/’Pv(t,a:)‘ dzdt < Ch? HA0||%OC(Q)/lﬁtv(t,x)|2dxdt+||A||%OC(Q)/]va(t,az)lzdxdt
Q Q Q

+ O (A ) + AR o)) [ Io(t )Pt
Q

+ ChY|gll7~ ) / |o(t, z)*dadt.
Q
(12)

Using (9) and (12) in (11) and taking e small enough, we have that there exists a
C > 0 depending only on ¢, T, 2, A and ¢ such that

/|£¢,75v(t,a:)]2dxdt20h2{h2 /latv(t,x)lz—i—]va(t,a:)lzdxdt +/]v(t,x)|2dxdt
Q Q Q

—/v(T,a:)]2da:}+Ch3/|8tv(T,:c)|2dx
Q Q

1 [w vt o) Pds.de - O [ V0T
5 Q

and this inequality holds for h small enough. After dividing by h?, we get

C /(|h@tv(t,m)|2+|hvxv(t, 2)) dxdt+/|v(t,x)|2dxdt
Q Q

+Ch / 0,0(T, 2)2dz + h / w - ()| Oy (t, 2)[2dS,dt
Q b

1
< h2/|£%5v(t,x)2dxdt+0h/|va(T,:L‘)|2d:U+C/|U(T,a:)\2dx. (13)
Q Q Q

Let us now substitute v(t,z) = efgu(t, x). We have

> ht
he M u(t, x) = he /%00 + /P <1 - g) u,

he /" ju = he V2V 0 + e,

dyu(t,z)|s = e ?"d,ulg, since u =0 on X.

10



Using the above equalities and the triangle inequality, we then have for A small enough,

h/62¢/h|8tu(T,m)\2dx+ h / e 2o u(t, 2) | |w - v(z)|dS,dt
Q S
+ h? / e~ 2e/h (|0pu(t, z)|* + |Vau(t, z)?) dedt + /62‘0/h\u(t,x)|2dxdt
Q Q
< C<h2/6_2(p/h|£A7qu(t,ZE)|2d.’Edt + h/e_Qw/h|qu(T, z)|2dz
Q Q

s [t atae e n [ o u(az)dsxdt)
Q Yoo

Finally,

—¢/h —¢/h —(T,)/h D). e~/ .
h (e OvpOyu,e 8Vu> ) +h (e owu(T, ), e Owu(T, ))

+ e ulFag) + llhe™ " OpullZa ) + lhe ™" Vaulfa(q)

L2(Q)
—¢/h 2 (1) /h D). eI/ .
< C(”h@ v £A7QUHL2(Q) + (6 v U(Tv ),6 v U(Tv ))LQ(Q)

—(T,)/h N e—P(T)/h ) —p/h(_ —¢/h
+h (e Vu(T,-), e Vu(T, )) +h <€ (—=0up) Opu, e a,,u) s ) ) .

L*(Q)
This completes the proof. ]
In particular, it follows from the previous calculations that for u € C°(Q),
C
lullzr, @) < 7 1Leullz@)- (14)

To show the existence of suitable solutions to (1), we need to shift the Sobolev index
by —1 in (14). This we do in the next lemma.

Lemma 3.2. Let (t,z) = t +z-w and Ly, := h2e ¥/"L 4 e?/". There exists an
ho > 0 such that

C
[0l L2 Ra+n) < EH‘CGDUHHS’;(RH")v (15)
and

C o
Il @remy < S ILG0 1 e (16)

for allv e CX(Q), 0 < h < hg.

Proof. We give the proof of the estimate in (15) and that of (16) follows similarly.

11



We follow arguments used in [9]. We again consider the convexified weight

_ ht?
olt,r)=t+z -w——,

2e
and as before consider the convexified operator:
Oy, = h2e=?/hge?/h,
From the properties of pseudodifferential operators, we have
(hD)™"(O,.) (D) = O, + hRy
where R, is a semi-classical pseudo-differential operator of order 1. Now

10 (hD)ol = grsny = (D)~ D e (RD)0|| L2 g1y

and by the commutator property above, we get
||D<p,s<hD>U||§{;ll(R1+n) = [[(Oype + hR1) U”L2 (R1+n) 2 ||D<p sUHL2 R1+n) ||hR1U||%2(R1+n)-

Let Q CC @, and for v € C°(Q), using the estimate in (9) for C2° functions combined
with estimates for pseudodifferential operators, we have,

C’h2
18 &R DY VIl ey = 10Nz ey = P20 s oo (17)

Using the expression for P (see (10)), we get, for v € CZ®° (@) and for h small enough,
HPUH?J;}(RH") < Ch2””||%2(R1+n),
and therefore

| P(hD)v|?

HH;ll(]R1+n) < Ch2”<hD>UH%2(R1+") = ChQHUH%ISICI(RH”)'

Combining this with the estimate in (17) together with triangle inequality, we get,

Ch?
1€ DY 1 ety = 0l o (18)

for all v € C°(Q).
Now to complete the proof, for any u € C°(Q), consider v = x(hD) u, where

X € C°(Q) with y = 1 on Q. Then from (18), we have

Ch?

—IIxthD)” Yl ey < Lo (hDYX(AD) " ullf 1 giny-

12



The operator (hD)x(hD)™! is a semiclassical pseudodifferential operator of order 0,
and therefore we have

Lo (hD)x(hD)™ u = (hD)x(hD) 'Ly + hR,
where R; is a semiclassical pseudodifferential operator of order 1.

Ch? _
ZE A D)l ooy < It sy B2l s sy

Finally, write
(hD)"tu = x(hD)'u+ (1 — x)(hD)u,

where x is as above. Then

_ 1 _ _
KAD) " ull s gaeny > 5 Ix(hD) Yl ey = (1= x) (RD) " ullf govn)-
Since (1—x)(hD)~! is a smoothing semiclassical pseudodifferential operator, taking
h small enough, and arguing as in the proof of the Carleman estimate, we get,
HL"SDU’HiI;Il(Rl{»n) > Ch2||u||%2(R1+").

Cancelling out the h? term, we finally have,

C
Hu||L2(R1+") < E”’Cw“”HS;}(R1+w,)-

This completes the proof. O

Proposition 3.3. Let ¢, A and q be as in Theorem 3.1. For h > 0 small enough and
v € L*(Q), there exists a solution u € H*(Q) of

Lou =,

satisfying the estimate

C
ull e (@) < EH’UHB(RHn),

where C' > 0 is a constant independent of h.

Proof. The proof uses standard functional analysis arguments. Consider the space
S = {E’;u tu € C(Q)} as a subspace of H}(R'™") and define a linear form L on
S by

L(Lz) = /z(t,m)v(t, x)dzdt, for z € C°(Q).
Q

13



This is a well-defined continuous linear functional by the Carleman estimate (16) . We

have

* C * 00
|[L(£L2)] < 2l @ lIllza@) < 70l @1 €520 by mivny 2 € C(Q).

By Hahn-Banach theorem, we can can extend L to H (R (still denoted as L) and
it satisfies || L] < % [0l 2(g)- By Riesz representation theorem, there exists a unique

u € H'(R™") such that

L(f) = (f,u)p2mi+n) for all f € HH(R™™) with ||u]

Hl

scl

C
®1+n) < ﬁHUHU(Q)-

Taking f = L2, for z € C°(Q), we get

L([,:;Z) = <'C*<PZ’ u>L2(R1+n) = <Z, £@U>L2(R1+n).

Therefore for all z € C°(Q),

(z,Lou) = (z,0).

Hence

= Q

£¢u =wv in Q with HuHHﬁlcl(Q) < ”’UHLQ(Q)

This completes the proof of the proposition. O

4. Construction of geometric optics solutions

In this section we construct geometric optics solutions for £ 4 ,u = 0 and its adjoint
operator L u=L_a5u=0.

Proposition 4.1. Let L 44 be as in (1).

(1) (Exponentially decaying solutions) There exists an hy > 0 such that for all 0 <

h < ho, we can find v € HY(Q) satisfying L_aqv =0 of the form
va(t,x) = e (Bq(t,x) + hRa(t, x5 h)) | (19)

where p(t,z) =t + - w,

By(t, z) = exp —/(1,—w)-.A(t—|—s,:U—sw)ds (20)
0

with ¢ € (1, —w)* and Ry € HY(Q) satisfies

| Ral

mL.(Q = C- (21)
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(2) (Ezxponentially growing solutions) There exists an hg > 0 such that for all 0 <
h < ho, we can find v € HY(Q) satisfying La 40 =0 of the form

vy(t,x) = en (By(t,x) + hRy(t,x; b)),

(22)
where p(t,z) =t + - w,
By (t,a) = e exp / (1, —w) - A(t + 5, — sw)ds (23)
0
with ¢ € (1,—w)* and R, € HY(Q) satisfies
IRl m o) < C. (24)
Proof. We have

Lagqv="004+2A400w —2A- Vv + (@Ao — V.- A+ A — |AP + q) v.
Letting v of the form

v(t,z) = er (Bg + hRy),

and setting the term involving A~! to be 0, we get

(17 _w> : (vt@BQ + (A()?A)

One solution of this equation is

B,) = 0.

o0
By(t,z) = exp /1—w At + s, — sw)ds
0

Alternately, another solution is

By(t,x) = e 102 exp / (1, —w) - A(t + s,x — sw)ds
0

provided ¢ € (1, —w)*.
Now we have

£j<47q — AC_A@.

For this adjoint operator, the equation satisfied by By is

(1, —w) . (Vt@Bg — (Ao,A) Bg) =0.

15



We let
By(t,z) = exp / 1, —w) - A(t+ s,z — sw)ds
0

Now R, satisfies
LoRy = —hL B,
Then using the estimate in Proposition 3.3, we get that

1R

a1, Q) < CllLagBgllre )
Similarly,
[Rallm (@) < CllL-agBadllrz(q)-

The proof is complete.

5. Integral Identity

In this section, we derive an integral identity involving the coefficients A and ¢ using

the geometric optics solutions described in the previous section.

Let u; be the solutions to the following initial boundary value problems with vector

field coefficient A® and scalar potential ¢; for i = 1, 2.

LAm’qiui(t,w) = 0; (t,(L‘) €Q
Uz(0,$) = ¢($)7 atuz(oax) = ¢(1’), r €}
ui(t,z) = f(t,z), (t,z) € 2.

Let us denote

u(t,z) = (u1 — u2)(t, x)

A(t,l‘) = A(z) - A(l)(tv .’IJ) = (Ao(t,l'),Al(t,l'), e 7An(tax))
G =0, AY) =V, - AD 114012 — 4012 4 g

q:=q —q.

Then w is the solution to the following initial boundary value problem:

Lo g ult,r) = —2A - Vyug + 2A00iug + quz
u(0,z) = 0wu(0,2) =0, z € Q
uly = 0.

Let v(t,z) of the form given by (19) be the solution to following equation

L_Au)@lv(t, x) = 0 n Q

16

(26)

(27)

(28)



Also let ug of the form given by (22) be solution to the following equation
LA(z)VQQUQ(t,I‘) = 0, iIl Q (29)

By the well-posedness result from [17,19], we have v € HY(Q) and d,u € L*(X).

Now we multiply (27) by v(t,x) € H'(Q) and integrate over Q. We get, after
integrating by parts, taking into account the following: u|s, = 0, u(T,z) = 0, dyulg = 0,
u|i—o = Opu|s—o = 0 and AW is compactly supported in Q:

/£A<1>7qlu(t,m)v(7§,x)dxdt—/u(t,x)L_A(1>7q1v(t,x)dxdt = /atu(T,$)v(T, x)dz
Q Q Q

- / Opu(t, z)v(t, z)dS,dt.
s\a

Now using the fact that L_4m 5 v(t,) = 0 in @ and
EAm,qlu(t, iL') = —2A-V,ug + 2A00:us + qua,
we get,

/ (=2A - Vyug + 2A00wus + que) v(t, x)dzdt = /atu(T, x)v(T, x)dx
Q Q

- / Opu(t, x)v(t, x)dS,dt.
S\@

Lemma 5.1. Let u; for i = 1,2 solutions to (25) with ua of the form (22). Let
u=wuj —ug, and v be of the form (19). Then

h/@tu(T, z)v(T,z)dz — 0 as h — 0. (30)
Q

h / opu(t,z)v(t, x)dS,dt — 0 as h — 0. (31)
S\G
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Proof. Using (19), (21) and Cauchy-Schwartz inequality, we get

h/ﬁtu(T,x)v(T, x)dz| < /h‘@tu(T, a:)efw(i’m) (Ba(T, ) —i—hRd(T,x))‘dx
Q Q
o(T,x) |2 ’ , 2 :
<C /h2 Owu(T, x)e” 52 dw / e €M) L hRy(T, 3:)‘ dzx
Q Q
_e(T,x) 2 ’ %
<C /h2 ou(T,x)e” » | dx <1+ lh Ry (T, -)||%2(Q))
Q
e(T,x 2 ’
<C /h2 Opu(T, x)e” 2 Az
Q

Now using the boundary Carleman estimate (3.1), we get,

@(T,x)

2 h 2
h/’@tu(T,x)e_ h ‘ dﬂ? S C||h€_¢/ ‘C.A(l),thuHL?(Q)
Q

= C||he™?/" (2408yus — 2A - Vus + Gus) H%Q(Q).
Now substituting (22) for ug, we get,

he™#/M (2A004us — 2A - Vyug + Gua) = (24001 — 2A - Voo + §) (By + hRy)
+h (2400, —2A - Vo + ) (By + hRy)

Therefore
Ihe™#/" (2A00pug — 2A - Vaug + Gua) |72 < C,
uniformly in h.

Thus, we have

(T, x 2
h2/’8tu(T,x)e_ 57 Az | <covh
Q

Therefore

h/@tu(T,:U)v(T,a:)dac —0ash—0".
Q
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For € > 0, define
OV e ={2€0Q:v(x) w> el
and
Yiew=1(0,T) % 00V 0.

Next we prove (31). Since ¥\G C ¥ ., for all w such that |w—wp| < €, substituting
v =g from (19), in (31) we have

dyu(t,z)e”n (By+ hRy) (t, )| dS,dt

/ Oyu(t, 2)o(t, z)dS,dt| < /

\G Y+ew
N\ 2
§C<1+\|hRdHL2(E)> / dyu(t,z)e 5| dS,dt
>+,e,w

with C' > 0 is independent of h and this inequality holds for all w such that |w—wp| < €.

Next by trace theorem, we have that ||R4|[z2(s) < C|| Ryl Hyo)-
Using this, we get
|2
/ Opu(t, x)v(t, x)dS,dt| < C / Opu(t,x)e n| dSydt

\G >+,e,w

Now
.2 1 .12
/ Opu(t,x)e n| dS,dt = B / e|Oyu(t,x)e n| dS,dt
Yiew Yiew
1 |2
< Z / Oy 8yu(t,x)6_ﬁ‘ dsS,dt.

YW

Using the boundary Carleman estimate (3.1), we have

h
g / 81/ ®

E+,a,w

0|2
dpu(t,z)e | dSydt < Cllhe™ /"L 40 g, ull3 -

We now proceed as before to conclude that

h / ou(t, r)v(t,r)dS,dt — 0 as h — 0.
S\@
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6. Proof of Theorem 2.3

In this section, we prove the uniqueness results.

6.1. Recovery of vector potential A

We consider the integral,

/(—2A - Vaug + 2A00,u2 + que) (t, x)v(t, z)dadt.
Q

Substituting (22) for up and (19) for v into the above equation, and letting h — 0T,
we arrive at

/ (—w - A+ Ag) By(t,2) By(t,z)dxdt = 0 for all w € S*~* such that |w — wp| < e.
Q

Denote w := (1, —w), A = (Ao, A), and using the expressions for By and By, see (19)
and (22), we get

J = / @ A(t, x)e ) exp /cT; At + s, 2 — sw) | dedt =0,
0

R1+n
where ¢ - (1, —w) = 0 for all w with |w — wp| < e. We decompose R = R(1, —w) @
(1, —w)*. We then get

J = / e ik /c~u~A(k+T(1,—w))exp /&-A(k—i—s(l,—w))ds V2dr | dk.
R T

(lv_w)L

Here dk is the Lebesgue measure on the hyperplane (1, —w)*.

=2 / e 10k /87- exp /55 Ak + s(1, —w))ds | d7 | dk
(1,—w)* R T

=2 / e k[ 1 —exp /@-A(kz—ks(l,—w))ds dk
( R

1,—w)*

=CF,—w)r |1 —exp /oNJ Ak + s(1, —w))ds (&) for some constant C.
R
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Since the integral J = 0, we have that
Foewe 1 exp /@-A(k—i—s(l,—w))ds (©) =0, ke (1,—w)t.
R
This gives us
exp /fu Ak 4 s(1, —w))ds | =1, for all k€ (1, —w)* and all w with |w — wyl| < e.
R

Thus we deduce that
/(Z CA(t+ s,z —sw)ds =0, (t,z) € (1,—w)’ and for all w with |w — wy| < &.
R

(32)
Now we show that the orthogonality condition (¢,z) € (1, —w)™*

a change of variables as used in [25].
Consider any (¢,z) € R1™™. Then

<t+m-w (t—w-w)w)

5 Tt 2

, can be removed using

is a point on (1, —w)*, and we have

Jaa(By e me s T s ) a0

Consider the following change of variable in the above integral:

x'w—t+~
s= ——— +5.
2

Then we have

Therefore, we have that

/(17 —w) - A(t+ s,z — sw)ds = 0 for all (t,z) € R and for all w with |w — wp| < €.
R

To conclude the uniqueness result for A, we prove the following lemma.
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Lemma 6.1. Let n > 3 and F = (Fy, F1,--- , F,) be a real-valued vector field whose
components are C2°(R™™) functions. Suppose

LE(t,,w) = / (Lw)- F(t+ 5,2+ sw)ds = 0
R

for all w € S*! near a fived wy € S"~ and for all (t,x) € R™™. Then there exist a
® € C°(RY™™) such that F(t,z) = Vi, ®(t, z).

Proof. The proof follows the analysis similar to the ones used in [21,29], where support

theorems involving light ray transforms have been proved.
Denote w = (w!,---,w") € S*~1. We write

LF(t,z,w) = /Zw (t + 5,2 + sw)ds, where w® = 1.
=0

Let = (n0,m1," -+ ,nn) € R*! be arbitrary. We have
(n-Vig)LF(t, z,w) Z w0 Fi(t + 8,2 + sw)ds. (33)
R 7.] =0

By fundamental theorem of calculus, we have

d

/d(n -F)(t+ s, 4+ sw)ds = 0.
s

R

But

d LR
)t +s o+ sw) = > w0 Fy(t+ 8,7 + sw).
i.j=0

with 0y = 0; and 0; = 0,, for j =1,2,--- ,n. Therefore
n .
Z w'n;0iFj(t + s, + sw)ds = 0. (34)
R i,j=0

Subtracting (34) from (33), we get,

(n-Vig) LF(t,z,w) = anj (0;F; — 0iF;) (t+ s, + sw)ds.
R Hi=0

Since LF(t,x,w) = 0 for all w near wp, and for all (t,z) € R we have,

Ih(t,z,w,n) Z w'njhi(t + s,z + sw)ds = 0. (35)
R =0
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Next we will show that the (n + 1) dimensional Fourier transform ﬁij (¢) = 0 for all
space-like vectors ¢ near the set {¢: (- (1,w) = 0,w near wp}.
We have

winghiQ) = [ e winhy (e, ),
R1i+n
where w, 7 are fixed and ¢ € (1,w)*. Decomposing
RY™ = R(1,w) 4 k, where k € (1,w)*,
we get,
winjﬁij(C) =2 / e k¢ /winjhij(k + s(1,w)) dsdk.
(1) R
Using (35), we get that,
n . ~
Z w'nihii(¢) =0, for all ¢ € (1,w)*, for all n € R!™™ and for all w near wy with w® = 1.
i,j=0
(36)
Let us take for 7 the standard basis vectors in R,

Now €i, 1 < 7 < n} be the standard basis of R™. Let wo = €1, and assume that
i — j
= ,€2). en 1S 1S a Space-l1Ke vector at satisiies € condition S ,Wwo) ™.

We will show that /l\L,-j(CO) = 0 for all 0 < 4,5 < n. Consider the collection of the
following unit vectors for 3 < k < n:

wi(a) = cos(a)er + sin(a)ey.

Note that for each 3 < k < n,wy(a) is near wy for a near 0. Also ¢¥ € (1, w(a))* for

all such « and for all 3 < k < n. Let n be the collection of standard basis vectors in
R+,

Substituting the above vectors wy(a) and n, we get the following equations:
/fzoj(CO) —i—cos(a)/ﬁlj(go) —|—sin(a)/f;kj((0) =0forall 3<k <n,0<j<mnand «anear 0.
From this we have that
ﬁoj(co) = ﬁlj(co) = ﬁkj(go) =0forall3<k<nand0<j<n.
Using the fact that
EU(CO) = —ﬁji(co) for all 0 <i,7 <n,
we get

hij(¢%) =0, for all 0 < d,j < n with ¢° = (0, e2). (37)
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Now our goal is to show that the Fourier transform lAlij(C ) vanishes for all light-like
vectors ¢ in a small enough neighborhood of (0, e2). To show this, assume ¢ = (7,§)
be a space-like vector close to (0,e2). Without loss of generality, assume that ¢ is of
the form

¢ = (7,§) where [¢] =1 and |7] < 1.
For instance, we can take ( as
C = (_Sin§07£)>

where ¢ is close to 0 and & = (&1, -+ ,&,) is written in spherical coordinates as

&1 = sin g1 cos @9
&2 = cos

&3 = sin 1 sin @9 cos @3

En—1 =sinq - -sinY,_2COS Y1

&n—1 =siny - -sin,_9sinp,_1.

Note that if 1,--- ,p,_1 are close to 0, then £ is close to es.
Let

wy, = cos(p)er + sin(p)es.

Also let

wf;(a) = cos(a) cos(p)er + sin(p)es + sin(a) cos(p)e for k > 3.

Since ¢ is close to 0, and letting « close enough to 0, we have that w, and wf; are close
to wo.

Now, let A be an orthogonal transformation such that Aey = &, where £ is as above.
With this A, consider the vectors

we = Aw, and wé“ = Awfz for k > 3.
We have that
¢ e (1wt
To see this, note that ( = (—sinp, §) and we have
—sinp + (Aez, Aw,) = —sinp + (e2,w,) = 0.

Also similarly, we have that,

¢ e (1wt for all k> 3.
¢
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Using the standard basis vectors for 7; and the vectors (1, wéf) in (36), we get, for all
k>3,

/ﬁoj(g“)—i—sin % <Z aigﬁzj(()> +cos a.cos p <Z Cbﬂ};ij(()) +sin « cos <Z ai,ﬁij(g)) =

i=1 =1 i=1

This then implies that

ho;(C) + sin ¢ (Z anﬁzj(c)) =0

=1

cos <Z ailﬁij(<)> =0
i=1
Cos <Z aikﬁij (C)) =0

i=1

Letting j = 0, since /ﬁoo(C) = 0, we have,
n ~
ZaijhiO(C) =0foralll S j S n.
i=1

Since A is an invertible matrix, we have that ﬁio(C) =0 forall 1 <i < n. Now
proceeding similarly and using the fact that h;; is alternating, we have that /Iiw(c )=0
for all 0 <4, j < n. The same argument as above also works for r(, where ( is as above
and r > 0.

Since the support of all h;; is a compact subset of R by Paley-Wiener theorem,
we have ﬁij(g) =0Vi,j5=0,1,2,...,n. Hence, by Fourier inversion formula, we see
that h;(t,z) =0V (t,z) € R, this gives us V;,F(t,x) =0V (t,z) € R"". Using
Poincaré lemma, we have that there exists a ®(¢,z) € C>°(R'™) such that F = V; , .

This then gives that

Alt @) i= (A® = AD) (1) i= (A, Ar, -+, An) = Vi (L 2).

6.2. Recovery of potential q

In Section 6.1, we showed that there exist a ® such that (A —A1)(t, ) = Vi, P(¢, ).
After replacing the pair (A", ¢) by (A®), ¢3) where A®) = AW £V, & and g3 = q1,
we conclude that A®) = A®?). Therefore substituting (22) for ug and (19) for v, and
letting h — 0T in

/q(t,x)uQ(t,x)U(t, x)dadt = /8tu(T,:1:)v(T,ac)dx— / Opu(t, x)v(t, x)dS,dt,
Q Q \G
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we get,

q(t, z)e E D dzdt = 0 for all € € (1, —w)* and w near wp.

R1+n

The set of all ¢ such that ¢ € (1, —w)" for w near wy forms an open cone and
since ¢ € L*°(Q) has compact support, using Paley-Wiener theorem we conclude that
q1(t,x) = q2(t, ) for all (t,x) € Q. This completes the proof of Theorem 2.3.
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